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Representations on Hessenberg Varieties
and Young’s Rule

Nicholas Teff1†

1Department of Mathematics, University of Iowa, Iowa City, IA, USA

Abstract. We combinatorially construct the complex cohomology (equivariant and ordinary) of a family of algebraic
varieties called regular semisimple Hessenberg varieties. This construction is purely in terms of the Bruhat order
on the symmetric group. From this a representation of the symmetric group on the cohomology is defined. This
representation generalizes work of Procesi, Stembridge and Tymoczko. Here a partial answer to an open question of
Tymoczko is provided in our two main result. The first states, when the variety has multiple connected components,
this representation is made up by inducing through a parabolic subgroup of the symmetric group. Using this, our
second result obtains, for a special family of varieties, an explicit formula for this representation via Young’s rule,
giving the multiplicity of the irreducible representations in terms of the classical Kostka numbers.

Résumé. Nous construisons la cohomologie complexe (équivariante et ordinaire) d’une famille de variétés algébriques
appelées variétés régulières semisimples de Hessenberg. Cette construction utilise exclusivement l’ordre de Bruhat
sur le groupe symétrique, et on en déduit une représentation du groupe symétrique sur la cohomologie. Cette
représentation généralise des résultats de Procesi, Stembridge et Tymoczko. Nous offrons ici une réponse partielle à
une question de Tymoczko grâce à nos deux résultats principaux. Le premier déclare que lorsque la variété a plusieurs
composantes connexes, cette représentation s’obtient par induction à travers un sous-groupe parabolique du groupe
symétrique. Nous en déduisons notre deuxième résultat qui fournit, pour une famille spéciale de variétés, une formule
explicite pour cette représentation par la règle de Young, et donne ainsi la multiplicité des représentations irréductibles
en termes des nombres classiques de Kostka.
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1 Introduction
In this paper we study a representation of the symmetric group on the complex cohomology (ordinary and
equivariant) of a family of algebraic varieties called regular semisimple Hessenberg varieties. This rep-
resentation exposes connections between the combinatorics of the symmetric group, the geometry of the
varieties, and representation theory. Also, this representation generalizes representations in work of Pro-
cesi [P], Stembridge [St], and Tymoczko [T3]. Procesi and Stembridge studied this same representation
in the case when the variety is the toric variety associated to the Coxeter complex in type An using ordi-
nary cohomology. Tymoczko studied it when the variety is the flag variety using equivariant cohomology.

†Partially supported by the University of Iowa Department of Mathematics NSF VIGRE grant DMS-0602242

1365–8050 c© 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAOind.html


904 Nicholas Teff

These varieties are examples of regular semisimple Hessenberg varieties. In each case, a decomposition
of the representation into irreducible representations are known. Here we partially answer an open ques-
tion of Tymoczko [T3]. The question Tymoczko asks is; “can one obtain similar decompositions of this
representation for the cohomology of all regular semisimple Hessenberg varieties?”

We answer this question in two cases. The first states, when the Hessenberg variety is disconnected, the
representation is a particular induced representation through a parabolic (i.e. Young) subgroup [Theorem
4.10]. The second result provides an explicit irreducible decomposition of the representation for parabolic
Hessenberg varieties [Definition 4.11] via Young’s rule (see [JK, Chapter 2]). We give this decomposition
in terms of classical Kostka numbers [Theorem 4.15].

Our approach is combinatorial. We study these varieties via a combinatorial graph called the moment
graph. These graphs are subgraphs of the Bruhat graph for Sn [BB, Chapter 2]. This allows us to use tools
from Coxeter groups, for example the Bruhat order, parabolic subgroups, and minimal coset representa-
tives. In fact, the results of this abstract can be extended to other Coxeter groups in other Lie types. We
chose to remain in type A to make the connection to combinatorics (e.g. partitions and Kostka numbers)
more evident.

1.1 Acknowledgments
I would like thank Julianna Tymoczko for all of her assistance with the preparation of this paper, including
help with the LATEX-code for moment graphs, Danilo Diedrichs for his French translation of the abstract,
and the anonymous referees for their helpful comments.

