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On the monotone hook hafnian conjecture

Mirkó Visontai1

1Department of Mathematics, University of Pennsylvania, Philadelphia, PA, USA

Abstract. We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We
prove a multivariate generalization of this conjecture for the special case of threshold graphs.

Résumé. Nous étudions une conjecture de Haglund qui affirme que certaines polynômes des graphes ont uniquement
des racines réelles. Nous prouvons une généralisation multivariée de cette conjecture pour le cas particulier des
graphes à seuil.
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1 Introduction
Caianiello (1973) defined the hafnian for (upper) triangular arrays as the “signless” pfaffian. There are
slight variations in the literature on how to extend the original definition to matrices; we will use the
following one. Let C = (cij) be a 2n× 2n symmetric matrix, the hafnian of C is defined as

haf(C) =
1

n!2n
∑

σ∈S2n

n∏
k=1

cσ(2k−1),σ(2k), (1)

where S2n denotes the symmetric group on 2n elements.
The mth hook of a triangular array (or shifted Ferrers board) A = (aij)1≤i<j≤n is the set of cells

hookm = {(i,m) | i = 1, . . . ,m− 1} ∪ {(m, j) | j = m+ 1, . . . , n}. (2)

The direction along themth hook is the one in which the quantity i+j is increasing where (i, j) ∈ hookm.
A monotone hook triangular array has real entries decreasing along at least n−1 of its hooks, or possibly
along all n of them. Analogously, a monotone hook matrix is a real symmetric matrix whose entries above
the diagonal form a monotone hook triangular array.

In this paper we discuss results on the following conjecture of Haglund (2000):

Conjecture 1.1 (Monotone Hook Hafnian (MHH)) LetA be a 2n×2n monotone hook matrix. Let J2n

denote the 2n× 2n matrix of all ones. Then the polynomial haf(zJ2n +A) ∈ R[z] has only real roots.

In Haglund (2000) the MHH conjecture was proven for adjacency matrices of a class of graphs called
threshold graphs, and as a corollary for all monotone hook {0, 1} matrices. And it was also verified for
all 2n× 2n monotone hook matrices for n ≤ 2.
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The main result of this paper is a (multivariate) generalization of the MHH conjecture for the special
case of adjacency matrices of threshold graphs. We begin by discussing a closely related problem involv-
ing permanents and monotone column matrices. In Section 2, we introduce the machinery needed for our
proofs from the theory of stable polynomials. In Section 3, we prove the multivariate generalization of
the MHH conjecture for the special case of threshold graphs. We also mention some negative results and
some open problems. We conclude in Section 4 by giving an alternative proof of the MHH conjecture for
some threshold graphs whose adjacency matrices can be written in a special form.

1.1 A closely related problem: the MCP theorem
Recall the definition of the permanent of an n× n matrix B with entries bij :

per(B) =
∑
σ∈Sn

n∏
i=1

bi,σ(i). (3)

A monotone column matrixA ∈ Rn×n has real entries aij weakly decreasing down columns: aij ≥ ai+1,j

for all 1 ≤ i < n and 1 ≤ j ≤ n. Building on recent developments in the theory of stable polynomials
by Borcea and Brändén (see, for instance, Borcea and Brändén (2010) or Wagner (2011) for a survey) the
following theorem was proved in Brändén et al. (2010):

Theorem 1.2 (Monotone Column Permanent (MCP)) LetA be an n×nmonotone column matrix, and
Jn the n× n matrix of all ones. Then the polynomial per(zJn +A) ∈ R[z] has only real roots.

As pointed out in Haglund (2000) the MHH conjecture can be viewed as the analog of the MCP theorem
from the complete bipartite graph, Kn,n to the complete graph, K2n, in the following sense. Given an
(undirected) weighted graph G with edge weights wij define the following graph polynomial

φ(G; z) =
∑
M

∏
ij∈M

(wij + z), (4)

where M runs over all perfect matchings of G. If AG =
(

0 BG
B>G 0

)
is the adjacency matrix of a

weighted Kn,n graph G, then φ(G; z) = per(zJn + BG). Similarly, if AH is the adjacency matrix of a
weighted K2n graph H , then φ(H; z) = haf(zJ2n +AH).

