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Crystal energy via charge in types A and C
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Abstract. The Ram–Yip formula for Macdonald polynomials (at t = 0) provides a statistic which we call charge. In
types A and C it can be defined on tensor products of Kashiwara–Nakashima single column crystals. In this paper we
show that the charge is equal to the (negative of the) energy function on affine crystals. The algorithm for computing
charge is much simpler than the recursive definition of energy in terms of the combinatorial R-matrix.

Résumé. La formule de Ram et Yip pour les polynômes de Macdonald (à t = 0) fournit une statistique que nous
appelons la charge. Dans les types A et C, elle peut être définie sur les produits tensoriels des cristaux pour les
colonnes de Kashiwara–Nakashima. Dans ce papier, nous montrons que la charge est égale à (l’opposé de) la fonction
d’énergie sur cristaux affines. L’algorithme pour calculer la charge est bien plus simple que la définition récursive de
l’énergie en fonction de la R-matrice combinatoire.
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1 Introduction
The energy function of affine crystals is an important grading used in one-dimensional configuration
sums [7, 8] and generalized Kostka polynomials [31, 33, 34]. It is defined by the action of the affine
Kashiwara crystal operators through a local combinatorial rule and the R-matrix.

From a computational perspective, the definition of the energy is not very efficient, as it involves a
recursive definition of a local energy, and also the combinatorial R-matrix, for which not in all cases
efficient algorithms exist. This leads us to the role of the charge statistic, which can be calculated very
efficiently, as it only involves the detection of descents and the computation of arm lengths of cells in
Young diagrams.

Charge was originally defined in typeA by Lascoux and Schützenberger [14] as a statistic on words with
partition content. It is calculated by enumerating certain cycles in the given word, see Section 3. Lascoux
and Schützenberger showed that the charge can also be defined as the grading in the so-called cyclage
graph, and used it to express combinatorially the Kostka–Foulkes polynomials, or Lusztig’s q-analogue
of weight multiplicities [23], based on their Morris recurrence. In type A, Nakayashiki and Yamada [25]
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analyzed the subtle combinatorial relationship between charge and the R-matrix, showing that the energy
coincides with the charge. In [13] it was observed that the cyclage is related to the action of the crystal
operator f0 on a tensor product of type A columns (by the Kyoto path model, the latter can be identified
with an affine Demazure crystal). Thus, the results of Lascoux–Schützenberger and Nakayashiki–Yamada
are rederived in a more conceptual way. See also the work of Shimozono [33, 34] for a more extensive
discussion of the combinatorics involved in [13], in the more general context of tensor products of type
A Kirillov–Reshetikhin (KR) crystals of arbitrary rectangular shapes, as opposed to only column shapes.
Charge for KR crystals of rectangular shape (or Littlewood–Richardson tableaux) was also defined in [31]
using cyclage.

Lecouvey [15, 16] extended two approaches to the Lascoux–Schützenberger charge, namely cyclage
and catabolism, to typesB, C, andD. He thus defined a charge statistic on the corresponding Kashiwara–
Nakashima (KN) tableaux [12]. But he was only able to relate his charge to the corresponding Kostka–
Foulkes polynomials in very special cases, as the original idea of Lascoux–Schützenberger based on the
Morris recurrence, which he pursued, has limited applicability in this case.

In this paper we use a charge statistic coming from the Ram–Yip formula [28] for Macdonald polyno-
mials Pµ(x; q, t) of arbitrary type [24] at t = 0. The terms in this formula correspond to certain chains of
Weyl group elements which come from the alcove walk model (this was defined in [2, 20, 21], and was
then developed in subsequent papers, including [28]). The statistic is defined on the mentioned chains,
and describes the powers of q. In [18] it is shown that, in types A and C, the chains are in bijection with
elements in a tensor product of KR crystals of the form Bk,1. It is also shown that, under this bijection,
the above statistic can be translated into a statistic on the elements of the mentioned crystal, which we call
charge. Thus, we have

Pµ(x; q, 0) =
∑

b∈Bµ
′
1,1⊗Bµ

′
2,1⊗...

qcharge(b)xwt(b). (1)

In type A, one can rewrite this formula as an expansion of the Macdonald P -polynomials in terms of
Schur polynomials sλ(x)