2 Hessenberg varieties.
Fix G = GLn(C) and let B be the subgroup of upper-triangular matrices. Let the respective Lie algebras
be g and b. The flag variety is the homogenous spaceG/B. It is known to be a smooth complex projective
variety [H, Section 21]. Hessenberg varieties are a family of subvarieties of the flag variety parametrized
by an element X ∈ g and a function h : {1, 2, · · · , n} 7−→ {1, 2, · · · , n} [dMPS],[T2].

Hessenberg varieties are the space of ordered bases which represent X in a form (i.e. Hessenberg form)
under which numerical algorithms can be efficiently performed [dMPS]. Hessenberg varieties have also
found applications in other fields, including combinatorics, geometry, and representation theory. Well-
known examples include the flag variety, the toric variety associated to the Coxeter complex and the
Springer variety [P],[Sp],[St],[T3].

When X is semisimple with distinct eigenvalues (i.e. regular semisimple) the Hessenberg varieties are
smooth [dMPS, Theorem 6]. In this case, we construct the equivariant cohomology combinatorially using
GKM theory [GKM],[KT],[T1]. This approach presents the equivariant cohomology using a combinato-
rial graph. These graphs are subgraphs of the Bruhat graph (see Figure 3 for examples).

Definition 2.1 An h-function is a non-decreasing function h : {1, 2, · · · , n} 7−→ {1, 2, · · · , n} such that
h(i) ≥ i for each i. Let Ei,j be the n × n matrix which is one in entry {i, j} and zero elsewhere. A
Hessenberg space is the complex vector space spanned by the Ei,j such that h(j) ≥ i for each pair i, j.
Hessenberg spaces will be denoted Hh and h-functions h = h(1)h(2) · · ·h(n).

Example 2.2 We write Hh as the set of matrices with ∗’s in positions {i, j} such that h(j) ≥ i and 0 in
the other positions. For example, let h(i) = i + 1 for i = 1, 2, · · · , n − 1. Then Hh is the complex span
of the matrices Ei,j where i ≤ j + 1.



Representations on Hessenberg varieties 905

H23455 =
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Fig. 1: A Hessenberg space.

Definition 2.3 Fix X ∈ g and an h-function. A Hessenberg variety is the subvariety of G/B given by

Xh := {gB ∈ G/B | g−1Xg ∈ Hh}.

This is a closed set in G/B and hence a projective variety.

Example 2.4 Examples of Hessenberg varieties.

(1.) When h(i) = n for all i, then Hh = g. For any X ∈ g the Hessenberg variety Xh is the flag variety
G/B.

(2.) When h(i) = i for all i, then Hh = b. When X ∈ g is nilpotent the Hessenberg variety is the
Springer variety [Sp].

(3.) Consider the given by h-function, h(i) = i + 1 for i = 1, 2, · · · , n − 1. When X ∈ g is regu-
lar semisimple (see Definition 3.5) the Hessenberg variety is the toric variety associated with the
Coxeter complex of Sn [dMPS, Theorem 11]. There is a symmetric group representation the co-
homology of this variety induced by the action of Sn on the root system. Procesi and Stembridge
give two approaches to decomposing the cohomology into irreducible representations[P],[St]. In
Section 4 we study a generalization of this representation on other regular semisimple Hessenberg
varieties.

3 GKM Theory for regular semisimple Hessenberg varieties.
Our goal is to study Hessenberg varieties via a representation of the symmetric group on the (ordinary
and equivariant) cohomology with complex coefficients. Among the results we prove is that when the
Hessenberg variety has multiple connected components the representation is a permutation representation.

We follow a combinatorial approach. We construct the equivariant cohomology using GKM theory
[GKM]. This gives a presentation of both the equivariant and ordinary cohomology of regular semisimple
Hessenberg varieties in terms of the Bruhat order of the symmetric group.

This combinatorial viewpoint is a primary advantage of using GKM theory. The representation we
will study uses equivariant cohomology in an essential way. In fact, it is not obvious that the ordinary
homology carries an Sn-representation without the GKM approach (see Remark 4.6).

Here we introduce GKM theory as needed for our purposes. More thorough background can be found
in either the source [GKM] or the expository article [T1]. For more examples, GKM theory has been
used to calculate equivariant cohomology for the Grassmannians, Schubert varieties and the flag variety
[KT],[T3],[T4].
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Let X be a smooth complex projective variety which carries an action of a complex algebraic torus
T . GKM theory allows us to view H∗T (X,C), the equivariant cohomology of X , as a free module over
C[t1, t2, · · · tn], the polynomial algebra over the Lie algebra of T.

