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The equivariant topology of stable Kneser
graphs

Carsten Schultz

Institut für Mathematik, Freie Universität Berlin, Berlin, Germany

Abstract. Schrijver introduced the stable Kneser graph SGn,k, n ≥ 1, k ≥ 0. This graph is a vertex critical
graph with chromatic number k + 2, its vertices are certain subsets of a set of cardinality m = 2n + k. Björner
and de Longueville have shown that its box complex is homotopy equivalent to a sphere, Hom(K2, SGn,k) ' Sk.
The dihedral group D2m acts canonically on SGn,k. We study the D2m action on Hom(K2, SGn,k) and define a
corresponding orthogonal action on Rk+1 ⊃ Sk. We establish a close equivariant relationship between the graphs
SGn,k and Borsuk graphs of the k-sphere and use this together with calculations in the Z2-cohomology ring of D2m

to tell which stable Kneser graphs are test graphs in the sense of Babson and Kozlov.

The graphs SG2s,4 are test graphs, i.e. for every graphH and r ≥ 0 such that Hom(SG2s,4, H) is (r−1)-connected,
the chromatic number χ(H) is at least r + 6. On the other hand, if k /∈ {0, 1, 2, 4, 8} and n ≥ N(k) then SGn,k is
not a homotopy test graph, i.e. there are a graph G and an r ≥ 1 such that Hom(SGn,k, G) is (r− 1)-connected and
χ(G) < r+ k+ 2. The latter result also depends on a new necessary criterion for being a test graph, which involves
the automorphism group of the graph.

Résumé. Schrijver a défini le graphe de Kneser stable SGn,k, avec n ≥ 1 et k ≥ 0. Le graphe SGn,k est un graphe
critique (par rapport aux sommets) de nombre chromatique k + 2, dont les sommets correspondent à certains sous-
ensembles d’un ensemble de cardinalité m = 2n+ k. Björner et de Longueville ont démontré que son complexe de
boı̂tes et la sphère sont homotopiquement équivalents, c’est-à-dire Hom(K2, SGn,k) ' Sk. Le groupe diédral D2m

agit sur SGn,k canoniquement. Nous étudions l’action de D2m sur Hom(K2, SGn,k) et nous définissons une action
orthogonale correspondante sur Rk+1 ⊃ Sk. Par ailleurs, nous fournissons une relation équivariante étroite entre les
graphes SGn,k et les graphes de Borsuk de la sphère de dimension k. Utilisant cette relation et certains calculs dans
l’anneau de cohomologie de D2m sur Z2, nous décrivons quels graphes de Kneser stables sont des graphes de tests
selon la notion de Babson et Kozlov.

Les graphes SG2s,4 sont des graphes de tests, c’est-à-dire que pour tout H et r ≥ 0 tels que Hom(SG2s,4, H)
est (r − 1)-connexe, le nombre chromatique χ(H) est au moins r + 6. D’autre part, si k /∈ {0, 1, 2, 4, 8} et
n ≥ N(k), alors SGn,k n’est pas un graphe de tests d’homologie: il existe un graphe G et un entier r ≥ 1 tels
que Hom(SGn,k, G) est (r − 1)-connexe et χ(G) < r + k + 2. Ce dernier résultat dépend d’un nouveau critère
nécessaire pour être un graphe de tests, qui implique le groupe d’automorphismes du graphe.
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1 Introduction
Background
The subject of topological obstructions to graph colourings was started when Lovász determined the
chromatic numbers of Kneser graphs in Lovász (1978).

1.1 Definition. Let n ≥ 1, k ≥ 0. The Kneser graph KGn,k is a graph with vertices the n-element
subsets of a fixed set of cardinality 2n+ k, say

V (KGn,k) = {S ⊂ Z2n+k : |S| = n} .

Two such sets are neighbours in KGn,k if and only if they are disjoint,

E(KGn,k) = {(S, T ) ∈ V (KGn,k) : S ∩ T = Ø} .

It is easy to see that KGn,k admits a (k + 2)-colouring, χ(KGn,k) ≤ k + 2. Lovász assigned to each
graph G a simplicial complex, its neighbourhood complexN (G) and proved the following two theorems.

1.2 Theorem. If G is a graph and r ≥ 0 such that N (G) is (r − 1)-connected, then χ(G) ≥ r + 2.

1.3 Theorem. The complex N (KGn,k) is (k − 1)-connected.

These establish χ(KGn,k) = k + 2 as conjectured by Kneser.
The proof of Theorem 1.2 uses the Borsuk–Ulam theorem. This led Bárány to a simpler proof of

χ(KGn,k) ≥ k+2, which does not use any graph complexes but applies the Borsuk–Ulam theorem more
directly Bárány (1978). This proof uses the existence of certain generic configurations of vectors in Rk+1.
Using a specific configuration of this kind, Schrijver found an induced subgraph of KGn,k, the graph
SGn,k, with the property that already χ(SGn,k) = k + 2 Schrijver (1978).