Pµ(x; q, 0) =
∑
λ

Kλ′µ′(q) sλ(x) ; (2)

here Kλ′µ′(q) is the Kostka–Foulkes polynomial and λ′ denotes the transpose of the partition λ. A gen-
eralization of (2) to simply-laced types was given in [9]; in types A and D, this result is sharpened in [30,
Section 9.2] by replacing the Kostka–Foulkes polynomials with the corresponding one-dimensional con-
figuration sums (which are generating functions for the energy). Both (1) in type A and (2) are expressed
combinatorially in terms of the Lascoux–Schützenberger charge, whereas the type C charge given by (1)
is a new statistic. It is worth noting that the main ingredient in these charge constructions is the so-called
quantum Bruhat graph [1], which first arose in connection to Chevalley multiplication formulas for the
quantum cohomology of flag varieties.

The goal of this paper is to show in an efficient, conceptual way that the charge in [18] coincides with
the energy function on the corresponding tensor products of KR crystals. We focus on types A and C,
and expect to extend this result to types B and D; for more details on the additional complexity in the
latter types, we refer to [18, 22]. With M. Shimozono and S. Naito, we are also working on a uniform
generalization to arbitrary types, based on the generalization of the alcove walk model in [19] and the
statistic in the Ram–Yip formula mentioned above.
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We use the recent reinterpretation in [30] of the (global) energy function as the affine grading on a
tensor product of KR crystals under “Demazure arrows”. In type A, KR crystals are perfect and hence, by
the Kyoto path model [10, 11], can be realized as Demazure crystals. By the result of [30], “Demazure
arrows” (see Definition 2.6) change energy by 1. Together with the result that charge is well-behaved
under crystal operators, this proves the equality of energy and charge. For type C, we use the same
approach, but in this case KR crystals are not perfect. There is still an embedding of a tensor product
of KR crystals into an affine highest weight crystal (see Proposition 2.8) by analogy with the Kyoto path
model, but now there are several highest weight components in the image, instead of just one. For each
of these components we exhibit an explicit path from its highest weight (or ground state) to “type A
elements” in the component, using only “Demazure arrows” (see Theorem 4.4). This additional result
suffices to establish the equality of energy and charge in type C, based on the corresponding result in type
A. Our main result can now be stated as follows.

Theorem 1.1 Let B = BrN ,1⊗· · ·⊗Br1,1 be a tensor product of KR crystals in type A(1)
n−1 or type C(1)

n

with rN ≥ rN−1 ≥ · · · ≥ r1 ≥ 1. Then for all b ∈ B we have D(b) = −charge(b), where D(b) is given
in Definition 2.4, and charge(b) is defined in Section 3.

From a theoretical point of view, the above result is not surprising due to work of Ion [9], which relates
Macdonald polynomials at t = 0 and affine Demazure characters in simply-laced types. However, this
result does not work in type C; in addition, it only gives an equality of polynomials (the generating
functions for the statistics and the weights), not of individual terms.

To compare our work with the previous papers on charge and energy, let us first say that our results
apply to arbitrary vertices in a tensor product of KN columns, not just to the highest weight elements
(with respect to the nonzero arrows), that are used in the work involving Kostka–Foulkes polynomials. In
type A, our approach via affine Demazure crystals comes closest to [13, 33, 34]. However, we do not use
the so-called cyclage operation, which is based on the corresponding plactic relations, see [15]. These
relations are the main cause of the complications in type C, in the work of Lecouvey [15, 16].

The paper is organized as follows. In Section 2 we review the necessary crystal theory and define the
energy function. In Section 3 we give the definition of charge both in types A and C. The proof of
Theorem 1.1 using the method of Demazure arrows is outlined in Section 4.

A long version of this paper containing all proofs has appeared [22].

2 Crystals and energy function
Crystal bases provide a combinatorial method to study representations of quantum algebras Uq(g). For
a good review on crystal base theory see the book by Hong and Kang [6]. Here g is a Lie algebra or
affine Kac–Moody Lie algebra with index set I , weight lattice P , and simple roots αi with i ∈ I . The set
of dominant weights is denoted by P+. For affine Kac–Moody (resp. finite Lie) algebras we denote the
fundamental weights by Λi (resp. ωi) for i ∈ I .

