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Generalized permutohedra, h-vectors of
cotransversal matroids and pure
O-sequences (extended abstract)
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Abstract. Stanley has conjectured that the h-vector of a matroid complex is a pure O-sequence. We will prove this
for cotransversal matroids by using generalized permutohedra. We construct a bijection between lattice points inside
a r-dimensional convex polytope and bases of a rank r transversal matroid.

Résumé. Stanley a conjecturé que le h-vecteur d’un complexe matroide est une pure O-séquence. Nous allons le
prouver pour les matroides cotransversal en utilisant generalized permutohedra. Nous construisons une bijection
entre les points du réseau intérieur d’un polytope convexe r-dimensions et les bases d’un matroide transversal r-rang.

Keywords: generalized permutohedra, Stanley’s conjecture, h-vector, matroid, cotransversal, bipartite, matching,
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1 Introduction
Matroids, simplicial complexes and their h-vectors are all interesting objects that are of great interest in
algebraic combinatorics and combinatorial commutative algebra. An order ideal is a finite collection X
of monomials such that, whenever M ∈ X and N divides M , then N ∈ X . If all maximal monomials
of X have the same degree, then X is pure. A pure O-sequence is the vector, h = (h0 = 1, h1, ..., ht),
counting the monomials of X in each degree. The following conjecture by Stanley has motivated a great
deal of research on h-vectors of matroid complexes:

Conjecture 1.1 The h-vector of a matroid is a pure O-sequence.

The above conjecture has been proven for cographic matroids by both Merino (2001) and Chari (1997).
It also has been proven for lattice-path matroids by Schweig (2010). Lattice path matroids are special
cases of cotransversal matroids, and we will prove the conjecture for cotransversal matroids. We would
also like to note that there has been plenty of interesting results related to this conjecture: Boij et al.
(2010),Chari (1995),Hausel and Sturmfels (2002),Hibi (1989),Stokes (2009).

We prove the conjecture for cotransversal matroids by associating a polytope to each transversal matroid
called transversalhedron. This polytope is closely related to a particular generalized permutohedron.
The lattice points inside this polytope (excluding the points on the coordinate hyperplanes xi = 0) will
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be in bijection with bases of the matroid, and the set of lattice points inside this polytope will naturally
induce the pure order ideal we are looking for.

In Section 2, we will go over properties of transversal matroids. In Section 3, we go over properties of
generalized permutohedra. In Section 4, we define the transversalhedra and “good” lattice points inside
each Minkowski cell. We also give a bijection between bases ofM and “good” lattice points inside the
corresponding transversalhedron. In Section 5, we state our main result and give an example.

This is an extended abstract. Proofs and more details are given in Oh (2010).

2 Preliminaries on matroids
In this Section, we will provide some notations and tools on transversal matroids that we are going to use
throughout the paper. We will assume basic familiarity with matroid theory. Throughout the paper, unless
stated otherwise, a matroidM will be a rank r matroid over the ground set [n] := {1, · · · , n}.

An element i of a baseB is internally active if (B \ i)∪j is not a base for any j < i. An element e 6∈ B
is externally active if (B ∪ e) \ j is a not a base for all j > e. Given a base B, we denote epM(B) to
be the number elements e 6∈ B that are not externally active. We call such elements as externally passive
elements of B.

The h-vector of a matroid is defined as the h-vector of its corresponding independent complex. Rather
than working with the definition of the h-vector directly, we will use the following characterization:

Lemma 2.1 (Björner (1992)) Let (h0, · · · , hr) be the h-vector of a matroidM. For 0 ≤ i ≤ r, hi is the
number of bases ofM with r − i internally active elements.

Remark 2.2 The way we will view hi in this paper is to count the number of bases in the dual-matroid of
M with i externally passive elements.

Our main result in this paper is that the h-vector of a cotransversal matroid is a pure O-sequence.
Now let’s go over the basics of transversal matroids. We are going to be looking at a subgraph of the

complete bipartite graph Kn,r. Denote the vertices on the left with S = {1, · · · , n} and on the right with
J = {1, · · · , r}. Let A be a family (A1, A2, · · · , Ar) of subsets of the set S. Then the bipartite graph
G(A) associated with A has vertex set S ∪ J and its edge set is {(x, j)|x ∈ S, j ∈ J and x ∈ Aj}. Given
a subgraph T of this graph, let lt(T ) denote the set of left vertices covered by edges of T , and let rt(T )
denote the set of right vertices covered by edges of T . So we would have lt(T ) ⊆ S and rt(T ) ⊆ J . The
collection of lt(T ) for all maximal matchings of G(A) form the set of bases of a matroid. We denote this
matroid byM(A). IfM is an arbitrary matroid andM∼=M(A) for some familyA of sets, then we call
M a transversal matroid and A a presentation ofM. The sets A1, · · · , Am are called members.