1.4 Definition. The stable Kneser graph SGn,k is the induced subgraph of KGn,k on the vertex set

V (SGn,k) = {S ∈ V (KGn,k) : {i, i+ 1} 6⊂ S for all i ∈ Z2n+k} .

The vertices of SGn,k are called stable subsets of Z2n+k.

Schrijver also proves that the graph SGn,k is vertex critical in the sense that it becomes (k + 1)-
colourable if an arbitrary vertex is removed.

A more systematic treatment of topological obstructions to the existence of graph colourings was sug-
gested by Lovász and started by Babson and Kozlov (2006). For graphs G and H , they define a cell
complex Hom(H,G). The vertices of Hom(H,G) are the graph homomorphisms from H to G. They
introduce the concept of a test graph.

1.5 Definition. A graph T is a homotopy test graph if for all loopless graphs G and r ≥ 0 such that
Hom(T,G) is (r − 1)-connected the inequality χ(G) ≥ χ(T ) + r holds.

Since the complex Hom(K2, G) is homotopy equivalent to N (G), Theorem 1.2 states that K2 is a
homotopy test graph. In Babson and Kozlov (2006) this result is extended to all complete graphs and in
Babson and Kozlov (2007) to odd cycles. These proofs show a graph T to be a test graph by studying the
spaces Hom(T,Kn) and C2-actions on them induced by a C2-action on T . Here C2 denotes the cyclic
group of order 2. Indeed, for a graph T with an action of a group Γ one can define the property of being a
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Γ-test graph (Definition 3.1), which implies being a homotopy test graphs, and the homotopy test graphs
mentioned above are shown to be C2-test graphs.

In Schultz (2009) easier proofs, in particular for odd cycles, are obtained by instead studying the com-
plex Hom(K2, T ) together with two involutions, one induced by the non-trivial involution of K2 and an-
other by an involution on T . This also yielded the somewhat isolated result thatKG2s,2 is aC2-test graph.
All known test graphs at that point were Kneser graphs or stable Kneser graphs, since KG1,k = SG1,k is
a complete graph on k + 2 vertices and SGn,1 is a cycle of length 2n+ 1

In Dochtermann and Schultz (2010) it was shown that test graphs T can be obtained by constructing
graphs T with prescribed topology of Hom(K2, T ).

Overview and results
Since all “naturally occurring” graphs which have so far been identified as test graphs are stable Kneser
graphs (the result for KG2s,4 can be derived from one for SG2s,4), it is natural to ask if more or even
all stable Kneser graphs are test graphs. Our main goal in this work is to decide which of them are test
graphs. We can answer this question to a large extent. We find new test graphs, but it turns out that most
stable Kneser graphs are not test graphs. We point out some of the results that we obtain on the way.

It has been known that stable Kneser graphs are related to spheres, for example Björner and
de Longueville (2003) have shown the homotopy equivalenceN (SGn,k) ' Sk. We describe more aspects
of this relationship and also make it equivariant. Braun (2010) has shown that for n > 1 the automor-
phism group of SGn,k is the dihedral group D2m with 2m elements, m = 2n + k. In Section 2 we
define a (k + 1)-dimensional orthogonal representation of D2m and an explicit map from its unit sphere
to Hom(K2, SGn,k),

S(Wn,k)→C2×D2m Hom(K2, SGn,k). (1)

This map is equivariant with respect to the action of the dihedral group, and also with respect to the
2-element group C2 acting as the antipodal map on the sphere and via K2 on Hom(K2, SGn,k). This
map is a D2m-homotopy equivalence. Its construction involves the alternating oriented matroid. It uses
a connection between the approaches of Bárány (1978) and Schrijver (1978) on one hand and Lovász
(1978) on the other, which has not been made explicit previously.

A construction which is in some sense dual to (1) is best formulated using the notion of a Borsuk graph.
We write C2 = {e, τ}.
1.6 Definition. Let (X, d) be a metric space with an isometric C2-action and ε > 0. We define the
ε-Borsuk graph of X , Bε(X), as follows. The vertex set of Bε(X) is the set of all points of X and
x ∼ y ⇐⇒ d(x, τy) < ε.

1.7 Theorem (Proposition 5.3). Let k ≥ 0 and ε > 0. Then for large enough n and m = 2n+ k there is
an equivariant graph homomorphism

SGn,k →D2m
Bε(S(Wn,k)).

The first construction will help us to show that certain stable Kneser graphs are test graphs, the second
that certain stable Kneser graphs are not. These constructions are also dual in the way that the first uses
properties of covectors of the alternating oriented matroid and the second uses properties of its vectors.