A g-crystal is a nonempty set B together with maps ei, fi : B → B ∪ {∅} for i ∈ I and wt : B → P ,
where fi(x) = y if and only if ei(y) = x. For b ∈ B, we set εi(b) = max{k | eki (b) 6= ∅}, ϕi(b) =
max{k | fki (b) 6= ∅}, ε(b) =

∑
i∈I εi(b)Λi, and ϕ(b) =

∑
i∈I ϕi(b)Λi. The beauty about crystal theory

is that it is well-behaved with respect to taking tensor products. Let B1 and B2 be two g-crystals. As a
set B1 ⊗ B2 is the Cartesian product of the two sets. For b = b1 ⊗ b2 ∈ B1 ⊗ B2, the weight function
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is simply wt(b) = wt(b1) + wt(b2). The crystal operators are given by fi(b1 ⊗ b2) = fi(b1) ⊗ b2 if
εi(b1) ≥ ϕi(b2) and b1 ⊗ fi(b2) otherwise. Similar formulas hold for ei(b).

A highest weight crystal B(λ) of highest weight λ ∈ P+ is a crystal with a unique element uλ such
that ei(uλ) = ∅ for all i ∈ I and wt(uλ) = λ. On finite-dimensional highest weight crystals B(λ) there
exists an involution S : B(λ)→ B(λ), called the Lusztig involution, which is a crystal isomorphism such
that

S(fi) = ei∗ and S(ei) = fi∗ .

Here i∗ is defined through the map αi 7→ αi∗ := −w0(αi) with w0 the longest element in the Weyl group
of g. Explicitly, we have i∗ = n − i for type An−1 and i∗ = i for type Cn. Under S the highest weight
element goes to the lowest weight element.

2.1 Kashiwara–Nakashima columns for type C

Kashiwara and Nakashima [12] developed a general tableau model for finite-dimensional highest weight
crystals for all non-exceptional Lie algebras g. For type Cn, the Kashiwara–Nakashima (KN) columns
[12] of height k index the vertices of the fundamental representation V (ωk) of the symplectic algebra
sp2n(C). These columns are filled with entries in [n] := {1 < 2 < · · · < n < n < n− 1 < · · · < 1}.

Definition 2.1 A column-strict filling b = b(1) . . . b(k) with entries in [n] is a KN column if there is no
pair (z, z) of letters in b such that z = b(p), z = b(q), q − p ≤ k − z.

We use a different definition of KN columns, which is equivalent to the one above by [32].

Definition 2.2 Let b be a column and I = {z1 > · · · > zr} the set of unbarred letters z such that the
pair (z, z) occurs in b. The column b can be split when there exists a set of r unbarred letters J = {t1 >
· · · > tr} ⊂ [n] such that:
• t1 is the greatest letter in [n] satisfying: t1 < z1, t1 6∈ b, and t1 6∈ b,
• for i = 2, . . . , r, the letter ti is greatest in [n] satisfying ti < min(ti−1, zi), ti 6∈ b, and ti 6∈ b.

In this case we write the following, where the pair bLbR is called a split column:
• bR for the column obtained by changing zi into ti in b for each letter zi ∈ I , and by reordering if

necessary,
• bL for the column obtained by changing zi into ti in b for each letter zi ∈ I , and by reordering if

necessary.

Example 2.3 The following is a KN column of height 5 in type Cn for n ≥ 5, together with the corre-
sponding split column, where we use the fact that {z1 > z2} = {5 > 4}, so {t1 > t2} = {2 > 1}:

b =

4
5
5
4
3

, bLbR =

1 4
2 5
5 3
4 2
3 1

.

2.2 Kirillov–Reshetikhin crystals
For the definition of the crystal energy function, we need to endow the KN columns with an affine crystal
structure. These finite-dimensional affine crystals are called Kirillov–Reshetikhin (KR) crystals. Combi-
natorial models for all non-exceptional types were provided in [3].
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Here we only describe the KR crystals Br,1 for types A(1)
n−1 and C(1)

n , where r ∈ {1, 2, . . . , n− 1} and
r ∈ {1, 2, . . . , n}, respectively. As a classical type An−1 (resp. Cn) crystal, the KR crystal is isomorphic
to Br,1 ∼= B(ωr).