Another interesting connection comes from the following basic fact. The hafnian of a matrix does not
depend on the diagonal entries of the matrix. Let A∗ be a monotone hook matrix that is monotone along
all of its hooks. In this case, for the purpose of studying haf(A∗) we can assume that A∗ is a symmetric
monotone column matrix (by picking the diagonal entries accordingly). Since A∗ is symmetric this will
imply that A∗ is monotone both down columns and down rows.

In the next section, we describe the results from the theory of stable polynomials that we need for our
proof. These results were successfully employed in the proof of the MCP theorem and they turn out to be
useful for the MHH conjecture, as well.

2 Stable polynomials and stability preservers
A multivariate polynomial f ∈ R[z1, . . . , zn] is stable if it does not vanish when the imaginary parts of
the zi’s are positive. This notion of stability — sometimes referred to as the upper half-plane property
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(Fisk (2008)) — has been the focus of some recent research (Brändén (2007); Borcea and Brändén (2009,
2010)). If f ∈ R[z1, . . . , zn] does not vanish when the real parts of zi’s are positive then we call it
Hurwitz-stable (Brändén (2007)), sometimes called right half-plane stable.

The technique we use to show that a (univariate) polynomial f ∈ R[z] has real roots only is to show
that f is stable, since the two notions coincide in R[z]. We show stability of f by finding a stable multi-
variate generalization of it, namely a suitable stable polynomial g(z1, . . . , zn) ∈ R[z1, . . . , zn] that can be
reduced to f(z) using certain operations that preserve stability. Operations that preserve stability play a
crucial role in this framework, since they allow for manipulation of multivariate polynomials while main-
taining their stability. The following lemma gives a list of such operations that we will be using throughout
the paper. The results are taken from Brändén (2007); Borcea and Brändén (2009); Wagner (2011).

Lemma 2.1 The following operations preserve stability of polynomials in R[z1, . . . , zn]

1. Permutation: for any permutation σ ∈ Sn, f 7→ f(zσ(1), . . . , zσ(n)).

2. Diagonalization: for 1 ≤ i < j ≤ n, f 7→ f(z1, . . . , zn)|zi=zj
.

3. Specialization: for a with =(a) > 0, f 7→ f(a, z2, . . . , zn).

4. Translation: f 7→ f(z1 + t, z2, . . . , zn) ∈ R[z1, . . . , zn, t].

5. Differentiation: f 7→ ∂f/∂z1.

3 Multivariate MHH for threshold graphs
In this section we prove a multivariate generalization of the following theorem of Haglund (see Theorem
2.2 of Haglund (2000)).

Theorem 3.1 (MHH for threshold graphs) Let AG denote the adjacency matrix of a (non-weighted)
threshold graph G on 2n vertices. Then haf(zJ2n +AG) is stable.

Threshold graphs have been widely studied and are known to have several equivalent definitions. For
our purposes, the following definition will come in handy (see Theorem 1.2.4 in Mahadev and Peled
(1995)). A graph G on n vertices is a threshold graph if it that can be constructed starting from a one-
vertex graph by adding vertices one at a time in the following way. Start at step 1 with a single vertex v1.
At each step i, for 2 ≤ i ≤ n, the vertex vi being added is either isolated (has degree 0) or dominating
(has degree i− 1 at the time when added).

By definition, haf(zJ2n + AG) is invariant under the permutation of the vertices in G. Hence, we
can assume that the vertices of a threshold graph are labeled in the order of the above construction. This
means that in any column i for 2 ≤ i ≤ 2n the entries above the diagonal entry of zJ2n+AG are equal to
either z (if vi was added as isolated vertex) or z+ 1 (if vi was added as dominating vertex). This suggests
the multivariate generalization that we show next. The idea essentially is to use a separate variable zi for
the entries above the diagonal in each column i (see explicit construction of A2n(z) in Proposition 3.2
below).
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3.1 A multivariate generalization for hafnians
The following proposition is a direct application of the idea of the proof of Theorem 3.4 of Brändén et al.
(2010) to hafnians.

