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Cyclic sieving for two families of non-crossing
graphs

Svetlana Poznanović1

1School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA

Abstract. We prove the cyclic sieving phenomenon for non-crossing forests and non-crossing graphs. More precisely,
the cyclic group acts on these graphs naturally by rotation and we show that the orbit structure of this action is encoded
by certain polynomials. Our results confirm two conjectures of Alan Guo.

Résumé. Nous prouvons le phénomène de crible cyclique pour les forêts et les graphes sans croisement. Plus
précisément, le groupe cyclique agit sur ces graphes naturellement par rotation et nous montrons que la structure
d’orbite de cette action est codée par certains polynômes. Nos résultats confirment deux conjectures de Alan Guo.
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1 Introduction
The notion of cyclic sieving phenomenon was introduced by Reiner, Stanton, and White in [4], general-
izing Stembridge’s q = −1 phenomenon. It involves a finite set X , a cyclic group acting on X , and a
polynomial X(q) ∈ N[q]. The triple (X,C,X(q)) is said to exhibit the cyclic sieving phenomenon if for
every c ∈ C of order d,

#{x ∈ X : c(x) = x} = X(wd), (1)

where wd is a primitive d-th root of unity. In other words, the evaluations of the polynomial X(q) at
appropriate roots of unity carry all the numerical information about the C-orbit structure. In particular,
X(1) is the cardinality of X . For a survey of the literature on cyclic sieving, the reader is referred to [5].

A non-crossing graph of size n is a graph with vertex set {1, 2, . . . , n} arranged in a circle whose edges
are straight line segments that do not cross. See Fig. 1 for illustration. From now on every graph will be
non-crossing, and for simplicity, this word will often be omitted. The number of forests of size n and k
components is

fn,k =
1

2n− k

(
n

k − 1

)(
3n− 2k − 1

n− k

)
, (2)

while the number of graphs of size n with k edges is

gn,k =
1

n− 1

k∑
j=0

(
n− 1
k − j

)(
n− 1
j + 1

)(
n− 2 + j

n− 2

)
. (3)

1365–8050 c© 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAOind.html


790 Svetlana Poznanović
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Fig. 1: A non-crossing graph of size 8 with 7 edges and a non-crossing forest of size 9 with 3 components.

Both (2) and (3) were derived in [2]. These formulas admit natural q-analogues:

X(q) =
1

[2n− k]q

[
n

k − 1

]
q

[
3n− 2k − 1

n− k

]
q

(4)

Y (q) =
1

[n− 1]q

n−2∑
j=0

[
n− 1
k − j

]
q

[
n− 1
j + 1

]
q

[
n− 2 + j

n− 2

]
q

qj(j+n−k+2), (5)

where we are using the usual notation:[n]q = 1 + q + · · · + qn−1 = 1−qn

1−q , [n]!q = [n]q[n − 1]q · · · [1]q ,
and [

n

k

]
q

=
[n]!q

[k]!q[n− k]!q
.

Let the cyclic group of order n act by rotation on graphs with n vertices. In this paper, we prove that
forests and graphs, with this action of the cyclic group and the polynomials X(q) and Y (q), respectively,
exhibit the cyclic sieving phenomenon. Namely,

Theorem 1.1. Let X be the set of non-crossing forests on n vertices with k components. If d|n and ωd is
a primitive d-th root of unity, then the number sd(n, k) of elements of X which are fixed under rotation by
2π
d is equal to X(ωd).

Theorem 1.2. Let Y be the set of non-crossing graphs on n vertices with k edges. If d|n and ωd is a
primitive d-th root of unity, then the number sd(n, k) of elements of Y which are fixed under rotation by
2π
d is equal to Y (ωd).