The crystal operator f0 is given as follows. Let b ∈ Bk,1, represented by a one-column KN tableau. In
type An−1, if b contains the letter n and no 1, f0(b) is the obtained from b by removing n and adding 1 to
the column, leaving all letters in strictly increasing order. Otherwise f0(b) = ∅. In type Cn, if b contains
the letter 1, then f0(b) is obtained from b by removing the 1 and adding the letter 1, arranging all letters
again in strictly increasing order. Otherwise f0(b) = ∅. Note that if b contains 1, then it cannot contain 1
by the KN condition of Definition 2.1.

2.3 The D function
Let B1, B2 be two affine crystals with generators v1 and v2, respectively, such that B1 ⊗B2 is connected
and v1 ⊗ v2 lies in a one-dimensional weight space. By [17, Proposition 3.8], this holds for any two KR
crystals. The generator vr,s for the KR crystal Br,s is the unique element of classical weight sωr.

The combinatorialR-matrix [10, Section 4] is the unique crystal isomorphism σ : B2⊗B1 → B1⊗B2.
By weight considerations, this must satisfy σ(v2 ⊗ v1) = v1 ⊗ v2. In [10] and [27, Theorem 2.4], the
local energy function H = HB2,B1

: B2⊗B1 → Z is defined recursively in terms of the crystal operators
ei and the combinatorial R-matrix.

Definition 2.4 ForB = BrN ,1⊗· · ·⊗Br1,1 of typeA(1)
n−1 or C(1)

n , setHR
j,i := Hiσi+1σi+2 · · ·σj−1 and

HL
j,i := Hj−1σj−2σj−3 · · ·σi, where σj and Hj act on the j-th and (j + 1)-st tensor factors. We define

a right and left energy function DR
B , D

L
B : B → Z as

DR
B :=

∑
N≥j>i≥1

HR
j,i and DL

B :=
∑

N≥j>i≥1

HL
j,i. (3)

We focus on the energy DB := DL
B and, when there is no confusion, we shorten DB to simply D.

There is a precise relationship between DR and DL using the Lusztig involution. To state it, let us
introduce the map τ : BN ⊗ · · · ⊗B1 → B1 ⊗ · · · ⊗BN with τ(bN ⊗ · · · ⊗ b1) = S(b1)⊗ · · · ⊗ S(bN ).

For types A(1)
n−1 and C(1)

n and Bi = Bri,1, the KR crystal Bi is connected as a classical crystal and
under S the classically highest weight element uhighest

i maps to the lowest weight element ulowest
i . It is

not hard to show from the explicit description of S, e0 and f0 in this case, that the following relations
hold:

f0 ◦ S = S ◦ e0 and f0 ◦ τ = τ ◦ e0.

This shows in particular that the crystal commutor of Henriques and Kamnitzer [5] is lifted to an affine
crystal isomorphism in these cases and hence must coincide with the combinatorial R-matrix σ.

Proposition 2.5 LetB = BrN ,1⊗· · ·⊗Br1,1 of typeA(1)
n−1 orC(1)

n and b ∈ B. ThenDR
B(b) = DL

B(τ(b)).

2.4 D energy as affine grading
As suggested in [26, Section 2.5] and proven in [30], the energy DR is the same as the affine degree
grading in the associated highest weight affine crystals up to an overall shift. We will explain this now
since it plays a crucial role in the proof of the equality between charge and energy.
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We begin with the definition of “Demazure arrows”. For this we need constants cr for r ∈ I \ {0} as
for example defined in [4]. In the cases of concern to us here, we have cr = 1 for all r in type A(1)

n−1 and
cr = 2 for 1 ≤ r < n and cn = 1 in type C(1)

n .

Definition 2.6 Let B = BrN ,sN ⊗ · · · ⊗ Br1,s1 be a tensor product of KR crystals and fix an integer `
such that ` ≥ dsk/cke for all 1 ≤ k ≤ N . We call such a tensor product a composite KR crystal of level
bounded by `. An arrow fi is called an `-Demazure arrow on b ∈ B if ϕi(b) > 0 and either i ∈ I \ {0}
or i = 0 and ε0(b) ≥ `.

