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Enumeration of Graded (3 + 1)-Avoiding
Posets (extended abstract)

Joel Brewster Lewis and Yan X Zhang
Massachusetts Institute of Technology

Abstract. The notion of (3+1)-avoidance appears in many places in enumerative combinatorics, but the natural goal
of enumerating all (3+1)-avoiding posets remains open. In this paper, we enumerate graded (3+1)-avoiding posets.
Our proof consists of a number of structural theorems followed by some generating function magic.

Résumé. L’idée de l’évitement de (3+1) apparaı̂t dans beaucoup d’endroits dans le combinatoire énumérative, mais
l’objectif naturel de le dénombrement des tous les ordres qui évitent (3 + 1) demure ouvert. Dans cet article, nous
énumérons les ordres étagés qui évitent (3 + 1). Notre preuve est constitué de quelques théorèmes de structure, et
après un peu de la magie des fonctions génératrices.
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1 Introduction
The notion of (3 + 1)-avoiding posets pops up in different different areas of combinatorics, such as in
the Stanley-Stembridge conjecture about the e-positivity of certain chromatic polynomials [8] and the
characterization of interval semiorders [2]. They have also earned some direct scrutiny: Skandera [5]
has given a characterization of (3 + 1)-avoiding posets involving the square of the antiadjacency matrix.
Despite these connections, the enumeration of (3 + 1)-avoiding posets has remained elusive. This is
particularly bothersome because the enumeration of posets that are both (2+2)- and (3+1)-avoiding, the
interval semiorders, is well-understood: the number of unlabeled n-element interval semiorders is exactly
the Catalan number Cn [2]. Moreover, (2 + 2)-avoiding posets have been recently enumerated, as well
[1].

In this paper, we consider a closely related problem and enumerate graded (3 + 1)-avoiding posets
via structural theorems and generating function magic. The property of gradedness is very natural and
captures a lot of the complexity of the general case while making the problem much more tractable.In the
rest of this introduction, we summarize our strategy and results.

In Section 2, we offer some definitions and notation that we will use throughout the paper. Then in
Section 3, we give a useful local condition that is equivalent to (3 + 1)-avoidance for graded posets.

The meat of the paper is in Section 4, where we introduce several operations that allow us to decompose
strongly graded (3+1)-avoiding posets into simpler objects. First, in Section 4.1 we reduce our problem of
obtaining the generating function for all graded (3 + 1)-avoiding posets to studying certain posets we will
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Fig. 1: Three posets: the first is strongly graded, the second is weakly graded but not strongly graded, and the third is
not weakly graded.

call trimmed which are slightly simpler but which capture most of the information of the original posets.
Then, in Section 4.2, we show that trimmed (3 + 1)-avoiding posets arise from taking the ordinal sum of
several layers, each of which is a sum-indecomposable (3 + 1)-avoiding poset. Finally, in Section 4.3 we
introduce two more operations, gluing and sticking. We show that sum-indecomposable (3 + 1)-avoiding
posets arise from gluing and sticking together basic units called quarks, which we enumerate in Section 5.

This line of argument culminates in Section 6, in which we use the results of the preceding sections
and the transfer-matrix method to enumerate all strongly graded (3 + 1)-avoiding posets. In Section 7,
we mention without details a few related results, most notably the enumeration of weakly graded (3 + 1)-
avoiding posets. For details, please see the complete version [4] of this paper.

2 Preliminaries
We assume familiarity with standard definitions and terminology associated with partially ordered sets;
see, e.g., [6, Chapter 3]. We say that four elements w, x, y, z in a poset P are an instance of (3 + 1) if we
have that x < y < z and w is incomparable to all of x, y, z. If P contains no instance of (3 + 1), we say
that P avoids (3 + 1).