TheD2m-representationWn,k gives rise to a (k+1)-dimensional vector bundle ξn,k over the classifying
space BD2m, Definition 4.2. This in turn defines Stiefel-Whitney classes wi(ξn,k) ∈ Hi(D2m; Z2) and
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also classes wi(ξn,k) ∈ Hi(D2m; Z2) by
∑
i≥0 wi ·

∑
i≥0 wi = 1. An approach relying on the map (1)

and similar to that in Schultz (2009), but with different topological tools, yields:

1.8 Proposition (Section 4). Let n, k ≥ 1, m = 2n + k. If wr(ξn,k) 6= 0 for all r ≥ 1, then SGn,k is a
D2m-test graph and hence a homotopy test graph.

Calculations in the cohomology ring H∗(D2m; Z2) identify the cases in which this criterion is applica-
ble.

1.9 Theorem (see Corollary 4.4). Let n, k ≥ 0. If k ∈ {0, 1, 2} or if k = 4 and n is even, then SGn,k is
a homotopy test graph.

Here, mainly the case k = 4, n even, is new, and for it, it would not have been sufficent to restrict the
calculations to a 2-element subgroup of D2m. Consequently, this result could not have been obtained by
a direct application of the test graph criteria given in Schultz (2009).

So far, all proofs that certain graphs are test graphs used actions of a group on this graph. We show that
this is not merely because it was the only known technique.

1.10 Theorem (see Theorem 3.3). Let T be a finite, connected, vertex critical graph. Then T is a homo-
topy test graph if and only if T is an Aut(T )-test graph.

This also gives us a tool to prove that graphs are not test graphs. For example we note the curious
consequence that a connected vertex critical graph without non-trivial automorphisms cannot be a test
graph.

Using Theorem 1.7, some algebraic topology of vector bundles and a few constructions in the category
of graphs, we obtain the following criterion.

1.11 Proposition (Proposition 6.3). Let k ≥ 1. Then there is an N > 0 such that for all n ≥ N the
following holds: If there is an r > 0 such that wr(ξn,k) = 0 and r = 1 or r ≡ 0 (mod 2), then SGn,k is
not a D2m-test graph and hence not a homotopy test graph.

Again we do some calculations and arrive at the following result.

1.12 Theorem. Let k ≥ 0, k /∈ {0, 1, 2, 4, 8}. Then there is an N > 0 such that for no n ≥ N the graph
SGn,k is a homotopy test graph.

Also, there is an N > 0 such that for no odd n ≥ N the graph SGn,8 is a homotopy test graph.

This text is an extended abstract of Schultz (2010), and we will concentrate here on the constructions
that we deem interesting and omit almost all calculations.

Definitions and notation
We will use the same terminology and notation as in Dochtermann and Schultz (2010) and refer the reader
there for details.

Our graphs are undirected and without multiple edges. Even though we are mostly interested in
graphs without loops, allowing loops is important for some constructions. We call a graph without
loops loopless, and one in which every vertex is looped we call reflexive. A graph homomorphism
f : G → H is a function f : V (G) → V (H) between the vertex sets, which preserves the adjacency
relation, (f(u), f(v)) ∈ E(H) for all (u, v) ∈ E(G) (for which we also write u ∼ v). We denote the
category of graphs and graph homomorphisms by G.

The graph 1 consisting of one vertex and a loop is a final object in the category of graphs. Any two
graphs G and H have a categorical product G × H . For every graph G, the functor • × G has a right
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adjoint [G, •], i.e. there is a natural equivalence G(Z ×G,H) ∼= G(Z, [G,H]). The graph [G,H] is also
written HG and called an exponential graph. The graph homomorphisms from G to H correspond to the
looped vertices of [G,H] in accordance with G(G,H) ∼= G(1×G,H) ∼= G(1, [G,H]).

For graphs G and H we define a poset

Hom(G,H) =
{
f ∈ (P(V (H))\ {Ø})V (G) : f(u)× f(v) ⊂ E(H) f. a. (u, v) ∈ E(G)

}
with f ≤ g if and only if f(u) ⊂ g(u) for all u ∈ V (G). Hom is a functor from Gopp×G to the category
of posets and order preserving maps. Hom(G,H) is the face poset of a cell complex first described in
Babson and Kozlov (2006). The special case Hom(1, H) is the poset of cliques of looped vertices of H .
The atoms of Hom(G,H) correspond to the graph homomorphisms from G to H . More is true: There
is a natural homotopy equivalence |Hom(G,H)| ' |Hom(1, [G,H])| induced by a poset map which
preserves atoms and with a homotopy inverse of the same kind. Also |Hom(1, •)| preserves products up
to such an equivalence, see Dochtermann (2009b). More formal properties of Hom can be derived from
the above facts, in particular the existence of a map

Hom(G,H)×Hom(H,Z)→ Hom(G,Z) (2)

which on atoms corresponds to composition of graph homomorphisms and has all the expected properties.
Of course such a map is also easy to write down explicitly, it was first used in Schultz (2009).