In Figure 1, we have a presentation of a family ({1, 2, 6, 7, 8, 9}, {3, 4, 5, 6, 7, 8, 9}).
The type of i ∈ S will be defined as the set of vertices of J connected to i in G(A), and will be denoted

by φ(i). Using this definition, CM,I ⊆ S is defined to be collection of elements of S that have type I .
We will denote lM,I to be the cardinality of CM,I . Type of a subset H ⊆ S will be given as the multiset
obtained by collecting the types for each element of H , and will be denoted by φ(H). We put a total
ordering on subsets I ⊆ [r] by the following rule:

1. if |I| < |I ′|, then I ≺ I ′ and,

2. if |I| = |I ′|, then I ≺ I ′ if I is smaller in lexicographical order.
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Fig. 1 – Bipartite graph defining M

Then we relabel the set S such that if φ(i) ≺ φ(j) then i < j. Denote the sets I ⊆ [r] that satisfy
lM,I > 0 as I1 ≺ I2 ≺ · · · ≺ Im. Then we can express the type of each subset H ⊆ S as a sequence
(a1, · · · , am), where ai encodes the number of times Ii appears in the collection. This will be called the
type sequence of H . In case of Figure 1, we would have I1 = {1}, I2 = {2}, I3 = {1, 2}. The type
sequence of {4, 8} would be (0, 1, 1), since φ(4) = {2} and φ(8) = {1, 2}.

For notational convenience, we will denote a set I occurring q-times in a collection by Iq . For example,
the collection {{1}, {1}, {1}, {2}, {2}, {1, 2}, {1, 2}} will be expressed as {{1}3, {2}2, {1, 2}2}. Since
we are viewing these collections as multisets, whenever we do a set minus, we will delete only one
occurrence of I from the collection per times I appears in the set being negated with. For example,
{{1}3, {2}2, {1, 2}2} \ {{1}, {2}2} = {{1}2, {1, 2}2}.

Definition 2.3 Given a sequence a = (a1, · · · , am), we denote Ia to be the collection Ia1
1 , · · · , Iam

m . If
Ia satisfies the Hall’s condition, (i.e. if union of any t sets of the collection has cardinality at least t),
then we say that a is valid. We will say that a is maximal if

∑
i ai = r. If a is a type sequence of a base

ofM, then it is called the base sequence ofM.

A maximal valid sequence is a base sequence ofM if and only if ai ≤ lM,Ii for all i. Since the type
sequences and their corresponding collections carry the same information, we will say that a type of a
subset is valid or maximal if its corresponding sequence is.

Now let’s fix a base B ofM and study its externally passive elements. We define epM(φ(B)) to be the
minimum among all bases having the same type. In other words, we look at the number of externally pas-
sive elements in the first base having type φ(B). We also define epφ(B)

M (B) to be epM(B)−epM(φ(B)).
So we can rewrite this as:

epM(B) = epM(φ(B)) + ep
φ(B)
M (B).
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Let’s look at the example given in Figure 1. We saw that base {4, 8} has type sequence (0, 1, 1). If we
look at Table 1, we can see that epM({4, 8}) = 5 and that {3, 6} also has the same type sequence. So in
this case, we would have epM(φ({4, 8})) = epM({3, 6}) = 2 and hence epφ({4,8})

M ({4, 8}) = 5−2 = 3.
We will define EPM(φ(B)) as the collection of I ⊆ [r] where there exists some I ′ ⊆ [r] such that:

• I ≺ I ′ and

• φ(B) \ {I ′} ∪ {I} is a maximal valid type.

Given a base B ∈M, the element e 6∈ B is an externally passive element only if φ(e) is an element of
EPM(φ(B)).

Lemma 2.4 Let M be a transversal matroid and a be the type sequence for a base B ∈ M. We can
compute epM(φ(B)) and epφ(B)

M (B) as:

• first set both of them to 0,

• for each Ii ∈ EPM(φ(B)), add lM,Ii
− ai to epM(φ(B)) and 0 to epφ(B)

M (B),

• for each Ii 6∈ EPM(φ(B)), add 0 to epM(φ(B)) and s − ai to epφ(B)
M (B), where the largest

element of B ∩ CM,Ii
is the s-th element in CM,Ii

.