Call a poset P weakly graded if there exists a rank function rk : P → N such that if a <· b then
rk(b) − rk(a) = 1 and such that the minimal occurring rank in each connected component is 0. Call
a weakly graded poset strongly graded if all minimal elements are on the same rank and all maximal
elements are on the same rank.(i) (Equivalently, a poset is strongly graded if all maximal chains in the
poset have the same length; in this case the rank function rk may be recovered by setting rk(v) to be the
length of the longest chain whose maximal element is v.) Figure 1 gives examples of posets with these
properties. The height of a weakly graded poset P is the number of vertices in the longest chain in P .

A weakly graded poset P of height k + 1 has vertex levels P (0), P (1), . . . , P (k), where P (i) = {v ∈
P | rk(v) = i}. If P is strongly graded, all the minimal elements are in P (0) and all the maximal ones
are in P (k).

In this extended abstract, we restrict our discussion primarily to strongly graded posets.

3 Local Conditions
In this section, we give a concise local condition that is equivalent to (3+1)-avoidance for weakly graded
posets.

(i) We avoid the use of the unmodified word “graded” in the statement of theorems and results because of an ambiguity in the
literature: some sources (e.g., [7]) use the word “graded” to mean “strongly graded,” while many others (e.g., [3]) use “graded”
to mean “weakly graded.” Such is life; we hope the reader does not feel overburdened by the multiplication of adverbs.
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Fig. 2: The Hasse diagram for the vigilant poset at left will be displayed as the image at right: all-seeing vertices are
represented as squares, other vertices as triangles.

Given a weakly graded poset P , call a vertex v ∈ P (i) up-seeing if every vertex in P (i+ 1) covers v,
and call v down-seeing if v covers every vertex in P (i − 1). Let V(i) be the set of up-seeing vertices of
rank i and let Λ(i) be the set of all down-seeing vertices of rank i.

Theorem 3.1 A weakly graded poset P is (3 + 1)-avoiding if and only if every vertex of P is up-seeing,
down-seeing, or both, and every two vertices v, w such that rk(w)− rk(v) ≥ 2 are comparable.

Proof idea: We show that any weakly graded poset with the two given properties avoids (3 + 1). The
converse is slightly longer (but not more difficult) and we omit it here.

Suppose P is a weakly graded poset such that every vertex is up-seeing or down-seeing and every two
vertices v, w such that rk(w)− rk(v) ≥ 2 are comparable; we will show P avoids (3 + 1). Consider any
3-chain x < y < z in P and any other vertex w ∈ P ; we show that w is comparable to at least one of x,
y, z. By the defining properties of P , if rk(w) < rk(z)− 1 then w < z while if rk(w) > rk(x) + 1 then
w > x, and in either case we have our result. The only remaining case is rk(z)−1 = rk(w) = rk(x) + 1.
In this case, since w is either up- or down-seeing, we conclude that w is comparable to at least one of x
and z. Thus, P avoids (3 + 1), as desired. 2

One consequence of Theorem 3.1 is that in our study of graded (3 + 1)-avoiding posets we need only
consider posets in which every vertex is up-seeing or down-seeing. We make heavy use of this property
in the following sections, so we give it a name: we say that a weakly graded poset P is vigilant if every
vertex of P is up-seeing, down-seeing, or both. For similar reasons, we refer to vertices that are both up-
and down-seeing as all-seeing.

We introduce the following convention for representing vigilant posets: vertices that are all-seeing
are represented by squares, vertices that are up-seeing are represented by downwards-pointing triangles,
and vertices that are down-seeing are represented by upwards-pointing triangles. (Thus, each vertex has
horizontal edges on the sides on which it is connected to all vertices.) This convention is illustrated in
Figure 2.

4 Simplifications
In this section, we introduce four operations that allow us to count vigilant posets by working instead with
simpler objects. We show that (3 + 1)-avoidance will be mostly compatible with these simplifications,
reducing the problem of enumerating graded (3 + 1)-avoiding posets basically to studying vigilant posets
of height 2.