Another construction that we will use takes a poset P and assigns to it a reflexive graph P 1. The
vertices of P 1 are the atoms of P , and two atoms are adjacent in P 1, if and only if they have a common
upper bound in P . This construction played in important role in Dochtermann and Schultz (2010) and we
will use several results from there. Usually P is the face poset of a cell complex X , in which case we also
write X1 instead of P 1 and call it the looped 1-skeleton of X .

2 The Bárány-Schrijver construction
Stable Kneser graphs and the alternating oriented matroid
Our starting point is the realization that parts of the construction which was used by Bárány (1978) to
prove χ(KGn,k) = k + 2 without using graph complexes and later refined by Schrijver (1978) to prove
χ(SGn,k) = k + 2 can also be used to tell us something about graph complexes, namely the existence
of an equivariant map Sk →C2 Hom(K2, SGn,k). This was also implicitly used by Ziegler (2002) in a
combinatorial proof of χ(SGn,k) = k+ 2, which built open a combinatorial proof of Kneser’s conjecture
by Matoušek (2004).

Schrijver uses vectors v0, . . . , v2n+k−1 on the moment curve to define a covering of Sk by the system of
sets (

{
x ∈ Sk : (−1)j〈x, vj〉 > 0 f.a. j ∈ S

}
)S∈V (SGn,k) and use the Borsuk-Ulam theorem to conclude

that χ(SGn,k) ≥ k + 2.
We define the alternating oriented matroid Cm,k+1, m > k ≥ 0, to be the oriented matroid associated

to the vector configuration v0, . . . , vm−1 ∈ Rk+1 with vj = (1, tj , . . . , tkj ) for some real numbers t0 <
t1 < · · · < tm−1 (Björner et al., 1999, 9.4). The set of non-zero covectors is

L(Cm,k+1) =
{

(sign〈x, v0〉, . . . , sign〈x, vm−1〉) : x ∈ Rk+1\ {0}
}
⊂ {−1, 0,+1}m .

We regard L(Cm,k+1) as a poset with the partial order induced by the partial order on {−1, 0,+1} given
by s ≤ s′ ⇐⇒ s = 0 ∨ s = s′. The elements of L(Cm,k+1) are exactly the sign vectors with at most
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k sign changes. By this we mean those sign vectors obtained as (sign p(0), . . . , sign p(m − 1)) with p
a polynomial of degree k. The minimal elements, called cocircuits, are those with exactly k zeros (and
hence a sign change at every zero, to be interpreted as above).

2.1 Proposition and Definition. Let n ≥ 1, k ≥ 0 and m = 2n + k. For s = (s0, . . . , sm−1) ∈
L(Cm,k+1) let the sets S0(s), S1(s) ⊂ {0, . . . ,m− 1} be defined by

Sl(s) =
{
j : (−1)jsj = (−1)l

}
.

Then

L(Cm,k+1)→ Hom(K2, SGn,k)
s 7→ (l 7→ {T ∈ V (SGn,k) : T ⊂ Sl(s)}) ,

with V (K2) = {0, 1}, is a well-defined order preserving map.

Proof: Denote the map by g. For s ∈ L(Cm,k+1) obviously S0(s)∩S1(s) = Ø, so (T0, T1) ∈ E(SGn,k)
for all Tl ∈ g(s)l. We only have to check that g(s)l 6= Ø, and since g is order preserving by construction,
we can assume that s is a cocircuit. But then s contains exactly k zeros. Let i0 < i1 < · · · < i2n−1

be the indices at which s is non-zero. That s has sign changes at exactly the zeros means that sij+1 =
(−1)ij+1−ij−1sij , i.e. (−1)ij+1sij+1 = −(−1)ijsij . Therefore S0(s) and S1(s) are interleaved n-sets
and S0(s), S1(s) ∈ V (SGn,k). �

2.2 Proposition and Definition. Let n ≥ 1, k ≥ 0 and m = 2n + k and (vj) the vector configuration
above or any other vector configuration realizing Cm,k+1.

The covector poset L(Cm,k+1) is the face poset of a cell decomposition of Sk, where the open cell cor-
responding to s ∈ L(Cm,k+1) is

{
x ∈ Sk : sign〈x, vj〉 = sj

}
. Therefore the poset map of Definition 2.1

induces a continuous map
f : Sk → |Hom(K2, SGn,k)|.