Proposition 3.2 Let z1, . . . , z2n denote commuting indeterminates and let A2n(z) = (aij) denote the
2n × 2n symmetric matrix with entries aij = zmax(i,j). Then haf(A2n(z)) is a stable polynomial in
R[z2, . . . , z2n] (z1 only appears on the diagonal).

Proof: We use induction. Clearly, haf
(
z1 z2
z2 z2

)
= z2 is stable, which settles the base case. Next

we show that for n ≥ 2, haf(A2n) is stable if haf(A2n−2) is stable. This follows from the differential
recursion:

A2n(z) = z2nA2n−2(z) + 2z2n−1z2n

2n−2∑
i=2

∂A2n−2(z)
∂zi

. (5)

This recursion can be seen from the expansion of the hafnian along the last column. The differential
operator in the right-hand side preserves stability (analogously to the one in Theorem 3.4 of Brändén et al.
(2010)). 2

The proposition gives a multivariate version of the MHH conjecture for certain matrices. Unfortunately,
it is not clear how to transition from here to the general MHH conjecture. Nevertheless, Proposition 3.2
does imply Theorem 3.1 in the following way.

Proof of Theorem 3.1: Let G be a threshold graph on 2n vertices with an adjacency matrix AG. Assume
that the vertices of G are ordered as in the definition of the vertex-by-vertex construction above. It is easy
to see that A2n(z) in Proposition 3.2 specializes to zJ2n +AG if, for all i, we set

zi =
{

z, if vi was added as an isolated vertex,
z + 1, if vi was added as a dominating vertex. (6)

This last operation consists of diagonalizing, translating and specializing the variables and thus preserves
stability of haf(A2n(z)) by Lemma 2.1. Hence, we obtain that haf(zJ2n + AG) is a stable polynomial.
To complete the proof, note that a stable univariate polynomial with real coefficients has only real roots.
2

Remark 3.3 The same proof goes through if we allow edges to have weights other than zero or one with
the additional restriction that when we add a dominating vertex, all edges incident to it must have the
same weight (but this weight need not be 1 as before).

3.2 Negative results and open problems
In Brändén et al. (2010) a more general, multivariate version of the MCP theorem was also obtained:

Theorem 3.4 (Multivariate MCP) Let A be a monotone column matrix, and let Zn = diag(z1, . . . , zn)
be the n× n diagonal matrix of n indeterminates. Then per(JnZn +A) ∈ R[z1, . . . , zn] is stable.

Similarly to the multivariate MCP theorem, we would like to have a multivariate analog of the MHH
conjecture that would imply the univariate case. We consider the following three multivariate gener-
alizations. For a monotone hook matrix A = (aij) of size 2n × 2n, the diagonal matrix Z2n of 2n
indeterminates, and the matrix J2n of all ones of the same size, let
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• h1(A, z) = haf(Z2nJ2n + J2nZ2n +A) = haf(zi + zj + aij),

• h2(A, z) = haf(Z2nJ2n +A) = haf(zi + aij).

• h3(A, z) = haf(Z2nJ2nZ2n +A) = haf(zizj + aij),

For convenience, we also provided a shorthand for these matrices that is sometimes easier to work with.
The motivation behind the definition of these multivariate graph polynomials is the following.

Proposition 3.5 Let A be a monotone hook matrix. Assume that either

1. h1(A, z) is stable, or

2. h2(A, z) is stable, or

3. h3(A, z) is Hurwitz-stable.

Then the conclusion of the MHH conjecture (Conjecture 1.1) holds for the matrix A.

Unfortunately, these generalizations fail to be stable even for {0, 1} matrices.

Proposition 3.6 There is a monotone hook {0, 1} matrixA for which h1(A, z) is not stable, and h2(A, z)
is not stable, and h3(A, z) is not Hurwitz-stable.

Since all these polynomials are multi-affine (they have degree at most one in each variable) we can use
the following criterion (Theorem 5.6 in Brändén (2007)) to check whether they are stable or not.