4.1 Trimming
We call a vigilant poset P trimmed if every rank has at most one all-seeing vertex, the all-seeing vertices
are unlabeled, and the other m vertices are labeled with [m].
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Fig. 3: A strongly graded (3 + 1)-avoiding poset and the associated trimmed poset.

Given a strongly graded poset P , there is a naturally associated trimmed poset, denoted trim(P ), that
we get by removing the all-seeing vertices from P , adding a single unlabeled all-seeing vertex to any
vertex level from which we removed all-seeing vertices, and relabeling the other vertices so as to preserve
the relative order of labels. Figure 3 provides one illustration of this operation.

Proposition 4.1 The strongly graded vigilant poset P avoids (3 + 1) if and only if trim(P ) does.

Since we lose very little information when we replace the poset P by the trimmed poset trim(P ),
Proposition 4.1 suggests that we can reduce the enumeration of labeled graded (3 + 1)-avoiding posets
to the enumeration of trimmed (3 + 1)-avoiding posets. The following proposition makes this intuition
precise.

Proposition 4.2 Let gn be the number of strongly graded (3 + 1)-avoiding posets on n vertices and let

G(x) =
∑
n

gn
xn

n!

be the exponential generating function for labeled strongly graded (3 + 1)-avoiding posets. Let an,r be
the number of trimmed (3 + 1)-avoiding posets with r all-seeing vertices and n other vertices and let

GT (x, z) =
∑
n,r

an,r
xn

n!
zr

be the generating function for trimmed (3 + 1)-avoiding posets, exponential in x and ordinary in z. Then

G(x) = GT (x, ex − 1).

4.2 Ordinal Sums
Suppose we have two trimmed strongly graded posets P1 and P2 of heights a and b, respectively. We can
form the ordinal sum of P1 and P2 by letting the lowest-ranked elements in P2 cover all highest-ranked
elements in P1 and relabeling in a way consistent with the labelings of P1 and P2. (Thus, there are many
ways to take the ordinal sum P1 and P2; all the resulting posets are isomorphic up to vertex relabeling.)
We call the posets P1 and P2 the layers and we denote any poset that results from this process by P1⊕LP2.
Observe that P1 ⊕L P2 has height a+ b. See for example Figure 4. In the context of vigilant posets, it is
an especially nice operation because a vertex in P1 or P2 which is up-seeing and/or down-seeing retains
that property in P1 ⊕L P2.

Call a nonempty strongly graded trimmed poset P with height k ≥ 1 sum-indecomposable if P there
is no i < k − 1 for which every vertex in P (i) is up-seeing (equivalently, there is no i > 0 for which
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⊕L =

Fig. 4: The ordinal sum of two sum-indecomposable layers forms a new poset. (Labels are suppressed for readability.)

every vertex in P (i) is down-seeing). This word choice is motivated by the existence of a decomposition
of trimmed posets into sum-indecomposables.

Proposition 4.3 A trimmed strongly graded poset P can be written uniquely as

P = P1 ⊕L P2 ⊕L · · · ⊕L Pk,

for a sequence (P1, P2, . . . , Pk) of sum-indecomposable posets.

Proposition 4.4 If a trimmed strongly graded poset P decomposes into sum-indecomposables as P =
P1 ⊕L · · · ⊕L Pk, then P avoids (3 + 1) if and only if all of the Pi avoid (3 + 1).

Proof idea: One direction is trivial: if any of the Pi contains an instance of (3 + 1) then certainly P does
as well. For the other direction, suppose that all the Pi avoid (3 + 1); we will show that P also avoids
(3 + 1). It suffices to check that P satisfies the local conditions in Theorem 3.1. The first condition, that
every vertex is up-seeing or down-seeing or both, is satisfied by construction and by the fact that the Pi
have this property. Thus, we are left to check the second condition, that every vertex is comparable to
all vertices two ranks above it. This requires a small amount of straightforward casework depending on
whether and how the chosen vertices straddle two of the Pi. 2

Propositions 4.3 and 4.4 simplify the problem of counting strongly graded (3 + 1)-avoiding posets:
it now suffices to count sum-indecomposable posets and then take their ordinal sums. As we will see
in Theorem 6.4, this is a simple task with generating functions. Thus, we now turn our attention to
enumerating sum-indecomposable (3 + 1)-avoiding posets.