If we write the group with 2 elements as C2 = {e, τ} and have C2 operate via the antipodal map on Sk
and via the isomorphism Aut(K2) ∼= C2 on Hom(K2, SGn,k), then the map f satisfies f(τ ·x) = τ ·f(x)
for all x ∈ Sk. �

The action of the dihedral group
The map of Definition 2.2 turns out to be useful in studying Hom(K2, SGn,k). Since we are interested in
the action of the automorphism group of SGn,k on Hom(K2, SGn,k), we will choose different vectors in
the construction to obtain an equivariant map with respect to an orthogonal action of Aut(SGn,k) on Sk.
We do this by replacing the moment curve with the trigonometric moment curve.

2.3 Definition. For m ≥ 2 let D2m =
〈
σ, ρ | ρ2 = σm = (σρ)2 = 1

〉
denote the dihedral group with 2m

elements.
For m = 2n+ k we define a right D2m action on KGn,k by

S · σ = {j + 1: j ∈ S} , S · ρ = {−j : j ∈ S} ,

where all arithmetic is modulo m. The subgraph SGn,k is invariant under this action. We also set C2 =〈
τ | τ2 = 1

〉
and have this group act nontrivially on K2 from the right. Since Hom is contravariant in
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the first and covariant in the second parameter, this defines a left C2-action and a right D2m-action on
Hom(K2, SGn,k), and these commute.

For n > 1 the homomorphism D2m → Aut(SGn,k) given by this action has been shown to be an
isomorphism by Braun (2010).

Our goal is to choose vectors vi in Definition 2.2 in such a way that that map becomesD2m-equivariant
with respect to an easy to define D2m-action on Sk. We achieve this by essentially replacing the moment
curve by the trigonometric moment curve.

2.4 Definition. Let n ≥ 1, k ≥ 0, m = 2n + k, We define orthogonal actions on Rk+1 and vectors in

Rk+1. In the following Rφ =
0@cosφ − sinφ

sinφ cosφ

1A. First we set τ · x = −x.

For k = 2r we set

x · σ = − diag(1, R2π/m, R4π/m, . . . , Rkπ/m) · x, x · ρ = diag(1, 1,−1, . . . , 1,−1) · x,
vj = (−1)j(1, 1, 0, . . . , 1, 0) · σj .

For k = 2r + 1 we set

x · σ = − diag(Rπ/m, R3π/m, . . . , Rkπ/m) · x, x · ρ = diag(1,−1, . . . , 1,−1) · x,
vj = (−1)j(1, 0, . . . , 1, 0) · σj .

We denote Rk+1 equipped with the orthogonal right action of D2m defined above by Wn,k. The unit
sphere in Wn,k is denoted by S(Wn,k).

It is now not too hard to check that the system (vj)0≤j<m realizes Cm,k+1 and that using it in Defini-
tion 2.1 makes the resulting map D2m-equivariant.

2.5 Theorem. Let n ≥ 1, k ≥ 0, and m = 2n + k. There is a continuous map f : S(Wn,k) →
|Hom(K2, SGn,k)| which is equivariant with respect to the actions of C2 and D2m defined above. �

3 Homotopy test graphs and Γ-test graphs
In addition to Definition 1.5 of a homotopy test graph we also define a Γ-test graph for a group Γ. We
denote by ErΓ any r-dimensional, (r−1)-connected CW-space with a free Γ-action, and by EΓ any con-
tractible CW-space with a free Γ-action. We write BrΓ = ErΓ/Γ and BΓ = EΓ/Γ for the coresponding
orbit spaces.

3.1 Definition. Let T be a graph with a right action of a finite group Γ. We call T a Γ-test graph, if for
all loopless graphs G and integers r ≥ 0 such that there exists an equivariant map ErΓ→Γ |Hom(T,G)|
the inequality χ(G) ≥ χ(T ) + r holds.

3.2 Proposition. Let T be a graph with a right action of a finite group Γ. If T is a Γ-test graph, then T
is a homotopy test graph.

Proof: If |Hom(T,G)| is (r − 1)-connected, then there is an equivariant map ErΓ →Γ |Hom(T,G)|,
since ErΓ is an r-dimensional free Γ-space. �

We have announced a partial converse of this result in Theorem 1.10. It follows from the following
theorem by setting Γ = Aut(T ), s = χ(T ) + r and considering the equivalence of (ii) and (iii).
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In (i), X1 denotes the looped 1-skeleton of X and T ×Γ X
1 the orbit graph of the diagonal action of Γ

on T ×X1. This construction is explored in Dochtermann and Schultz (2010).

3.3 Theorem. Let T be a finite, connected graph equipped with a right action of a finite group Γ. Let
r ≥ 0, s ≥ 1. Then each of the following statements implies the next.

(i) For every Γ-invariant triangulation X of ErΓ the inequality χ(T ×Γ X
1) ≥ s holds.