In order to apply GKM theory X must have finitely many of both the T -fixed points and one-dimensio-
nal T -orbits. Denote the fixed points by XT and the one-dimensional orbits by {O1,O2, · · · ,Ok}. If X
satisfies these finiteness conditions, we call it a GKM space. In fact, the category of GKM spaces is larger
than smooth category. All a GKM space must satisfy is a technical condition called equivariant formality
[GKM, Section 1.2].

The fixed points and one dimensional orbits form a one-skeleton in X relative to the T -action. We
construct a combinatorial graph, called the moment graph, from this one-skeleton. The vertices are the
fixed points and there is an edge between fixed points if they are the two fixed points in the closure of an
orbit, Oi. Each edge is labeled by αi, the C[t1, · · · tn]-annihilator of ti, the Lie algebra of the point-wise
stabilizer ofOi. Further, we direct the edge from x

αi7−→ y if and only if the torus acts on the tangent space
Tx(Oi) with weight αi and on Ty(Oi) with weight −αi. [GKM, Section 7.1].

Definition 3.1 Let X be a GKM space. The moment graph of X is the graph Γ(X) = (V, E) where the
vertices are V = XT and the labeled edges are

E = {x αi7−→ y | x, y ∈ Oi ∩XT andαi is the annihilator of ti.}.

All GKM spaces have a localization map H∗T (X,C) −→ C[t1, · · · , tn]⊕X
T

that is in fact injective.
This is what permits the GKM presentation of the equivariant cohomology.

Theorem 3.2 (GKM presentation [GKM]) Let X be a GKM space with moment graph Γ(X). Then the
equivariant cohomology of X is given by

H∗T (X,C) :=
{
p : XT 7−→ C[t1, · · · , tn] | for x αi7−→ y, the difference px − py ∈ αi

}
.

The forgetful map which sets each ti = 0 relates the equivariant cohomology to the ordinary cohomol-
ogy H∗(X,C).

Proposition 3.3 There is a ring isomorphism

H∗(X,C) ∼=
H∗T (X,C)

〈t1, · · · , tn〉H∗T (X,C)
.

One consequence is that any free C[t1, · · · , tn]-module basis for equivariant cohomology can be viewed
as C-vector space basis for ordinary cohomology by scalar restriction. Finally, the next result is helpful
later (see Section 3.2).

Lemma 3.4 Let X be GKM space with moment graph Γ(X). Then the connected components of X are
GKM spaces whose moment graph the connected graph components of Γ(X).

3.1 Regular semisimple Hessenberg varieties.
Here we give the GKM presentation for a family of Hessenberg varieties. Recall that Sn embeds into G
as the subgroup of permutation matrices. This identification is key to exposing the connection between
the geometry of the Hessenberg varieties and the combinatorics of the symmetric group.
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Definition 3.5 A semisimple element X ∈ g is regular when its eigenvalues are all distinct.

Fix a regular semisimple X ∈ g. In fact, because conjugation (change of basis) is an isomorphism of
varieties we may assume X is diagonal with distinct diagonal entries. De Mari-Procesi-Shayman proved
that the Hessenberg varieties of regular semisimple X are smooth [dMPS, Theorem 6]. Therefore, for Xh
to be a GKM space we only need an appropriate torus action.

Let T be the subgroup of diagonal matrices in G. The action of T on G/B given by t · gB = tgB
restricts to Xh because T = CG(X). With respect to this torus action G/B is a GKM space, and so is Xh.

Definition 3.6 Let w ∈ Sn. The inversions of w is the set inv(v) :=
{
i < j | w−1(i) > w−1(j)

}
.

Proposition 3.7 Every regular semisimple Hessenberg variety is a GKM space, with moment graph
Γ(Xh) = (V, E) given by:

V := {wB | w ∈ Sn}

E :=
{
w′B

ti−tj7−→ wB | w′ = (ij)w, i < j ∈ inv(w) andw−1(i) ≤ h(w−1(j))
}

Furthermore, the equivariant cohomology is

H∗T (Xh,C) :=
{
p : Sn 7−→ C[t1, · · · , tn] | for w′B

ti−tj7−→ wB the difference pw − pw′ ∈ 〈ti − tj〉
}
.