4.3 Sticking and Gluing
In order to enumerate sum-indecomposable posets, we break them down into more manageable pieces.(ii)

In particular, we introduce two associative operations that can be used to build every sum-indecomposable
poset. Suppose that we have sum-indecomposable posets P1 and P2 of height a and b, respectively. If
P1 has no all-seeing vertex of top rank and P2 has no all-seeing vertex of bottom rank, then we allow the
following two constructions.
• We can stick P1 and P2 to form a new poset P = P1 ⊕S P2 of height a+ b− 1, as follows:

– The vertex set of P is the disjoint union of the vertex sets of P1 and P2.
– For i = 1, 2, if v, w ∈ Pi, then v < w in P if and only if v < w in Pi.

(ii) In defense of what seems like a bad joke, the original meaning of the word “atom” was “indecomposable,” but subatomic particles
stubbornly exist.
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=⊕S

Fig. 5: An example of sticking two sum-indecomposable posets. (Labels are suppressed for readability.)

=⊕G

Fig. 6: An example of gluing two sum-indecomposable posets. (Labels are suppressed for readability.)

– If v ∈ P1 and w ∈ P2 then v < w in P unless rk(v) = a − 1 and rk(w) = 0. In this case, v
and w are incomparable.

– We distribute labels to vertices of P consistent with the labelings of P1 and P2.
• We can glue P1 and P2 to form a new poset P = P1 ⊕G P2 of height a+ b− 1, as follows:

– The vertex set of P is the disjoint union of the following three sets: the vertex set of P1, the
vertex set of P2, and a singleton set {Ξ}.

– For i = 1, 2, if v, w ∈ Pi then v < w in P if and only if v < w in Pi.
– If v ∈ P1 and w ∈ P2 then v < w in P unless rk(v) = a− 1 and rk(w) = 0. In this case, we

set v and w to be incomparable.
– If v ∈ P1 is not of top rank then v < Ξ in P . If instead rk(v) = a − 1 then v and Ξ are

incomparable.
– If w ∈ P2 is not of bottom rank then Ξ < w in P . If instead rk(w) = 0 then w and Ξ are

incomparable.
– We distribute labels to vertices of P consistent with the labelings of P1 and P2.

Note that gluing is basically sticking, except we add an all-seeing vertex to the boundary rank. Further-
more, as in the case of an ordinal sum of two layers, a vertex in P1 or P2 that it up-seeing or down-seeing
keeps this status after either gluing or sticking. Figure 5 shows an example of sticking two posets; Figure
6 shows a gluing of two posets.

In the context of sum-indecomposable posets, these are good operations since they preserve sum-
indecomposability, as the next result shows.

Proposition 4.5 Suppose P1 and P2 are sum-indecomposable posets such that P1 has no all-seeing ver-
tices of top rank and P2 has no all-seeing vertices of bottom rank. The posets P1 ⊕S P2 and P1 ⊕G P2

are sum-indecomposable.

Proof: We show that P = P1 ⊕S P2 is sum-indecomposable; the proof for gluing is essentially identical.
Let P1 have height a+1 and let P2 have height b+1. For any i such that 0 < i < awe have P (i) = P1(i).
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Since P1 is sum-indecomposable, P1(i) contains both vertices that are not down-seeing and vertices that
are not up-seeing. Similarly, for a < i < a+ b we have P (i) = P2(i− a) contains both types of vertices.
So it remains to check that P (a) = P1(a) ∪ P2(0) contains both types of vertices. Indeed, since P1 is
sum-indecomposable we have that P1(a) contains some vertices that are not up-seeing, and since P2 is
sum-indecomposable we have that P2(0) contains some vertices that are not down-seeing. Thus, no vertex
level of P = P1 ⊕S P2 has all up-seeing nor all down-seeing vertices and so P is sum-indecomposable,
as desired. 2

The key observation of this section is that any sum-indecomposable poset can be decomposed at any
rank by exactly one of the two operations we have just defined.