This proves the conjectures from [3], where Guo proves the cyclic sieving phenomenon for non-crossing
connected graphs. It should be noted that the cyclic-sieving phenomenon for trees, namely the case k = 1
in Theorem 1.1, was first proved by Eu and Fu in [1]. The authors first prove that quadrangulations of a
polygon exhibit the cyclic sieving phenomenon, where the cyclic action is cyclic rotation of the polygon,
and then give a bijection between quadrangulations of a 2n-gon and trees on n vertices, which preserves
the cyclic sieving phenomenon.

In the following two sections we prove Theorem 1.1 and Theorem 1.2 by treating each case separately.
We follow a similar line of proof as in the case of connected graphs. As the reader can note, there are
structural similarities between these families of graphs that at places require similar arguments. Despite
this, none of the results implies another one and all these graphs have to be treated separately. The proof
in each case seems to work out “magically” due to the fact that the corresponding generating functions
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satisfy certain polynomial equations that help us simplify the expressions we obtain and apply Lagrange
inversion. This note aims to highlight the similarities and the differences between the aforementioned
graphs, with the hope that they would give an insight that would lead to a unifying proof.

As we have mentioned, in several places we will use Lagrange inversion to extract coefficients of certain
generating functions.

Lagrange inversion. Let φ(u) ∈ Q[[u]] be a formal power series with φ(0) 6= 0, and let y(z) ∈ Q[[u]]
satisfy y = zφ(y). Then, for an arbitrary series ψ, the coefficient of zn in ψ(y) is given by

[zn]ψ(y(z)) =
1
n

[un−1]φ(u)nψ′(u).

Lagrange inversion may be applied to bivariate generating functions by treating the second variable as a
parameter.

2 Non-crossing forests
The authors in [2] computed the numbers fn,k using Lagrange inversion. In the process, they obtained
some polynomial equations related to the generating function F (z, w) =

∑
fn,kz

nwk which will be
useful in our proofs. We state them here.

Let T (z) be the generating function for non-crossing trees with respect to size. Then T satisfies

T 3 − zT + z2 = 0. (6)

Each forest can be obtained from a tree by substituting each vertex by a pair (vertex, forest). The substi-
tution yields

F = 1 + T (zF ) (7)

whereby we are counting the empty forests as well. One can use (6) to eliminate T , which yields

F 3 + (z2 − z − 3)F 2 + (z + 3)F − 1 = 0. (8)

This equation admits a Lagrange form, upon setting F = 1 + wy,

y = z(1 + wy)
(

1−
√

1− 4y
2y

)
, (9)

from which the explicit formula (2) for fn,k follows.
We will also use the following property of the Catalan generating function Cat(z) = 1−

√
1−4z

2z , which
can also be obtained using Lagrange inversion:

[zm]Cat(z)n =
n

n+m

(
2m+ n− 1

m

)
. (10)

We will prove Theorem 1.1 by verifying the condition (1) stated in the introduction. For that, we first
evaluate X(q) at roots of unity. The following lemma is repeatedly used.

Lemma 2.1. Let n, m1, m2, k, and d be positive integers. Let ωd be a primitive d-th root of unity. Then
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(a) The factor [m]q has a simple zero at q = wd if and only if d|m, d 6= 1.

(b) If m1 ≡ m2 mod d, then

lim
q→wd

[m1]q
[m2]q

=

{
m1
m2

if m1 ≡ m2 ≡ 0 mod d,
1 if m1 ≡ m2 6≡ 0 mod d.

(c) (q -Lucas theorem) If n = ad+ b and k = rd+ s, where 0 ≥ r, s ≤ d− 1, then[
n

k

]
q=ωd

=
(
a

r

)[
b

s

]
q=ωd

.

Proposition 2.2. Let d|n and n′ = n
d . Then

X(ωd) =


n′−k′+1
2n′−k′

(
n′

k′−1

)(
3n′−2k′−1
n′−k′

)
, if d ≥ 2 and k′ = k

d ∈ N,(
n′

k′

)(
3n′−2k′−2
n′−k′−1

)
, if d = 2 and k′ = k+1

2 ∈ N,
0, otherwise.