Proof outline: J. Carrell proved the moment graph for G/B is as above for the function h(i) = n for all
i [C]. Any regular semisimple Hessenberg variety Xh carries the same torus action as G/B. Therefore
the moment graph of Xh is a subgraph of that of G/B. It is then a direct calculation to show which orbits
from G/B are contained in Xh. 2

Example 3.8 To determine whether a tuple of polynomials is a class one must check that the differ-
ence of polynomials at adjacent vertices are multiples of the ti − tj . Figure 2 provides an example in
H∗T (X223,C)), where one is a class and the other not.
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Fig. 2: Examples of the equivariant condition.

The relation w′B
ti−tj7−→ wB if i < j ∈ inv(w) is exactly the condition defining the cover relation for

the Bruhat order on the symmetric group [BB, Section 2.1]. When the Hessenberg variety is the flag
variety the moment graph is a labeled Bruhat graph. Hence, the moment graph of any regular semisimple
Hessenberg variety is a labeled subgraph of the Bruhat graph. This fact is the underpinning of the combi-
natorics of this paper. Because of it we are able to use facts about the Bruhat order, parabolic subgroups,
and minimal coset representatives as we study these varieties.
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Frequently, we will suppress the coset notation and write edges as w′
ti−tj7−→ w. The conditions (Propo-

sition 3.7) defining an edge are cumbersome. This can remedied by calculating a right-hand version of
the edge condition.

Corollary 3.9 There is an edge between w and w′ if and only if w′ = w(i′j′) for i′ < j′ and h(i′) ≥ j′.

Proof: If w′
ti−tj7−→ w is an edge then (ij)w = ww−1(ij)w = w(w−1(j)w−1(i)). Direct calculation

shows i′ = w−1(j) < w−1(i) = j′ satisfies the condition. 2

This right-hand condition makes it easier to construct the moment graph, but we must still use the left-
hand version to calculate the classes p ∈ H∗T (Xh,C). The transpositions (i′j′) satisfying the conditions
of this corollary will be called right-transpositions.

Example 3.10 For GL3(C), up to homeomorphism, there are four regular semisimple Hessenberg vari-
eties. In this case, we can identify these varieties. When h = 123, the variety is the fixed point set of the
torus. For h = 223, the variety is three disjoint copies of CP1. For h = 233, the variety is the toric variety
associated with the decomposition of the Coxeter complex (see also Example 2.4). Lastly, h = 333 is the
flag variety GL3(C)/B (see also Example 2.4).
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Fig. 3: Moment graphs of regular semisimple Hessenberg varieties.

3.2 Disconnected regular semisimple Hessenberg varieties.
In this section we give a criterion for when Xh is disconnected and give an explicit decomposition of Xh
into homeomorphic connected components. Fix a regular semisimple element X and an h-function h. For
the rest of the paper, all Hessenberg varieties will be regular semisimple.

Definition 3.11 The parabolic subgroup of Xh is Wh := 〈(ij) ∈ Sn | h(i) ≥ j〉.

The name parabolic subgroup comes from the theory of Coxeter groups. In fact, Wh is generated by
the simple transpositions (i i + 1) such that h(i) ≥ i + 1, and so is a parabolic subgroup of the Coxeter
group Sn. These subgroups also arise in the representation theory of the symmetric group, where they are
called Young subgroups. It will be important to know that up to isomorphism, these subgroups have the
form Sλ = Sλ1 × · · · × Sλk for λ = (λ1, λ2, · · · , λk) a partition of n,

Since the parabolic subgroup is generated by the simple transposition satisfying the right-hand condition
they do not uniquely determine the Hessenberg variety. For example, the Hessenberg varieties X2334 and
X3334 both have parabolic subgroup isomorphic to S(3,1). Despite this parabolic subgroups are useful
when describing the moment graph.
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Every permutation u ∈Wh can be written as a product of right-transpositions. In terms of the moment
graph, this product corresponds to a path between the identity and u. Hence, this subgroup generates the
graph component containing the identity. By Lemma 3.4, this graph component corresponds to another
GKM space. We will call this space the identity component and denote it X◦h.