Theorem 3.7 A multi-affine polynomial f ∈ R[z1, . . . , zn] is stable if and only if

∆i,jf :=
∂f

∂zi
(x) · ∂f

∂zj
(x)− ∂2f

∂zi∂zj
(x) · f(x) ≥ 0

for all x ∈ Rn and 1 ≤ i, j ≤ n.

Proof of Proposition 3.6: Let

A =


∗ 0 0 1
0 ∗ 1 1
0 1 ∗ 1
1 1 1 ∗

 ,

where ∗ denotes a wildcard, since the hafnian does not depend on the diagonal elements.
We have that

h1(A, z) = (z1 + z2)(z3 + z4 + 1) + (z1 + z3)(z2 + z4 + 1) + (z1 + z4 + 1)(z2 + z3 + 1)

and from this we get that ∆3,4h1(A, z) = 4z2
1 + 4z2

2 + 4z1z2 + 2z2 which can take on negative values
(e.g., when z1 = 0 and −1/2 < z2 < 0). Similarly, one can easily check that ∆1,3h2(A, z) = −z2 − 1.
Checking Hurwitz-stability for h3(A, z1, z2, z3, z4) can be reduced to checking stability for h̃3(A, z) =
h3(A, z1i ,

z2
i ,

z3
i ,

z4
i ) because multiplication by the imaginary unit imaps the right half-plane to the upper

half-plane. Since h̃3(A, z) has only real coefficients we can apply Brändén’s criterion again to get that

∆3,4h̃3(A, z) = z1(9z1z2
2z3z4 + 3z1z2z3 + 3z2

2z3 + 3z1z2z4 + z1 − 2z2)

an expression that takes on negative values as well (e.g., when z1 = z2 = 1 and z3 = z4 = 0). 2
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4 An alternative proof for a subclass of threshold graphs
In this section, we make use of the α-permanents and their close connections to hafnians to prove that
haf(zJ +A) has only real roots for certain {0, 1} matrices A of a special form.

Recall the definition of α-permanent of an n× n matrix B = (bij) (Vere-Jones (1998)):

per(B;α) =
∑
π∈Sn

αν(π)
n∏
i=1

bi,π(i), (7)

where ν(π) is the number of disjoint cycles of the permutation π. Special cases of this formula when
α = 1 and when α = −1 yield per(B) and (−1)n det(B), respectively.

It is known that for real symmetric n× n matrices B:

per(B; 1/2) =
1
2n

haf
(
B B
B B

)
. (8)

The combinatorial proof of (8) in Frenkel (2010) allows us to easily extend this equality to any symmetric
matrix B (i.e., the entries need not be real numbers, they can be indeterminates as well). We combine this
result with the cycle-counting extension of the MCP theorem (Proposition 4.4 of Brändén et al. (2010)). In
fact, we only need the following bivariate special case of it (when we diagonalize all xi = x and yi = y):

Proposition 4.1 Let F be an n × n Ferrers matrix, a {0, 1} matrix that is weakly decreasing down
columns and weakly increasing from left to right across rows. Then, for any α > 0, the polynomial
per(xF + y(Jn − F );α) ∈ R[x, y] is stable.

Corollary 4.2 LetB be an n×n symmetric monotone column {0, 1} matrix, and letA =
(
B B
B B

)
then

the polynomial haf(zJ2n +A) has only real roots.

Proof: From (8) we see that it is equivalent to prove that the 1/2-permanent of zJn + B has real roots
only. Since B is a symmetric monotone column {0, 1} matrix, it is also a Ferrers matrix, and thus we can
apply Proposition 4.1 to it with α = 1/2. Translation and diagonalization preserve stability (see Lemma
2.1), so by setting x = z + 1 and y = z we get that per(zJn + B; 1/2) is stable, i.e., has real roots only.
2

Remark 4.3 The adjacency matrices of the form A =
(
B B
B B

)
where B is a symmetric is usually not

a monotone hook matrix. However, it can be shown that for any such matrix A there is a threshold with
adjacency matrix equal to A. In other words, Corollary 4.2 is a special case of Theorem 3.1.
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