In the setting of this paper, we are only concerned with tensor products of types A(1)
n−1 and C(1)

n of
the form B = BrN ,1 ⊗ · · · ⊗ Br1,1. In this case one can pick ` = 1 and a Demazure arrow for B is a
1-Demazure arrow.

Lemma 2.7 Let B = BrN ,1 ⊗ · · · ⊗Br1,1 of type A(1)
n−1 or C(1)

n and b ∈ B. Then
1. ε0(b) ≥ 1 implies DR(f0(b)) = DR(b) + 1;
2. ϕ0(b) ≥ 1 implies DL(e0(b)) = DL(b) + 1.

The proof of the following result essentially appeared in [10, Proof of Theorem 4.4.1] and was spelled
out in this precise form in [30, Proposition 8.1]. Here P+

` = {λ ∈ P+ | lev(λ) = `}, where lev(λ) :=
λ(c) is the level of λ and c is the central element c =

∑
i∈I a

∨
i α
∨
i .

Proposition 2.8 For B a composite KR crystal of level bounded by `, B⊗B(`Λ0) ∼=
⊕

Λ′ B(Λ′), where
the sum is over a finite collection of (not necessarily distinct) Λ′ ∈ P+

` .

In Section 4.1, we discuss the implications of this proposition in more detail for type C(1)
n and ` = 1.

3 The charge construction
3.1 The classical charge
Let us start by recalling the construction of the classical charge of a word, which is due to Lascoux and
Schützenberger [14]. Assume that w is a word with letters in the alphabet [n] := {1, . . . , n} which
has partition content, i.e., the number of j’s is greater than or equal to the number of j + 1’s, for each
j = 1, . . . , n− 1. The statistic charge(w) is calculated as a sum based on the following algorithm. Scan
the word starting from its right end, and select the numbers 1, 2, . . . in this order, up to the largest possible
k. We always pick the first available entry j + 1 to the left of the previous entry j. Whenever there is no
such entry, we pick the rightmost entry j+ 1, so we start scanning the word from its right end once again;
in this case, we also add k− j to the sum that computes charge(w). At the end of this process, we remove
the selected numbers and repeat the whole procedure until the word becomes empty.

Example 3.1 Consider the word w = 1132214323, where the first group of selected numbers is shown
in bold. The corresponding contribution to the charge is 1. After removing the bold numbers and another
round of selections (again shown in bold), we have 112323, so the contribution to the charge is 2. We are
left with the word 123, whose contribution to the charge is 2+1 = 3. So charge(w) = 1+2+(2+1) = 6.

We now reinterpret the classical charge as a statistic on a tensor product of type A(1)
n−1 KR crystals.

Such a crystal indexed by a column of height k is traditionally denoted Bk,1, and its vertices are indexed
by increasing fillings of the mentioned column with integers in [n]. Given a partition µ (i.e., a dominant
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weight in the root system), let Bµ :=
⊗µ1

i=1B
µ′i,1, where µ′ is the conjugate partition to µ. This is simply

the set of column-strict fillings of the Young diagram µ with integers in [n]. Note that unlike in Section 2,
the tensor factors are ordered in weakly decreasing order.

Fix a filling b in Bµ written as a concatenation of columns b1 . . . bµ1 . We attach to it a filling c :=
circ-ord(b) = c1 . . . cµ1 according to the following algorithm, which is based on the circular order ≺i on
[n] starting at i, namely i ≺i i+ 1 ≺i · · · ≺i n ≺i 1 ≺i · · · ≺i i− 1.

Algorithm 3.2
let c1 := b1;
for j from 2 to µ1 do

for i from 1 to µ′j do
let cj(i) := min (bj \ {cj(1), . . . , cj(i− 1)}, ≺cj−1(i))

end do;
end do;
return c := c1 . . . cµ1

.