Lemma 3.12 Fix an h-function h. There are [Sn : Wh] connected components of regular semisimple
Hessenberg variety.

Proof: From Lemma 3.4 we know it is sufficient to count the graph components of the moment graph.
Now by Corollary 3.9, the permutations u, v ∈ Sn are in the same graph component if and only if there is
a w ∈ Wh such that u = vw. This is equivalent to uWh = vWh. Hence, there are [Sn : Wh] connected
components of Xh. 2

This lemma shows that the components of the moment graph respect the right multiplication structure
of Wh. Hence, the moment graph is composed of isomorphic graph components indexed by the left
cosets of Wh. This combinatorial property hints that when the Hessenberg variety is disconnected then
connected components are homeomorphic. This is true.

Proposition 3.13 For a disconnected Hessenberg variety, X◦h
∼=
∏k
i=1 Xλih , where the Xλih are regular

semisimple Hessenberg varieties in GLλi(C).

Proof outline: SupposeWh
∼= Sλ for λ = (λ1, · · · , λk) a partition of n. For gB ∈ X◦h the product g−1Xg

is mapped to the subspace of Hh consisting of block diagonal matrices with dimensions given by λ. This
gives k independent conditions each of which describes a Hessenberg variety in GLλi(C). 2

Corollary 3.14 Let Xh be a disconnected regular semisimple Hessenberg variety. Then the connected
components of Xh are all homeomorphic.

Proof outline: Let J be a connected component of Xh and pick u ∈ J T . Consider the map given by left
translation by u−1. This maps J homeomorphically onto (u−1Xu)◦h i.e. the identity component of the
Hessenberg variety corresponding to the regular semisimple element u−1Xu and the same h-function h.
By Proposition 3.13, J is homeomorphic to X◦h. 2

4 A representation of the symmetric group.
In this section we define a representation of the symmetric group on the equivariant cohomology of regular
semisimple Hessenberg varieties. Geometrically this representation is defined from an action of Sn on the
the moment graph. Here we review necessary background on the representation theory of the symmetric
group. A classic source for these results is [JK].

The representation ring of Sn has two free Z-bases, both parameterized by partitions of n. The first
basis is the collection of irreducible representations V λ with characters χλ. The second basis consists of
permutation representations Pλ with character ψλ. These are obtained from the left multiplication action
of Sn on the cosets of Sλ, i.e. the cosets of Young subgroups. Equivalently, each Pλ is constructed by
inducing the trivial representation of Sλ to Sn. We will be interested in decomposing the Pµ in terms of
the V λ.
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Definition 4.1 The lexicographic order on partitions of n is given by

λ > µ if the first non-vanishing λi − µi is positive.

Definition 4.2 The Kostka numbers Kµλ are the number of semistandard Young tableaux of shape µ and
weight λ.

Consider the matrix with Kostka numbers as entries. If we order the rows and columns (i.e. partitions)
in lexicographic order we obtain a transition matrix between permutation representations and irreducible
representations. This is classically known as Young’s Rule.

Proposition 4.3 (Young’s Rule [JK]) Let τλ denote the character of the trivial representation for the
Young subgroup Sλ. Then the induced character IndSnSλτ

λ is given by

IndSnSλτ
λ := ψλ = χλ +

∑
µ>λ

Kµλχ
µ.

4.1 The representation on the cohomology.
The symmetric group acts on C[t1, · · · , tn] by permuting variables. That is for w ∈ Sn and a polynomial
f(t1, · · · , tn), the action of w on f(t1, · · · , tn) is given by

w ∗ f(t1, t2, · · · , tn) = f(tw(1), tw(2), · · · , tw(n)).

This action is a ring automorphism of C[t1, · · · , tn]. We can extend this to a representation of Sn on
H∗T (Xh).

Proposition 4.4 Let Xh be a regular semisimple Hessenberg variety. There is a representation of Sn on
H∗T (Xh,C) given by

(w · p)u = w ∗ pw−1u.

Further, using the isomorphism of Proposition 3.3 this is a representation on H∗(Xh,C).