Proof: If d|k, then by part (c) of Lemma 2.1,[
3n− 2k − 1

n− k

]
q=ωd

=
(

3n′ − 2k′ − 1
n′ − k′

)
.

On the other hand, both [2n−k]q=ωd
= 0 and

[
n
k−1

]
q=ωd

= 0. By examining the factors in the numerator
and denominator and using parts (a) and (b) of Lemma 2.1, one gets

1
[2n− k]q=ωd

[
n

k − 1

]
q=ωd

=
n′ − k′ + 1
2n′ − k′

(
n′

k′ − 1

)
.

For d = 2 and k odd, the result follows by applying the q-Lucas theorem to both q-binomial coefficients.
Finally, if d ≥ 3 and d does not divide k, [2n − k]q=ωd

6= 0, the first q binomial coefficient vanishes for
k 6≡ 1 mod d, and the second one vanishes for k ≡ 1 mod d.

2.1 The case d = 2 and k is odd

Every centrally symmetric forest on n vertices has exactly one diameter edge and is determined by the
forest on one side of that diameter which necessarily has k′ + 1 components. Denote by f̃n,k the number
of forests on n vertices with k components such that the vertices 1 and n are connected by an edge. Since
there are n′ ways to choose the diameter edge, we have

s2(2n′, 2k′ + 1) = n′f̃n′+1,k′+1.
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Proposition 2.3. The number of non-crossing forests on n vertices with k components in which the ver-
tices 1 and n are connected by an edge is given by

f̃n,k =
1

n− 1

(
n− 1
k − 1

)(
3n− 2k − 3
n− k − 1

)
. (11)

Consequently,

s2(2n′, 2k′ + 1) =
(
n′

k′

)(
3n′ − 2k′ − 2
n′ − k′ − 1

)
.

Proof: Removing the edge {1, n} from such a forest would produce a forest with k + 1 components in
which the vertices 1 and n are in different components. Such a forest can be obtained from two trees by
substituting each vertex except n by a pair (vertex, forest). The substitution construction yields

∑
f̃n,kz

nwk+1 =
(wT (zF ))2

F
.

One can eliminate T using (7) and then, since F satisfies (8), we get∑
f̃n,kz

nwk+1 = F 2 + (z2w3 − zw2 − 2)F + (zw2 + 1). (12)

Therefore,
f̃n,k = [znwk+1]F 2 + [zn−2wk−2]F − [zn−1wk−1]F − 2[znwk+1]F. (13)

Only one of these coefficients needs to be computed:

[znwk+1]F 2 = [znwk+1](1 + wy)2 = 2[znwk]y + [znwk−1]y2

and, using Lagrange inversion,

[znwk−1]y2 =
1
n

[un−1wk−1](1 + wu)nCat(u)n2u

=
2
n

(
n

k − 1

)
[un−k−1]Cat(u)n =

2
2n− k − 1

(
n

k − 1

)(
3n− 2k − 3
n− k − 1

)
.

Substituting this into (13) yields

f̃n,k =
2

2n− k − 1

(
n

k − 1

)(
3n− 2k − 3
n− k − 1

)
+ fn−2,k−2 − fn−1,k−1,

which simplifies to (11).

2.2 The case d = 2 and k is even
For each centrally symmetric forest of size 2n′, there are well-defined vertices

1 ≤ v1 < v2 < · · · < vm ≤ n′,
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Fig. 2: The vertices v1, . . . , vm for a forest with m = 5.

such that for 1 ≤ i ≤ m, the graph on the vertices between vi and vi+1, inclusive, is a forest with an
edge between vi and vi+1 (we define vm+1 to be the vertex v1 + n′), or possibly empty in the case when
vi+1 − vi = 1, and vi and vj are not connected by an edge if |j − i| ≥ 2. See Fig. 2 for illustration.

Recall that f̃n,n−k counts forests of size n and n−k components, and therefore k edges, which contain
the edge {1, n}. Define f∗n,k to be

f∗n,k =

{
1, if n = 2, k = 0
f̃n,n−k, otherwise.