Example 3.3 Algorithm 3.2 constructs the filling c from the filling b below. The bold entries in c are only
relevant in Example 3.5 below:

b =
3 2 1 2
5 3 2
6 4 4

and c =
3 3 4 2
5 2 2
6 4 1

. (4)

We introduce some terminology in order to reinterpret the classical charge in terms of a statistic on Bµ.
Given the considered filling b in Bµ, we define its charge word as the biword cw(b) containing a biletter(
k
j

)
for each entry k in the column bj of b. We order the biletters in the decreasing order of the k’s, and for

equal k’s, in the decreasing order of j’s. The obtained word formed by the lower letters j will be denoted
by cw2(b). We refer to Example 3.5 for an illustration of the charge word. On the other hand, given the
filling c = c1 . . . cµ1

constructed by Algorithm 3.2, we say that the cell γ in column cj and row i is a
descent if cj(i) > cj+1(i), assuming that cj+1(i) is defined. Let Des(c) denote the set of descents in c.
As usual, we define the arm length arm(γ) of a cell γ as the number of cells to its right.

It is not hard to see that Algorithm 3.2 for constructing c from b translates precisely into the selection
algorithm which computes charge(cw2(b)). More precisely, consider the ith sequence 1, 2, . . . extracted
from cw2(b) (which turns out to have length µi), and the letter j in this sequence; then the top letter paired
with the mentioned letter j in cw(b) is precisely the entry cj(i) in row i and column j of the filling c. In
particular, the steps to the right in the ith iteration of the charge computation correspond precisely to the
descents in the ith row of c, while the corresponding charge contributions and arm lengths coincide. We
conclude that ∑

γ∈Des(c)

arm(γ) = charge(cw2(b)) . (5)

For simplicity, we set charge(b) := charge(cw2(b)).

Remark 3.4 In [18] we showed that the charge statistic on Bµ can be derived from the Ram–Yip for-
mula [28] for the corresponding Macdonald polynomial at t = 0. In fact, we showed that Algorithm 3.2
is closely related to the corresponding quantum Bruhat graph (see, e.g., [1]). So we can conclude that this
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graph explains the charge construction itself. The mentioned idea was extended to type C, and it led to
the definition of a type C charge, that we describe in Section 3.2.

Example 3.5 Note that cw2(b) for b in Example 3.3 is precisely the word w in Example 3.1. In fact, the
full biword cw(b) is shown below, using the order on the biletters specified above. The index attached to a
lower letter is the number of the iteration in which the given letter is selected in the process of computing
charge(b):

cw(b) =

(
6 5 4 4 3 3 2 2 2 1
13 12 31 23 21 11 41 32 22 33

)
.

One can note the parallel between the mentioned selection process and the construction of c from b in
Example 3.3. The entries in the cells of Des(c) are shown in bold in (4).

3.2 The type C charge
In this section we recall from [18] the construction of the type C charge. We start by fixing a dominant
weight µ in the root system of type Cn. Let Bµ :=

⊗µ1

i=1B
µ′i,1, where Bk,1 is the type C(1)

n KR crystal
indexed by a column of height k. Note that Bµ is the set of fillings b = b1 . . . bµ1

of the shape µ with
integers in [n] whose columns bj are KN columns; indeed, the KN columns of height k label the vertices
of Bk,1. As mentioned above, it will be more useful to represent bj in the split form bLj b

R
j ; in this case, b

becomes a filling bL1 b
R
1 . . . b

L
µ1
bRµ1

of the shape 2µ.
Now fix a filling b in Bµ, represented with split columns, which are labeled from left to right by

1, 1′, 2, 2′, . . .. We can apply a slight modification of Algorithm 3.2 to b and obtain a filling c =
= cL1 c

R
1 . . . c

L
µ1
cRµ1

= circ-ord(b) of 2µ; namely, we start by setting cL1 := bL1 , and then consider the
(doubled) columns of b from left to right. We use the circular order on [n] starting at various values i,
which we still denote by ≺i.

Example 3.6 Consider the following tensor product of KN columns:

5
3
2
1

⊗
3
4
3
⊗

1
3
3
.

This is represented with split columns as the following filling b of the shape 2µ = (6, 6, 6, 2), where the
top row consists of the column labels; the corresponding filling c is also shown:

b =

1 1′ 2 2′ 3 3′

5 5 2 3 1 1
3 3 4 4 2 3
2 2 3 2 3 2
1 1

, c =

5 5 4 4 3 2
3 3 3 2 1 1
2 2 2 3 2 3
1 1

.

Define the charge word cw(b) of b by analogy with type A, as the biword containing a biletter
(
k
j

)
for

each entry k in column j of b; here j and k belong to the alphabets {1 < 1′ < 2 < 2′ < . . .} and [n],
respectively. We order the biletters as in the type A case (in the decreasing order of the k’s, and for equal
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k’s, in the decreasing order of j’s), and define cw2(b) in the same way (as the word formed by the lower
letters j).