We defer the proof until after the next example. This action is easiest understood when w = (ij) is
a transposition. In this case, the action of (ij) interchanges the polynomials across edges in the moment
graph for G/B labeled ti− tj , and permutes the variables. For example Figure 4 shows the action of (12)
on a class in H∗T (X233,C).
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Fig. 4: The action on an equivariant class.

The next Lemma shows that Sn acts on the moment graph of regular semisimple Hessenberg varieties.
It is key to proving Proposition 4.4.
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Lemma 4.5 Let v ∈ Sn and w′
ti−tj7−→ w be an edge in the moment graph. The map ϕv : Sn → Sn defined

by ϕv(w) = v−1w sends the edge w′
ti−tj7−→ w to

• v−1w′ 7−→ v−1w with label tv−1(i) − tv−1(j) if i < j /∈ inv(v).

• v−1w 7−→ v−1w′ with label tv−1(j) − tv−1(j) if i < j ∈ inv(v).

Proof: The proof in both cases is similar. We prove it when i < j ∈ inv(v). We have

v−1w = v−1(ij)w′ = (v−1(i)v−1(j))v−1w′

and v−1(i) > v−1(j). Therefore, we must check that v−1(j) < v−1(i) ∈ inv(v−1w′) and that

(v−1w′)−1(v−1(j)) ≤ h((v−1w′)−1(v−1(i))).

This follows directly from the relation (v−1w′)−1(v−1(i)) = w−1(j) and (v−1w′)−1(v−1(j)) = w−1(i).
2

Proof of Proposition 4.4: Let u′
ti−tj7−→ u be an edge and p ∈ H∗T (Xh,C). We must show thatw ·p satisfies

the equivariant condition, i.e. (w ·p)u− (w ·p)u′ ∈ 〈ti− tj〉. This follows from the action on the moment
graph

(w · p)u − (w · p)v = w ∗ (pw−1(u) − pw−1(v)) ∈ w ∗ 〈tw−1(i) − tw−1(j)〉 = 〈ti − tj〉.

The second claim is immediate. 2

Remark 4.6 In the case of G/B, the group Sn acts on all of G/B by left multiplication. Therefore, the
representation on the cohomology is defined geometrically by this action. This is not the case for general
Hessenberg varieties. For example, if h = 233 consider the matrices

X =

 1 0 0
0 2 0
0 0 3

 g =

 1 1 1
2 1 0
1 0 0

 w(12) =

 0 1 0
1 0 0
0 0 1


Direct calculation using Definition 2.3 gives

g−1Xg =

 3 0 0
−2 2 0
0 −1 1

 (w(12)g)−1X(w(12)g) =

 3 0 0
−4 1 0
3 1 2

 .

This means gB ∈ X233 while w(12) · gB /∈ X233. In other words, this Hessenberg variety is not invariant
under the left multiplication action of Sn, only its moment graph is. For this reason, the representation
will vary as the moment graph varies, so the combinatorial approach GKM theory provides is valuable
when studying this representation.

Tymoczko studied the representation onG/B using the same GKM approach we use here. She obtained
a combinatorial proof that the representation on ordinary cohomology is trivial [T4]. This result is known
in the literature, but the proofs rely on geometric arguments.

Theorem 4.7 (Tymoczko [T4]) The representation on H∗(G/B,C) decomposes into |Sn| copies of the
trivial representation.
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4.2 The representation on disconnected Hessenberg varieties.
Let wi, · · · , wk be the system of coset representatives of Wh minimal length [BB, Section 2.4]. Propo-
sition 3.14 allows us to write Xh as the disjoint union of the translates wiX◦h. Hence the equivariant
cohomology is:

H∗T (Xh,C) =
⊕
wi

H∗T (wiX◦h,C). (1)

Next we determine an explicit isomorphism between H∗T (X◦h,C) and H∗T (wiX◦h,C). This will be key to
showing H∗T (Xh,C) is the induced representation of H∗T (X◦h,C) through Wh.

Proposition 4.8 There is an isomorphism given by ϕwi : H∗T (X◦h,C)→ H∗T (wiX◦h,C) defined by

pu 7−→ pwiu := wi ∗ pu.