Then, the number an,k of centrally symmetric graphs of size 2n and k pairs of antipodal edges (where we
count each diameter edge as a pair) that can be obtained by gluing together forests counted by f∗n,k is

an,k =
n∑

m=1

∑
k1+···+km=k

∑
1≤v1<v2<···<vm≤n

∏
f∗vi+1−vi+1,ki

. (14)

Note that not all the graphs counted by an,k are forests. Namely, a cycle will be formed exactly when
none of the forests we use in the gluing process is the forest with 2 vertices and no edges. The number of
such graphs is

bn,k =
n∑

m=1

∑
k1+···+km=k

∑
1≤v1<v2<···<vm≤n

∏
f̃vi+1−vi+1,vi+1−vi+1−ki

. (15)

Therefore,
s2(2n′, 2k′) = an′,n′−k′ − bn′,n′−k′ (16)

and this difference indeed does not count forests with odd number of edges because they are counted
by both an′,n′−k′ and bn′,n′−k′ . Let A(z, w), B(z, w), F̃ (z, w), and F ∗(z, w) denote the generating
functions for an,k, bn,k, f̃n,k, and f∗n,k, respectively. Then

F ∗(z, w) = F̃ (zw,
1
w

) + z2. (17)
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As explained in [3, Lemma 4.2], (14) and (15) imply that

A(z, w) = z

∂
∂z

(
F∗(z,w)

z

)
1− F∗(z,w)

z

and B(z, w) = z

∂
∂z

(
F̃ (zw,1/w)

z

)
1− F̃ (zw,1/w)

z

.

Using (17), we get

A(zw,
1
w

) = z

∂
∂z

(
F̃ (z,w)+z2w2

zw

)
1− F̃ (z,w)+z2w2

zw

and B(zw,
1
w

) = z

∂
∂z

(
F̃ (z,w)
zw

)
1− F̃ (z,w)

zw

.

Solving these differential equations, we obtain

∑ an,n−k
n

znwk = − log(1− F̃ (z, w) + z2w2

zw
) and∑ bn,n−k

n
znwk = − log(1− F̃ (z, w)

zw
).

From (12) we get

F̃ =
1
w
F 2 + (z2w2 − zw − 2

w
)F + (zw +

1
w

).

Using this and (8), we obtain

∑ an,n−k − bn,n−k
n

znwk = log(1− F̃

zw
)− log(1− F̃ + z2w2

zw
) = log(F ).

Finally, using (16) and Lagrange inversion, we have

s2(2n′, 2k′) = n′[zn
′
wk
′
] log(F ) =

n′

2n′ − k′

(
n′ − 1
k′ − 1

)(
3n′ − 2k′ − 1

n′ − k′

)
(18)

=
n′ − k′ + 1
2n′ − k′

(
n′

k′ − 1

)(
3n′ − 2k′ − 1

n′ − k′

)
= X(−1).

2.3 The case d ≥ 3

Since each edge in the forest in not longer than n
d , it lies in a free orbit under the action of rotation.

Therefore, if d does not divide the number of edges n− k, which happens if and only if d does not divide
k, then in fact there are no forests with k components that are fixed under rotation by 2π

d . This agrees with
the fact that in this case also X(ωd) = 0.

Consider now the case when d|k. Let n′ = n
d and k′ = k

d . We have the following lemma.

Lemma 2.4. sd(n, k) = s2(2n′, 2k′).