(ii) For all graphs G such that there is a Γ-equivariant map ErΓ → |Hom(T,G)| the inequality
χ(G) ≥ s holds.

(iii) For all graphs G such that |Hom(T,G)| is (r − 1)-connected the inequality χ(G) ≥ s holds.

If T is vertex critical and Γ = Aut(T ), then (iii) implies (i) and all of the statements are equivalent.

Proof: The implication (i) =⇒ (ii) is a standard application of the techniques developped in Dochtermann
and Schultz (2010) and earlier papers, the implication (ii) =⇒ (iii) is immediate as in Proposition 3.2.

To prove the implication (iii) =⇒ (i) we assume that a triangulation X of ErΓ is given. If we obtain Y
from X by repeated barycentric subdivision, then Y is also Γ-invariant, and there is an equivariant graph
homomorphism Y 1 →Γ X

1. If the subdivision Y is fine enough, then

|Hom(T, T ×Γ Y
1)| ' |Hom(T, T )| ×Γ |Hom(T, Y 1)|

by Sec. 5.2 of Dochtermann and Schultz (2010). Since we assumed T to be vertex critical, the
only endomorphisms of T are the automorphisms. It also follows that Hom(T, T ) is 0-dimensional,
Hom(T, T ) ∼= Aut(T ). We assumed Γ = Aut(T ). Therefore

|Hom(T, T )| ×Γ |Hom(T, Y 1)| ≈ Aut(T )×Aut(T ) |Hom(T, Y 1)| ≈ |Hom(T, Y 1)|.

But by Thm 3.1 of Dochtermann (2009a), since T is connected, and again if Y is a fine enough subdivi-
sion,

|Hom(T, Y 1)| ' |Y | ≈ ErΓ.
Therefore |Hom(T, T ×Γ Y

1)| is (r − 1)-connected. Hence χ(T ×Γ X
1) ≥ χ(T ×Γ Y

1) ≥ s. �

4 Stable Kneser graphs which are test graphs
The approach that we use to show that for certain n, k the graph SGn,k is a test graph is similar to that
used for odd cycles (k = 1) in Schultz (2009).

We assume the existence of an equivariant map ErD2m →D2m
Hom(SGn,k, G). In Theorem 2.5 we

have constructed a map S(Wn,k) →D2m
Hom(K2, SGn,k). It is known that Hom(K2,Kk+r+1) 'C2

Sk+r−1. So if χ(G) < k + r + 2, then we obtain a map

S(Wn,k)×D2m
ErD2m →C2 Hom(K2, SGn,k)×D2m

Hom(SGn,k, G)

→C2 Hom(K2, G)→C2 Hom(K2,Kk+r+1) 'C2 Sk+r−1,

the second arrow being the map (2). Now S(Wn,k)×D2m ErD2m is the total space of the sphere bundle
associated to the euclidean vector bundleWn,k×D2m

ErD2m → BrD2m, and vector bundle theory yields
obstructions to the existence of an equivariant map as above.
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4.1 Theorem. Let Γ be a finite group and Rk+1 be equipped with an orthogonal right Γ-action. Let ξ be
the (k + 1)-dimensional bundle Rk+1 ×Γ EΓ → BΓ. Consider Sk ×Γ Er as a (free) C2-space via the
antipodal action on Sk. If there is an equivariant map

Sk ×Γ ErΓ→C2 Sr+k−1

for some r ≥ 0, then it follows that wr(ξ) = 0 ∈ Hr(BΓ; Z2) = Hr(Γ; Z2).

Here wr(ξ) denotes the r-th dual Stiefel-Whitney class of the bundle ξ. These classes and the Stiefel-
Whitney classes are related by 1 = w(ξ)w(ξ) =

∑
r≥0 wr(ξ) ·

∑
r≥0 wr(ξ). We see that it is important

to calculate the Stiefel-Whitney classes of the following bundles.

4.2 Definition. Let n ≥ 1, k ≥ 0, m = 2n + k. We denote the (k + 1)-dimensional vector bundle
Wn.k ×D2m

ED2m → BD2m by ξn,k.

Theorem 4.1 and the discussion preceding it already prove Proposition 1.8.
With some knowledge of the Z2-cohomology of the dihedral groups, the classes wr(ξn,k) can more or

less directly be read off from the action described in Definition 2.4. The results are the following.

4.3 Proposition. Let k = 2r + 1, r ≥ 0, n > 0, and m = 2n+ k. Then

w(ξn,k) = (1 + α)r+1 ∈ H∗(D2m; Z2) ∼= Z2[α], |α| = 1.