Corollary 2.5 Let M be a transversal matroid and a be the type sequence for a base B ∈ M. Then
epM(B) =

∑
Ii∈EPM(Ia)(lM,Ii

− ai) + ep
φ(B)
M (B).

Let’s look back at the example from Figure 1 and Table 1. EPM(φ({4, 8})) is going to be {I1}.
So epM(φ({4, 8})) = lM,I1 − a1 = 2 − 0 = 2, which coincides with our previous observation that
epM(φ({4, 8})) = epM({3, 6}) = 2. Since 4 is the 2nd element of CM,I2 and 8 is the 3rd element of
CM,I3 , we have epφ({4,8})

M ({4, 8}) = (2− 1) + (3− 1) = 3.

3 Generalized permutohedra
In this Section, we review the generalized permutohedra. The contents related to generalized permutohe-
dra follows that of Postnikov (2009).

Definition 3.1 (Postnikov (2009)) Let d be the dimension of the Minkowski sum P1 + · · · + Pm. A
Minkowski cell in this sum is a polytope B1 + · · · + Bm of dimension d where Bi is the convex hull
of some subset of vertices of Pi. A mixed subdivision of the sum is the decomposition into union of
Minkowski cells such that interSection of any two cells is their common face. A mixed subdivision is fine
if for all cells B1 + · · ·+Bm, all Bi are simplices and

∑
dimBi = d.

Remark 3.2 All mixed subdivisions in our paper, unless otherwise stated, will be referring to fine mixed
subdivisions.

We will use the term Minkowski face to be the sum B1 + · · ·+ Bm that has dimension ≤ d. Let G ⊆
Km,r+1 be a bipartite graph with no isolated vertices. We label the vertices ofG by 1, · · · ,m,0′, 1′, · · · , r′
and call 1, · · · ,m the left vertices and [0, r′] := 0′, 1′, · · · , r′ the right vertices. Let us associate this graph
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with the collection IG of subsets I1, · · · , Im ⊆ [0, r] := {0, 1, · · · , r} such that j ∈ Ii if and only if (i, j′)
is an edge of G. The generalized permutohedron PG(y1, · · · , ym) is defined as the Minkowski sum

PG(y1, · · · , ym) = y1∆′I1 + · · ·+ ym∆′Im
,

where ∆′I is defined to be to be the convex hull of points ei for i ∈ I and yi are nonnegative integers.

Proposition 3.3 (Postnikov (2009)) Let H1, · · · , Hr ⊂ [0, r]. The following conditions are equivalent:

1. For any distinct i1, · · · , ik, we have |Hi1 ∪ · · · ∪Hik | ≥ k + 1.

2. For any j ∈ [0, r], there is a system of distinct representatives in H1, · · · , Hr that avoids j.

The above condition is called the dragon marriage condition.

Definition 3.4 (Postnikov (2009)) Let us say that a sequence of nonnegative integers (a1, · · · , am) is a
G-draconian sequence if

∑
ai = r and, for any subset {i1 < · · · < ik} ⊆ [m], we have |Ii1∪· · ·∪Iik | ≥

ai1 + · · ·+ aik + 1. Equivalently, if the sequence Ia1
1 , · · · , Iam

m satisfies the dragon marriage condition.

One important property of generalized permutohedra is that fine Minkowski cells can be described by
spanning trees of G. For a sequence of nonempty subsets J = (J1, · · · , Jm), let GJ be the graph with
edges (i, j′) for j ∈ Ji.

Lemma 3.5 (Postnikov (2009)) Each fine mixed cell in a mixed subdivision of PG(y1, · · · , ym) has the
form y1∆′J1

+ · · · ym∆′Jm
, for some sequence of nonempty subsets J = (J1, · · · , Jm) in [0, r] such that

GJ is a spanning tree of G.

Given a spanning tree T ⊆ G, we denote
∏′
T to be the corresponding Minkowski cell. We can say a

bit more about the lattice points in each
∏′
T :

Proposition 3.6 (Postnikov (2009)) Any lattice point of a fine Minkowski cell
∏′
GJ

in PG(y1, · · · , ym)
is of form p1 + · · ·+ pm where pi is a lattice point in yi∆′Ji

.

Given any subgraph T in G, define the left degree vector ld(T ) = (d1, · · · , dm) and the right degree
vector rd(T ) = (d′0, · · · , d′r) where di, d′j is the degree of the vertex i, j′ in T minus 1. The following
proposition is stated in the proof of Theorem 11.3 in Postnikov (2009).