Proof: We construct a bijection between forests on dn′ vertices and dk′ components that are fixed under
rotation by 2π

d and forests counted by s2(2n′, 2k′) in the following way. Construct a forest on 2n′ vertices
labeled 1, 2, . . . , 2n′ by drawing an edge from i to j for every such edge in the original graph. Moreover,
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for every edge from i to (d − 1)n′ + j, 1 ≤ i, j ≤ n′ in the original graph draw an edge between i and
n′ + j. See Fig. 3 for illustration. Note that if F is a forest fixed by a rotation of 2π

d , then all its edges are
of length strictly less than d, where by length of an edge we mean the absolute difference of its endpoints.
Moreover, it has a total of d(n′−k′) edges which form orbits of size d under this action. This implies that
the graph obtained by the construction described above will be a non-crossing forest with 2n′ vertices and
2(n′ − k′) edges, i.e., 2k′ components. It is easy to see that this map is a bijection.
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Fig. 3: Example of the bijection for n = 12, k = 3, and d = 3. The edges {2, 8} and {3, 8} in the image correspond
to the edges {2, 12} and {3, 12} in the original forest.

Combining Lemma 2.4, (18), and Proposition 2.2 we get

sd(n, k) = s2(2n′, 2k′) =
n′ − k′ + 1
2n′ − k′

(
n′

k′ − 1

)(
3n′ − 2k′ − 1

n′ − k′

)
= X(ωd).

This completes the proof of Theorem 1.1.

3 Non-crossing graphs
LetC(z, w) andG(z, w) be the generating functions for connected graphs and graphs, respectively, where
z marks vertices and w marks edges. Using a combinatorial argument, it can be shown [2] that

wC3 + wC2 − z(1 + 2w)C + z2(1 + w) = 0.

Each graph can then be obtained by replacing a vertex in a non-crossing graph by a (vertex, graph).
Therefore,

G(z, w) = 1 + C(zG(z, w), w). (19)

Eliminating C in (19) we arrive at

wG2 + ((1 + w)z2 − (1 + 2w)z − 2w)G+ w + z(1 + 2w) = 0. (20)

This becomes amenable to Lagrange inversion upon the change of variablesG = 1+z+zy that transforms
it into

y = z(1 + w)
1 + y

1− wy
. (21)
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Proposition 3.1. Let d|n and n′ = n
d . Then

Y (ωd) =



∑k′

j=0

(
n′−1
k′−j

)(
n′−1
j

)(
n′+j−2
n′−2

)
if d = 2 and k′ = k

2 ∈ N,∑k′

j=0

(
n′−1
k′−j

)(
n′

j+1

)(
n′+j−1
n′−1

)
if d = 2 and k′ = k+1

2 ∈ N,∑k′

j=0

(
n′

k′−j
)(
n′−1
j

)(
n′+j−1
n′−1

)
if d ≥ 3 and k′ = k

d ∈ N,
0, otherwise.

Proof: Set j′ = b jdc. In the case d = 2, using part (c) of Lemma 2.1, one gets
[
n−2+j
n−2

]
q=ωd

=
(
n′+j′−1
n′−1

)
,

[
n− 1
j + 1

]
q=ωd

=

{(
n′−1
j′

)
if j is even,(

n′−1
j′+1

)
otherwise,

and
[
n− 1
k − j

]
q=ωd

=

{(
n′−1

k′−j′−1

)
if k is even, j is odd(

n′−1
k′−j′

)
otherwise.

Summing over all j′ yields the first two parts of the proposition. The case d ≥ 3 can be analyzed
similarly, by evaluating each q-binomial coefficient separately. In both cases the summands of Y (ωd) are
nonzero only when j ≡ 0, 1 mod d. If d|k the resulting sum is the third part of the proposition. Otherwise,
the terms pairwise cancel and the sum is zero.

3.1 The case d = 2 and k is odd
Similarly to the case of forests, every centrally symmetric graph with odd number of edges has exactly
one diameter edge and is completely determined by the subgraph on one side of that edge. Let g̃n,k be the
number of graphs with n vertices and k edges that contain the edge {1, n}. Then

s2(n, k) = n′g̃n′+1,k′+1.