Proof outline: This is a direct computation using the same argument as Proposition 4.4. 2

With this we have descriptions of the variety Xh, the moment graph Γ(Xh), and the equivariant coho-
mology H∗T (Xh,C) in terms of the analogs for the identity component X◦h. Further, from Proposition 3.13
and the the Künneth formula we have

H∗T (X◦h,C) ∼= H∗T

(
k∏
i=1

Xλih ,C

)
∼=

k⊗
i=1

H∗T (Xλih ,C). (2)

Lemma 4.9 The equivariant cohomology of X◦h is a representation of Wh.

Proof: Let Wh
∼= Sλ = Sλ1 × · · · × Sλk . From Proposition 3.13 and Equation 2 we define the represen-

tation on H∗T (X◦h,C) component-wise. 2

This leads to the first main theorem.

Theorem 4.10 Let Xh be a disconnected Hessenberg variety with parabolic subgroup Wh. Then as rep-
resentations H∗T (Xh) = IndSnWh

H∗T (X◦h,C).

Proof: Proposition 3.14 gives that

H∗T (Xh,C) =
⊕

wi coset reps
H∗T (wiX◦h,C) ,

and by Lemma 4.9 H∗T (X◦h,C) is Wh-stable. It follows from Proposition 4.8 and Equation 1 that each
p ∈ H∗T (Xh,C) is uniquely expressed as p =

∑
wi
wi ∗ pi for some pi ∈ H∗T (X◦h,C). By definition

H∗T (Xh,C) is the induced representation IndSnWh
H∗T (X◦h,C). 2

This result permits us to decompose the ordinary cohomology into irreducible representations when the
Hessenberg variety is parabolic.

Definition 4.11 Whenever the Hessenberg space Hh is a parabolic subalgebra of g we call the Hessen-
berg variety parabolic.
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H3334 =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 0 ∗


 H2334 =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗




Fig. 5: A parabolic Hessenberg space and a non-parabolic Hessenberg space.

In other words, a Hessenberg variety is parabolic whenever Hh “forms a block-staircase” in g. The size
of the blocks correspond to the parts of λ in Wh

∼= Sλ1 × · · · × Sλk .

Example 4.12 CompareH3334 which is a parabolic Hessenberg, andH2334 which is not. They have both
have parabolic subgroup isomorphic to S(3,1), but E3,1 /∈ H2334 (see Figure 5).

Proposition 4.13 The identity component of a parabolic Hessenberg is homeomorphic to the product
GLλ1(C)/Bλ1 × · · · × GLλk(C)/Bλk , where λ = (λ1, · · · , λk) is the partition corresponding to the
group Wh

∼= Sλ.

Proof: Use Proposition 3.13 and check that each factor in the product is isomorphic to a flag variety. 2

Let χ(n) be the character of the trivial representation of Sn so τλ = χ(λ1) × · · · × χ(λk) is the trivial
character of Sλ. As a corollary we obtain the following.

Corollary 4.14 Let X◦h be the identity component of a parabolic Hessenberg. Then theWh-representation
on H∗(X◦h,C) is trivial and has |Wh|τλ as its character.

Proof: The proposition gives X◦h
∼= GLλ1(C)/Bλ1 × · · · × GLλk(C)/Bλk . From Tymoczko’s result

(Theorem 4.7) and Lemma 4.9 the character is

|Sλ1 |χ(λ1) × · · · × |Sλk |χ(λk) =

(
k∏
i=1

|Sλi |

)
χ(λ1) × · · · × χ(λk) = |Wh|τλ.

2

Finally, we obtain our main result. From Theorem 4.10 together with Corollary 4.14 we have that
H∗(Xh,C) = |Wh|Pλ, the permutation representation associated to Wh

∼= Sλ. Using Young’s rule we
obtain the irreducible decomposition of the ordinary cohomology for all parabolic regular semisimple
Hessenberg varieties.

Theorem 4.15 Let Xh be a parabolic regular semisimple Hessenberg variety, with parabolic subgroup
Wh
∼= Sλ. The character of the representation χh decomposes in ordinary cohomology as

χh = |Wh|χλ +
∑
µ>λ

|Wh|Kµλχ
µ.

Proof: We know H∗(Xh,C) = IndSnWh
H∗(X◦h,C). For parabolic Xh the character on the identity compo-

nent is |Wh|τλ (see Corollary 4.14). Young’s Rule gives the result. 2
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