Proposition 4.6 Let P be a sum-indecomposable poset of height k, k ≥ 3. For any rank i, 0 < i < k−1,
exactly one of the following is true:
• there exist posets P1 of height i+ 1 and P2 of height k − i such that P = P1 ⊕S P2, or
• there exist posets P1 of height i+ 1 and P2 of height k − i such that P = P1 ⊕G P2.

Furthermore, P1 and P2 are uniquely determined by i.

Proof idea: To decide whether smaller posets are stuck or glued together to form our larger poset, we
check for the presence of an all-seeing vertex. 2

Corollary 4.7 For k ≥ 1, every sum-indecomposable poset P of height k + 1 can be written uniquely in
the form

P = P1 ⊕α1
P2 ⊕α2

· · · ⊕αk−1
Pk,

where each αi is one of S and G, each Pi is a sum-indecomposable poset of height exactly 2 plus possibly
some isolated vertices assigned to each rank, and no elements in any Pi are all-seeing, except possibly a
single vertex in each of P1(0) = P (0) and Pk(1) = P (k).

Moreover, if P1, . . . , Pk satisfy the conditions above then the poset

P1 ⊕α1 P2 ⊕α2 · · · ⊕αk−1
Pk

is sum-indecomposable.

We call P1, . . . , Pk the quarks of P . We will frequently refer to P1 and Pk as the bottom quark and
top quark of P , respectively. Thus quarks are essentially height-2 sum-indecomposable posets with no
all-seeing vertices, except possibly the top and bottom quarks, which may have one all-seeing vertex.
Corollary 4.7 tells us that a sum-indecomposable poset P of height k+1 has exactly k quarks P1, . . . , Pk,
where Pi is exactly the subposet induced by the vertices in V(i+ 1) ∪ Λ(i) that are not all-seeing.

Now we can connect our characterization of sum-indecomposable posets as quarks that have been glued
or stuck together to our ultimate goal of studying (3 + 1)-avoiding posets.

Proposition 4.8 For two sum-indecomposable posets P1 and P2 such that P1 has no all-seeing vertex of
top rank and P2 has no all-seeing vertex of bottom rank,

1. P1 ⊕G P2 is (3 + 1)-avoiding if and only if both P1 and P2 are, and
2. P1 ⊕S P2 is (3 + 1)-avoiding if and only if the following hold:

• both P1 and P2 are (3 + 1)-avoiding, and
• if Q1 is the top quark of P1 and Q2 is the bottom quark of P2 then Q1 has no isolated vertices

on its bottom rank or Q2 has no isolated vertices on the top rank (or both).
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Proof idea: We show the result only for gluing; the proof for sticking is similar but involves a bit more
work. Let P = P1 ⊕G P2. One direction is clear: since P contains P1 and P2 as induced subposets, if P
avoids (3 + 1) then P1 and P2 do as well. We now show that the other direction also holds, except in the
mentioned special case.

Assume P1 and P2 avoid (3 + 1). As before, Theorem 3.1 tells us that P avoids (3 + 1) if and only
if every pair of vertices v, w ∈ P such that rk(w) − rk(v) = 2 also satisfies v < w. Since P1 and P2

are (3 + 1)-avoiding, it suffices to check only the case v ∈ P1 and w ∈ P2. Let P1 have height a + 1,
so the boundary rank in P is P (a). There are three possible cases: rk(v) = a − 2, rk(v) = a − 1 and
rk(v) = a. If rk(v) = a− 2, then w, being comparable to every vertex in P (a− 1), must be comparable
to v as well, as desired. A similar argument takes care of the case rk(v) = a. The only remaining case is
rk(v) = a− 1 and rk(w) = a+ 1. But P has an all-seeing vertex on rank a – if we call this vertex u, we
have v < u < w and so P avoids (3 + 1), as desired. 2

The punchline of this section is that we now have a complete characterization of sum-indecomposable
(3 + 1)-avoiding posets.