Proposition 3.2. The number of non-crossing graphs on n vertices with k edges in which the vertices 1
and n are connected by an edge is given by

g̃n,k =
1

n− 1

k−1∑
j=0

(
n− 2

k − j − 1

)(
n− 1
j + 1

)(
n+ j − 2
n− 2

)
. (22)

Consequently,
s2(2n′, 2k′ + 1) = Y (−1).

Proof: Let G̃(z, w) be the generating function for g̃n,k and let C̃(z, w) be the generating function for
connected graphs in which 1 and n are connected by a vertex. Each graph which has the edge {1, n}
can be obtained from a connected graph that has the edges {1, n} by substituting each vertex with a pair
(vertex, graph). Therefore,

G̃ =
C̃(zG,w)

G
.

The author in [3] derives the following formula for C̃, although not explicitly stated in this form:

C̃ =
w

w + 1
(C2 + C − z).
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Using (19) we can eliminate C and we arrive at

G̃ =
w

w + 1
(G− 1− z) =

zwy

w + 1
. (23)

From here using Lagrange Inversion, one obtains the formula (22).

3.2 The case d = 2 and k is even
Let dn,k denote the number of centrally symmetric graphs with 2n vertices and k pairs of antipodal edges,
where each diameter edge is again counted as a pair.

Lemma 3.3.

dn,k =
k∑
j=0

(
n

k − j

)(
n− 1
j

)(
n+ j − 1
n− 1

)
. (24)

Proof: For each graph counted by dn,k there is a unique subset of vertices 1 ≤ v1 < · · · < vm ≤ n, such
that the graph on the vertices between vi and vi+1, inclusive, has an edge between vi and vi+1 (we define
vm+1 to be the vertex v1 + n′), or is possibly empty in the case when vi+1 − vi = 1, and vi and vj are
not connected by an edge if |j − i| ≥ 2. Set

g∗n,k =

{
1, if n = 2, k = 0,
g̃n,k, otherwise.

Then, from the argument above, we have

dn,k =
n∑

m=1

∑
k1+···+km=k

∑
1≤v1<v2<···<vm≤n

∏
g∗vi+1−vi+1,ki

, (25)

and, consequently, ∑
dn,kz

nwk = z

∂
∂z

(
G̃+z2

z

)
1− G̃+z2

z

.

Dividing both sides by z and integrating yields∑ dn,k
n
znwk = − log

(
1− G̃+ z2

z

)
= log(1 + y).

The last equality follows from (21) and (23). Extracting the coefficients of log(1 + y) yields (24).

On the other hand, dn,k = s2(2n, 2k − 1) + s2(2n, 2k). This can be used to compute s2(2n, 2k):

s2(2n, 2k) = dn,k − s2(2n, 2k − 1)

=
k∑
j=0

(
n

k − j

)(
n− 1
j

)(
n+ j − 1
n− 1

)
−
k−1∑
j=0

(
n− 1

k − j − 1

)(
n

j + 1

)(
n+ j − 1
n− 1

)

=
k∑
j=0

(
n− 1
k − j

)(
n− 1
j

)(
n+ j − 2
n− 2

)
.
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The last equality follows by comparing the coefficients in front of an−1bk on both sides of the identity

(1 + a)n−1(1 + b)n

(1− ab)n
− b(1 + a)n(1 + b)n−1

(1− ab)n
=

(1 + a)n−1(1 + b)n−1

(1− ab)n−1
.

This completes the proof of s2(2n, 2k) = Y (−1).

3.3 The case d ≥ 3

Consider first the case when d does not divide k. Again every edge lies in a free orbit under the action of
rotation. Therefore, there are no graphs with k edges that are fixed under rotation by 2π

d . This agrees with
the fact that in this case also Y (ωd) = 0.