Here Z2[α] refers to the free graded Z2-algebra with one generator α, which is of degree 1 (|α| = 1).
Let k = 2r, r ≥ 1, n > 0, n ≡ r + 1 (mod 2), and m = 2n+ k. Then

w(ξn,k) = (1 + α)(1 + β)dr/2e((1 + α)(1 + α+ β))br/2c

∈ H∗(D2m; Z2) ∼= Z2[α, β], |α| = |β| = 1.

Let k = 2r, r ≥ 1, n > 0, n ≡ r (mod 2), m = 2n+ k. Then

w(ξn,k) = (1 + y)(1 + x+ y + u)dr/2e(1 + x+ y)br/2c

∈ H∗(D2m; Z2) ∼= Z2[x, y, u]/(xy), |x| = |y| = 1, |u| = 2.

From these and Proposition 1.8 we obtain Theorem 1.9 by calculation. We show the most interesting
example.

4.4 Corollary. Let s ≥ 1, then SG2s,4 is a D2m-test graph.

Proof: We want to show that wr(ξn,k) 6= 0 for all r. If j is the homomorphism from the ring
H∗(D2m; Z2) to its quotient by the ideal (x− y), then

j(w(ξ2s,4)) = (1 + x)(1 + 2x+ u)(1 + 2x) = (1 + x)(1 + u),

j(w(ξ2s,4)) = (1 + x)−1(1 + u)−1 = (1 + x)
∑
i≥0

ui,

i.e. j(w2`)(ξ2s,4)) = u` 6= 0, j(w2`+1(ξ2s,4)) = xu` 6= 0. �

4.5 Remark. Since the homomorphism j is actually induced by the inclusion of a cyclic subgroup Γ ⊂
D2m, the graph SG2s,4 is a Γ-test graph for that Γ.
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5 Stable Kneser graphs and Borsuk graphs
We investigate the relationship between Borsuk graphs (Definition 1.6) of spheres and stable Kneser
graphs. In Section 2 we have constructed a map S(Wn,k)→C2×D2m

|Hom(K2, SGn,k)| via a poset map

L(Cm,k+1)→C2×D2m Hom(K2, SGn,k)

which sends atoms to atoms and therefore gives rise to a graph homomorphism

L(Cm,k+1)1 →C2×D2m
Hom(K2, SGn,k)1 ∼=C2×D2m

[K2, SGn,k],

which in turn is adjoint to a graph homomorphism

K2 ×C2 L(Cm,k+1)1 →D2m
SGn,k.

Regarding L(Cm,k+1) as the face poset of a cellular decomposition of Sk, the graphK2×C2 L(Cm,k+1)1

can be described as the graph whose vertices are the vertices of that cell complex and in which the neigh-
bours of a vertex are those vertices which share a face with its antipodal vertex. This could be called the
Borsuk graph of this C2-cell complex and is a discrete analog of the ε-Borsuk graph defined in Defini-
tion 1.6. We will now construct a graph homomorphism in the other direction and using Bε(S(Wn,k)).

5.1 Lemma. Let m = 2n + k, S ∈ V (SGn,k) and (vi)0≤i<m a system of vectors in Rk+1 realizing the
alternating oriented matroid Cm,k+1. Then

∑
i∈S(−1)ivi 6= 0.

Proof: Assume that S ⊂ {0, . . . ,m− 1} and
∑
i∈S(−1)ivi = 0. Since every minimal linear dependency

of the vectors vi is of cardinality k + 2 and has coefficients with alternating signs (see the proof of
Prop. 9.4.1 in Björner et al. (1999)) there are j0 < j1 < · · · < jk+1 with {js} ⊂ S and (−1)js+1 =
(−1)js+1 for 0 ≤ s ≤ k. If S is a stable set, i.e. one which does not contain consecutive elements, then
this implies m ≥ 2|S|+ k + 1 and hence |S| < n. �

This justifies the following definition.

5.2 Definition. For S ∈ V (SGn,k) let

v(S) :=
∑
i∈S(−1)ivi

‖
∑
i∈S(−1)ivi‖

,

where vi ∈ Rk+1 is as in the proof of Theorem 2.5.

5.3 Proposition. Let k ≥ 0 and ε > 0. Then there is an N ∈ N such that for all n ≥ N the function
v : V (SGn,k)→ Sk is a D2m-equivariant graph homomorphism

SGn,k →D2m
Bε(S(Wn,k)).

Proof (sketch): Equivariance follows from the choice of the vectors vi. For the homomorphism property,
we have to show that there is an N such that ‖v(S) + v(T )‖ < ε for all (S, T ) ∈ E(SGn,k) with n ≥ N .
Now for fixed k and large n the sets S and Tσ must have a small symmetric difference, if S and T are
disjoint and both stable. Now, again for large n, (−1)ivi is close to −(−1)i+1vi+1. This shows that∑
i∈S(−1)ivi+

∑
i∈T (−1)ivi will indeed be small. It remains to show that neither of the two summands

can have small norm. This requires a quantitative version of Lemma 5.1 for this particular choice of (vi),
which can be obtained using some analysis. �
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6 Stable Kneser graphs which are not test graphs
We want to prove Proposition 1.11, which states that the vanishing of a topological obstruction lets us
indeed prove that certain stable Kneser graphs are not test graphs. We first state a purely topological
result and then turn the existence of the vector bundle guaranteed by it into the existence of a graph with
lower chromatic number than expected.