Corollary 4.9 A sum-indecomposable poset P is (3 + 1)-avoiding if and only if the decomposition P =
P1⊕α1

P2⊕α2
· · · ⊕αk−1

Pk into quarks satisfies the following condition: for every occurrence of Pi⊕S
Pi+1 in the decomposition, either Pi has no isolated vertices on its bottom level or Pi+1 has no isolated
vertices on its top level or both.

5 Quarks
Corollary 4.9 implies that studying sum-indecomposable (3 + 1)-avoiding posets reduces to studying
quarks, which (except for possibly the top and bottom quarks) are height-2 labeled posets with no all-
seeing vertices, plus possibly some isolated vertices of each rank. A small but useful observation is that
such a height-2 labeled poset P with m vertices in P (0) and n vertices in P (1) is, up to differences in
the labeling scheme, just a bipartite graph on the disjoint union [m] ] [n]. In this section, we set out to
enumerate quarks by enumerating such graphs, keeping track of some simple structural information about
them.

We define a family of sets Aνµ(m,n), where µ and ν are subsets (possibly empty) of {2,◦,�,⊗}, as
follows:
• Aνµ(m,n) is the set of bipartite graphs on [m] ] [n] with some restrictions. The elements of ν

correspond to restrictions on the vertices in [n] and the elements of µ correspond to restrictions on
the vertices of [m]. (Here the placement of indices is meant to suggest that vertices in [m] form
a bottom level and the vertices in [n] a top level.) An empty set of symbols corresponds to no
restrictions on the corresponding set.
• A 2 corresponds to the requirement that there be at least one all-seeing vertex; a � corresponds to

the requirement that there be no all-seeing vertex.
• A ◦ corresponds to the requirement that there be an isolated vertex; a⊗ corresponds to the require-

ment that there be no isolated vertex.
For example, A(m,n) is the set of all bipartite graphs on [m] ] [n] and A2

�(m,n) is the subset of
A(m,n) containing those graphs with at least one all-seeing vertex in [n] but no all-seeing vertices in
[m]. Note that some collections of these restrictions allow no legal graphs: we have A2◦(m,n) = ∅ for
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all m and n because we cannot have both an isolated vertex in [m] and an all-seeing vertex in [n], while
A◦⊗(m,n) = ∅ because we cannot both enforce and prohibit an isolated vertex in [n].

We are particularly interested in quarks, which, roughly speaking, are those graphs with no all-seeing
vertices; thus, for ν, µ ⊂ {◦,⊗} we define Bνµ(m,n) = A

{�}∪ν
{�}∪µ(m,n). For example, B⊗◦(m,n) is the

set of bipartite graphs on [m] ] [n] with no all-seeing vertices, no isolated vertices in [n], and at least one
isolated vertex in [m]. For each Bνµ, let

F νµ (x) =
∑
m,n≥1

|Bνµ(m,n)|x
m+n

m!n!
(1)

be the corresponding generating function. Finally, let Bνµ be the union over m and n of all Bνµ(m,n).
Note that we have a disjoint union

B = B◦◦ ∪B◦⊗ ∪B
⊗
◦ ∪B

⊗
⊗ ,

which manifests as a sum of formal power series

F = F◦◦ + F◦⊗ + F⊗◦ + F⊗⊗ .

Proposition 5.1 Let

Ψ(x) =
∑
m,n≥0

2mnxm+n

m!n!

and let F νµ be defined as in Equation (1). We have

F◦◦ (x) = (1− e−x)2Ψ(x), F◦⊗ (x) = F⊗◦ (x) = (1− e−x)((2e−x − 1)Ψ(x)− 1),

and
F⊗⊗ (x) = (2e−x − 1)((2e−x − 1)Ψ(x)− 1).