The modification of Algorithm 3.2 for constructing c from b can be rephrased in terms of cw(b), as
explained below; we will refer to this rephrasing as the charge algorithm. We start by scanning cw2(b)
from right to left and by selecting the entries 1, 1′, 2, 2′, . . . , µ1, (µ1)′ in this order, according to the
following rule: always pick the first available entry to the left, but if the desired entry is not available
then scan the word from its right end once again. As in type A, we can see that the sequence of top
letters paired with 1, 1′, 2, 2′, . . . , µ1, (µ1)′ is the first row of the filling c (read from right to left). We then
remove the selected entries from cw2(b) and repeat the above procedure, which will now give the other
rows of c, from top to bottom. It was shown in [18] that we always go left from j to j′, but we can go
right from j′ to j + 1.

Example 3.7 This is a continuation of Example 3.6. The charge word cw(b), with the order on the
biletters indicated above, is(

1 1 2 2 2 2 3 3 3 3 4 4 5 5 3 3 2 2 1 1
1′4 14 3′1 2′2 1′3 13 31 22 1′2 12 2′1 21 1′1 11 3′3 2′3 33 23 3′2 32

)
.

The index attached to a lower letter is the number of the iteration in which the given letter is selected by
the charge algorithm.

Descents are defined as usual, cf. Section 3.1. It is easy to see that the descents in c correspond to the
steps to the right in the charge algorithm applied to cw2(b). By an observation made above, we only have
descents of the form cRj (i) > cLj+1(i). We are led to the following definition of the type C charge.

Definition 3.8 Consider a word w with letters in the alphabet 1, 1′, 2, 2′, . . ., containing as many letters
j as j′, and at least as many letters j as j + 1. Apply the charge algorithm to w, and assume that a
selected entry j′ is always to the left of the previously selected j. Let charge(w) be the sum of k − j for
each selected entry j + 1 to the right of the previously selected j′, where the selected entries in the given
iteration are 1, 1′, . . . , k, k′.

The above discussion leads to the following result:

1

2

∑
γ∈Des(c)

arm(γ) = charge(cw2(b)) . (6)

For simplicity, we again set charge(b) := charge(cw2(b)).

Example 3.9 This is still a continuation of Example 3.6. The entries in the descents of c are shown above
in bold. Correspondingly, the charge algorithm applied to cw2(b) makes one step to the right in the second
iteration (from 2′ to 3), and two steps to the right in the third iteration (from 1′ to 2 and from 2′ to 3).
Thus, charge(b) = 1 + (2 + 1) = 4.

4 Energy and charge in types A and C

Let us first rederive the result of Nakayashiki–Yamada [25] showing the equality of the energy function
and charge in type An−1. We do this in a more conceptual way, by using the method of “Demazure
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arrows” (the proof in [25] is based on subtle combinatorics of Young tableaux). Furthermore, we work
with all the crystal vertices in a tensor product of columns, not just the highest weight vertices considered
in [25].

The proof of Theorem 1.1 in type A immediately follows from the two results below. These describe
the behavior of the type A charge with respect to the classical crystal operators and the crystal operator
f0, respectively.

Proposition 4.1 The type An−1 charge is preserved by the crystal operators f1, . . . , fn−1.

Proposition 4.2 Let B = BrN ,1 ⊗ · · · ⊗Br1,1 be of type A(1)
n−1 with rN ≥ rN−1 ≥ · · · ≥ r1 and b ∈ B.

If ϕ0(b) ≥ 1 and ε0(b) ≥ 1, then the type An−1 charge satisfies charge(e0(b)) = charge(b)− 1.