Suppose now that d|k. Note that the edges of each graph counted by sd(n, k) are no longer than d.
Those graphs that have no edges of length d are in bijection with centrally symmetric graphs on 2n′

vertices and 2k′ edges via a map defined as in the proof of Lemma 2.4. On the other hand, the same map
takes the graphs that have edges of length d (those edges form a regular n′-gon) to centrally symmetric
graphs on 2n′ vertices and 2k′ − 1 edges. So,

sd(n, k) = s2(2n′, 2k′) + s2(2n′, 2k′ − 1)

=
k′∑
j=0

(
n′ − 1
k′ − j

)(
n′ − 1
j

)(
n′ + j − 2
n′ − 2

)
+
k′−1∑
j=0

(
n′ − 1

k′ − j − 1

)(
n′

j + 1

)(
n′ + j − 1
n′ − 1

)

=
k′∑
j=0

(
n′

k′ − j

)(
n′ − 1
j

)(
n′ + j − 1
n′ − 1

)
= Y (ωd).

This completes the proof of Theorem 1.2.

4 Final remarks
Recall that the definition of the cyclic sieving phenomenon asks for polynomials with nonnegative integer
coefficients. For completeness, here we prove that our functionsX(q) and Y (q) indeed have that property.

Proposition 4.1. X(q), Y (q) ∈ N[q].

Proof: To show that X(q) ∈ Q, it suffices to show that X(q) is a polynomial in q. Since all the roots
of the numerator and the denominator of X(q) are roots of unity, this follows from the fact that for each
d-th primitive root of unity ωd, the order of the zero at q = ωd is no smaller in the numerator than in the
denominator. Namely, consider the expansion

X(q) =

A︷ ︸︸ ︷
[n]q · · · [n− k + 2]q

[k]q · · · [1]q︸ ︷︷ ︸
C

B︷ ︸︸ ︷
[3n− 2k − 1]q · · · [2n− 2k + 1]q

[n− k]q · · · [1]q︸ ︷︷ ︸
D

.

The denominator has zero at q = ωd with multiplicity bk−1
d c+b

n−k
d c. A, andB have zero at q = ωd with

multiplicities at least bk−1
d c and bn−k−1

d c, respectively. If d does not divide (n − k) then bn−k−1
d c =
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bn−kd c and we are done. If d divides (n− k) but not n, then in fact B has zero of order bn−kd c. In the last
case, when d divides both (n− k) and n, A has in fact zeroof order dk−1

d e = bk−1
d c+ 1.

It is well known that the q-binomial coefficients are polynomials with symmetric unimodal nonnegative
integer coefficients. Hence, so is the product[

n

k − 1

]
q

[
3n− 2k − 1

n− k

]
q

.

The fact that X(q) ∈ N[q] now follows from [4, Proposition 10.1]. Similarly, one can show that each
summand of Y (q) is a polynomial with nonnegative integer coefficients. Namely, consider the expansion
of the j-th term in the sum of Y (q):

A︷ ︸︸ ︷
[n− 1]q · · · [n− k + j]q

B︷ ︸︸ ︷
[n− 2− j]q · · · [j + 2]q

[k − j]q · · · [1]q︸ ︷︷ ︸
C

[j]q · · · [1]q︸ ︷︷ ︸
D

[n− j − 2]q · · · [1]q︸ ︷︷ ︸
E

qj(j+n−k+2).

The denominator has zero at q = ωd of order bk−jd c + b jdc + bn−j−2
d c, while the numerator has zero of

order at least bk−jd c + bn−3
d c. Note bn−3

d c ≥ b
j
dc + bn−j−2

d c unless d divides both j and (n − j − 2).
But in this case, B has in fact a zero of order dn−3

d e = b jdc+ bn−j−2
d c. This proves that each summand

in Y (q) is in Q(q). The fact that it is in N[q] follows the same way as for X(q).

Given that the polynomials X(q) and Y (q) are natural q-analogues of the cardinalities of the cor-
responding sets, a natural question to ask is whether they are generating functions for some statistics
defined on these sets. To the best of the author’s knowledge, such statistics have not been discovered.
As suggested by Sagan [5, Section 12.3], if found, they could lead to a purely combinatorial proof of the
cyclic sieving phenomenon.
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