Proof idea: The result essentially follows from careful applications of inclusion-exclusion. 2

6 Strongly Graded Posets
In this section, we use the F νµ as building blocks to obtain the generating function for sum-indecomposable
(3 + 1)-avoiding posets, and then proceed to enumerate all strongly graded (3 + 1)-avoiding posets. We
begin by encoding a sum-indecomposable poset in terms of a word that keeps track of its quarks and how
they are combined (i.e., gluing and sticking). Then we use the transfer-matrix method to enumerate words
while keeping track of the restrictions imposed by Corollary 4.9.

For a quark with no all-seeing vertices (i.e., a quark in B), we define its type to be the symbol Bνµ, cor-
responding to the unique subset among the four Bνµ to which it belongs. (This is a slight abuse of notation
that will always be unambiguous in context.) Now, define a word to be any monomial in the noncommu-
tative algebra R〈〈S,G,B◦◦ , B◦⊗ , B

⊗
◦ , B

⊗
⊗〉〉. We now encode the properties of being sum-indecomposable

and (3 + 1)-avoiding into conditions on words.
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Definition 6.1 We say that a word L is legal if for some k ≥ 1 there are αi ∈ {S,G} and Bi ∈
{B◦◦ , B◦⊗ , B

⊗
◦ , B

⊗
⊗} such that L = α0B1α1B2α2 · · ·Bk−1αk−1Bkαk, and none of the following oc-

cur:
1. α0 = S and B1 has a ◦ in the superscript;
2. αk = S and Bk has a ◦ in the subscript;
3. there is some i, 1 ≤ i ≤ k − 1, such that Bi has a ◦ in the subscript, αi = S, and Bi+1 has a ◦ in

the superscript.

We define a weight function wt : R〈〈S,G,B◦◦ , B◦⊗ , B
⊗
◦ , B

⊗
⊗〉〉 → R[[x, z]] as follows: we set wt(S) =

1, wt(G) = z, and wt(Bνµ) = F νµ and we extend by linearity and multiplication.

Proposition 6.2 Let I(x, z) be the generating function for nonempty sum-indecomposable (3+1)-avoiding
posets, where the variable z counts all-seeing vertices, the variable x counts other vertices, and I(x, z)
is exponential in x and ordinary in z. Then

I(x, z) = z +
∑
L

wt(L),

where the sum is over all legal words L.

Proof idea: Given a legal word L = α0B1α1B2α2 · · ·Bk−1αk−1Bkαk such that for all i, Bi is a quark
type and αi ∈ {S,G}, one checks that the generating function wt(L) counts posets P that decompose
into quarks as P = P1 ⊕α1 · · · ⊕αk−1

Pk, where Pi is of type Bi. Legality of the word corresponds
precisely to (3 + 1)-avoidance of the poset. 2

This result establishes that to enumerate posets we may focus our energies on enumerating words. We
accomplish this task with the transfer-matrix method.

Theorem 6.3 Let MW be the matrix

MW = G ·


B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗

+ S ·


0 B◦⊗ 0 B⊗⊗
0 B◦⊗ 0 B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗
B◦◦ B◦⊗ B⊗◦ B⊗⊗


with entries in the noncommutative algebra R〈〈S,G,B◦◦ , B◦⊗ , B

⊗
◦ , B

⊗
⊗〉〉 of words. The sum of the legal

words of length 2k + 1 is

[
G ·B◦◦ (S +G)B◦⊗ G ·B⊗◦ (S +G)B⊗⊗

]
· (MW )k−1 ·


G
G

S +G
S +G


and the generating function for all sum-indecomposable (3 + 1)-avoiding posets of height at least 2 is

I≥2(x, z) =
[
zF◦◦ (1 + z)F◦⊗ zF⊗◦ (1 + z)F⊗⊗

]
· (I− wt(MW ))−1 ·


z
z

1 + z
1 + z

 .
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B◦◦

∗

B⊗◦

B⊗⊗

B◦⊗

Fig. 7: The S-labeled edges of the graph Gw defined in the proof of Theorem 6.3. Each pair of vertices is also joined
by directed edges labeled G (not shown).