6.1 Proposition. Let ξ be a vector bundle over an r-dimensional finite simplicial complexX andwr(ξ) =
0. If r = 1 or r ≡ 0 (mod 2), then there is an (r − 1)-dimensional vector bundle η over X such that
ξ ⊕ η is trivial. �

6.2 Proposition. Let k ≥ 0, r > 0. Then there is an ε > 0 such that the following holds.
Let Γ be a finite group which acts from the right on Rk+1 by orthogonal maps. Let X be a finite

simplicial complex with a free Γ-action and let ξ be the vector bundle Rk+1 ×Γ |X| → |X|/Γ. If there
exists an (r − 1)-dimensional vector bundle η over |X|/Γ such that ξ ⊕ η is trivial, then there is a
Γ-invariant subdivision Y of X such that

χ(Bε(Sk)×Γ Y
1) < k + 2 + r.

Proof: We choose a covering (Ai)i=0,...,k+r of Sk+r−1 by closed subsets such that no Ai contains a pair
of antipodal points. Let D := mini dist(Ai,−Ai) > 0, 0 < ε < D and ε′ := D − ε.

Since Γ acts by orthogonal maps, the bundle ξ is a Euclidean vector bundle. The bundle η can be
made into a Euclidean vector bundle, and the r + l linear independent sections of ξ ⊕ η which define
the trivialization can be made orthogonal using Gram-Schmidt. Therefore there is a continuous map
E(ξ) = Rk+1 ×Γ |X| → Rk+r such that the restriction to each fibre of ξ is a linear isometry. Denoting
the space of linear isometries from Rk+1 to Rk+r by Iso(Rk+1,Rk+r) and viewing it as a Γ-space via the
action on Rk+1, this is equivalent to the existence of an equivariant continuous map

f : |X| →Γ Iso(Rk+1,Rk+r).

We let Y be a subdivision ofX such that for all pairs y, y′ of neighbouring vertices of Y we have ‖f(y)−
f(y′)‖ < ε′, where ‖•‖ denotes the operator norm. We define

c : Sk × V (Y )→ {0, . . . , k + r} ,
(v, y) 7→ min {i : f(y)(v)} .

Now if v, v′ ∈ Sk, ‖v + v′‖ < ε, and y, y′ ∈ V (Y ), {y, y′} ∈ Y , then

dist(Ac(v,y),−Ac(v′,y′)) ≤ ‖f(y)(v)−(−f(y′)(v′))‖ ≤ ‖f(y)−f(y′)‖+‖v−(−v′)‖ < ε′+ε = D

and hence c(v, y) 6= c(v′, y′). This shows that the function c is a graph homomorphism Bε(Sk)× Y 1 →
Kk+r+1. Since for γ ∈ Γ we have f(γy)(v) = (γf)(v) = f(vγ), we have c(v, γy) = c(vγ, y), and
[(v, y)] 7→ c(v, y) defines a (k + 1 + r)-colouring of Bε(Sk)×Γ Y

1. �

Putting everything together yields the following more explicit version of Proposition 1.11.

6.3 Proposition. Let k, r ≥ 1 and r = 1 or r ≡ 0 (mod 2). Then there is an N ≥ 2 such that for
all n ≥ N with wr(ξn,k) = 0 there is a graph G such that Hom(SGn,k, G) is (r − 1)-connected and
χ(G) < k + 2 + r.
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Proof: Given k and r we choose ε > 0 as in Proposition 6.2 and N as in Proposition 5.3. Now given
n ≥ N , m = 2n + k, there is an equivariant graph homomorphism SGn,k →D2m

Bε(Wn,k) by
Proposition 5.3. Now if wr(ξn,k) = 0 then by Proposition 6.1 and Proposition 6.2 there is a D2m-
invariant triangulation Y of ErD2m such that χ(Bε(Wn,k) ×D2m Y 1) < k + 2 + r and therefore
χ(SGn,k ×D2m

Y 1) < k + r + 2. Since stable Kneser graphs are vertex critical with respect to the
chromatic number by a theorem of Schrijver (1978) and Aut(SGn,k) = D2m for n > 1 by a theorem of
Braun (2010), we can invoke Theorem 3.3 to conclude the proof. �

Calculations using Proposition 4.3 now show that Proposition 6.3 is applicable in the cases needed for
Theorem 1.12.
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