4.1 Kyoto path model for nonperfect type C

Proposition 2.8 can be made more explicit in the case of B = BrN ,1 ⊗ · · · ⊗ Br1,1 and ` = 1 for type
C

(1)
n , by providing a correspondence between highest weight elements (or ground states) in B ⊗ B(Λ0)

and elements in B(Λ′) in the sum on the right hand side of the equation in Proposition 2.8, which are of
type A. This will help in the next section to prove Theorem 1.1 for type C(1)

n .
We call the highest weight elements inB⊗B(Λ0) ground state paths. There is a recursive construction

for them, which starts by listing all elements b1 ∈ Br1,1 such that ε(b1) = Λ0. Suppose bk ⊗ · · · ⊗ b1 ∈
Brk,1 ⊗ · · · ⊗ Br1,1 are already constructed. Then bk+1 ∈ Brk+1,1 can be any of the elements such that
ε(bk+1) = ϕ(bk). The weight of the ground state is ϕ(bN ), which is some fundamental weight Λh. For
perfect crystals there are unique elements bN , . . . , b1 with the described properties. However, in type C(1)

n

the crystals Br,1 are not perfect and the above construction gives a tree of ground state elements.

Example 4.3 Take B = B1,1 ⊗B2,1 ⊗B2,1 ⊗B3,1 of type C(1)
3 . Then b1 is the column 321 and b2 the

column 23. For b3 there are two choices, namely the columns 32 or 22. In the first case b4 is 3, and in the
second case b4 can be 2 or 1. In summary the three ground states of weights Λ2, Λ2, Λ0, respectively, are

3 ⊗ 2
3
⊗ 3

2
⊗

1
2
3
⊗ uΛ0 2 ⊗ 2

2
⊗ 3

2
⊗

1
2
3
⊗ uΛ0 1 ⊗ 2

2
⊗ 3

2
⊗

1
2
3
⊗ uΛ0 .

Theorem 4.4 Let B = BrN ,1⊗ · · ·⊗Br1,1 of type C(1)
n . From each ground state u⊗uΛ0

∈ B⊗B(Λ0)
there exists a sequence of Demazure arrows fi (see Definition 2.6), which ends at an element b⊗uΛ0

such
that b does not contain any barred letter.

In order to provide a proof of Theorem 4.4, we describe the explicit sequence of fi satisfying the
required conditions. For details, we refer to [22].

4.2 Energy and charge in type C

To provide a proof of Theorem 1.1 for type C, we first reduce certain special cases in type C to type A.

Proposition 4.5 If b is a tensor product of columns with all entries in [n], then the type An−1 and Cn
energies of b coincide. Furthermore, if the columns have weakly decreasing heights, they equal the (type
An−1 or Cn) charge of b.
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By analogy with the approach in type A, the proof of Theorem 1.1 in type C now immediately follows
from the two results below, which describe the behavior of the type C charge with respect to the crystal
operators. Note that we also need the results in Theorem 4.4 and Proposition 4.5.

Proposition 4.6 [19] The type Cn charge is preserved by the crystal operators f1, . . . , fn.

Proposition 4.7 Let B = BrN ,1 ⊗ · · · ⊗Br1,1 be of type Cn with rN ≥ rN−1 ≥ · · · ≥ r1 and b ∈ B. If
ϕ0(b) ≥ 1 and ε0(b) ≥ 1, then the type Cn charge satisfies charge(e0(b)) = charge(b)− 1.

References
[1] F. Brenti, S. Fomin, A. Postnikov. Mixed Bruhat operators and Yang-Baxter equations for Weyl groups. Int.

Math. Res. Not., 8:419–441, 1999.

[2] S. Gaussent, P. Littelmann. LS-galleries, the path model and MV-cycles. Duke Math. J., 127:35–88, 2005.

[3] G. Fourier, M. Okado, A. Schilling. Kirillov-Reshetikhin crystals for nonexceptional types. Adv. Math.,
222:1080–1116, 2009.

[4] G. Fourier, M. Okado, A. Schilling. Perfectness of Kirillov–Reshetikhin crystals for nonexceptional type. Con-
temp. Math., 506:127–143, 2010.

[5] A. Henriques, J. Kamnitzer. Crystals and coboundary categories. Duke Math. J., 132:191–216, 2006.

[6] J. Hong, S.-J. Kang. Introduction to quantum groups and crystal bases. Graduate Studies in Mathematics, 42,
American Mathematical Society, Providence, RI, 2002. xviii+307 pp.

[7] G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi. Paths, crystals and fermionic formulae. MathPhys
Odyssey 2001, 205–272, Prog. Math. Phys. 23, Birkhäuser Boston, Boston, MA, 2002.
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