Proof idea: Consider the graph Gw with vertices {∗, B◦◦ , B◦⊗ , B
⊗
◦ , B

⊗
⊗} and the following directed,

labeled edges: for each pair u, v of vertices (allowing u = v), Gw has a directed edge u S−→ v unless
u = Bν◦ or u = ∗ and v = B◦µ or v = ∗, and for every pair u, v of vertices, Gw has a directed edge

v
G−→ w. The graph Gw is illustrated in Figure 7.
We identify each walk ∗ α0−→ B1

α1−→ · · ·Bk
αk−−→ ∗ with the word α0B1α1 · · ·Bkαk. Observe that

the first two conditions in Definition 6.1 exactly correspond to the restrictions on edges involving ∗ and
the final condition exactly corresponds to edges not involving ∗. Thus the legal words are exactly the
walks on this graph that start and end at ∗, with no intermediate instances of ∗. The first half of the
conclusion follows by an application of the transfer-matrix method, as in [6, Section 4.7], and the second
half follows from Proposition 6.2 and the fact that the weight map wt is an algebra homomorphism
between R〈〈S,G,B◦◦ , B◦⊗ , B

⊗
◦ , B

⊗
⊗〉〉 and R[[x, z]]. 2

Now that we have enumerated sum-indecomposable (3 + 1)-avoiding posets, the only remaining step
is to express the generating function for all (3 + 1)-avoiding posets in terms of the generating function for
sum-indecomposables. This turns out to be extremely simple.

Theorem 6.4 Let I(x, z) be the generating function of nonempty sum-indecomposable (3 + 1)-avoiding
posets and let GT (x, z) be the generating function for all trimmed strongly graded (3 + 1)-avoiding
posets. Then

GT (x, z) = (1− I(x, z))−1,

and the generating function for all strongly graded (3 + 1)-avoiding posets is

GT (x, ex − 1) = 1 +
e2x(2ex − 3) + ex(ex − 2)2Ψ(x)

ex(2ex + 1) + (e2x − 2ex − 1)Ψ(x)
.

Proof: By Proposition 4.3 and Proposition 4.4 each trimmed (3 + 1)-avoiding poset P corresponds to a
unique sequence P1 ⊕L P2 ⊕L · · · ⊕L Pk of sum-indecomposable (3 + 1)-avoiding posets, and all such
sequences give a trimmed (3 + 1)-avoiding poset P . Then the first half of the result is a standard exercise
in the theory of combinatorial species. The second half is just a calculation, combining Proposition 6.2
and Theorem 6.2 with Proposition 4.2. For #P = 0, 1, . . . , the resulting number of posets is 1, 1, 3, 13,
111, 1381, 22383, . . . . 2
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7 Extensions
In this section we mention extremely briefly some extensions of our work; see [4] for details. Using the
same techniques as in the preceding sections, one can easily refine the enumeration of strongly graded
(3 + 1)-avoiding by height. We can show that weakly graded (3 + 1)-avoiding posets look “mostly” like
strongly graded posets, with maximal vertices permissible only in the top two vertex levels and minimal
vertices only in the bottom two vertex levels. The results of the previous two sentences allow us to
compute that the generating function for weakly graded (3 + 1)-avoiding posets is (e−x − 1)Ψ(x) +

2e3x+(e3x−2e2x)Ψ(x)
ex(2ex+1)+(e2x−2ex−1)Ψ(x) . One can also give asymptotics for the associated sequences; the number of
strongly graded (3 + 1)-avoiding posets on n vertices and the number of weakly graded (3 + 1)-avoiding
posets on n vertices are both asymptotic to n! · [xn]Ψ(x).
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