Proposition 3.7 (Postnikov (2009)) Let us fix a fine mixed subdivision {
∏′
T1
, · · · ,

∏′
Ts
} of the polytope

PG(y1, · · · , ym). Then the map
∏′
Ti
→ ld(Ti) is a bijection between fine cells

∏′
Ti

in this subdivision
and G-draconian sequences.

For two spanning trees T and T ′ ofG, let U(T, T ′) be the directed graph which is the union of edges of
T and T ′ with edges of T oriented from left to right and edges of T ′ oriented from right to left. A directed
cycle is a sequence of directed edges (i1, i2), (i2, i3), · · · , (ik−1, ik), (ik, i1) such that all i1, · · · , ik are
distinct.

Lemma 3.8 (Postnikov (2009)) For two spanning trees T, T ′, the corresponding Minkowski cells can be
in the same mixed subdivision only if U(T, T ′) has no directed cycles of length ≥ 4.

We will say that T, T ′ are compatible if it satisfies the condition of Lemma 3.8, and incompatible if
not.
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4 Transversalhedra
In this Section, we construct a polytope from a transversal matroid. The lattice points inside this polytope
(excluding the coordinate hyperplanes) will give a pure order ideal that we are looking for in Stanley’s
conjecture. We define the transversalhedron ofM to be

PM =
∑
I⊆[r]

lM,I∆{0}∪I ,

where ∆J for J ⊆ [0, r] is defined as:

• if 0 ∈ J , the convex hull of origin and ei for i ∈ J ∩ {1, · · · , r},

• if 0 6∈ J , the convex hull of ei for i ∈ J ∩ {1, · · · , r}.

Under the projection map that sends values of the 0-coordinate to 0, the generalized permutohedron
P
′

M :=
∑
I⊆[r] lM,I∆′{0}∪I gets sent to a transversalhedron. This projection map is actually a bijection

between (lattice) points (x0, x1, · · · , xr) of P
′

M and (x1, · · · , xr) of PM since P
′

M is on a hyperplane
x0 + x1 + · · ·xr = n.

Denote the bipartite graph definingM to be GM. Identify all vertices on the left side of GM having
the same type, and add a vertex to the right side labeled 0 that is connected to all vertices of the left side,
to get a bipartite graph GM. Recall that we relabeled the ground set ofM such that if φ(i) ≺ φ(j), then
we have i < j. The i-th vertex on the left side is associated with i-th subset I that has lM,I > 0 with
respect to ordering on all subsets of [r] given in Section 2.

1

2

1,2

0’

1’

2’

Fig. 2 – GM corresponding to the bipartite graph given in Figure 1.

Recall that each fine Minkowski cell
∏′

(GM)J
of P

′

M can be described by lM,I1∆′J1
+· · ·+lM,Im

∆′Jm
.

It corresponds to a fine Minkowski cell in PM given by lM,I1∆J1 + · · ·+ lM,Im∆Jm , and we will denote
this cell by

∏
J .

Lemma 4.1 Maximal valid type sequences ofM are exactly GM-draconian sequences.

So we immediately get the following result by using Proposition 3.7.

Corollary 4.2 Let us fix a fine mixed subdivision of PM. Then the fine Minkowski cells of this subdivision
are in bijection with the maximal type sequences ofM.
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Using this result, we define the type of a fine Minkowski cell as Ia, where a is the GM-draconian
sequence of the cell. Since the polytope PM contains the origin and the coordinate hyperplanes at the
boundary, if we define the degree of a lattice point to be the sum of its coordinates, the degree is nonneg-
ative for all lattice points inside the polytope. We define xI to be

∑
i∈I xi. The facets of this polytope

are given by the coordinate hyperplanes xi = 0 and hyperplanes xI =
∑
I∩H 6=∅ lM,H . We will refer to

facets that do not come from coordinate hyperplanes as the nontrivial boundary of the polytope.
Let’s study the lattice points inside the Minkowski cells of PM. We have the following result by

Proposition 3.6.

Corollary 4.3 Let us fix a fine mixed subdivision of PM. Then any lattice point of a fine Minkowski cell∏
J is of form p1 + · · ·+ pm where pi is a lattice point of lM,Ii∆Ji .

Inside the mixed subdivision of our transversalhedron, some lattice points are contained in several
Minkowski cells. We want to decide which cell takes ownership.

Definition 4.4 Let
∏
J be a fine mixed cell of a transversalhedron. We will say that a lattice point of

l∆Ji is good if it satisfies:

• when 0 ∈ Ji, it is not on l∆Ji\{j} for j ∈ Ji \ {0},

• when 0 6∈ Ji, it is not on l∆Ji\{j} for j ∈ Ji \ {ti,0}, where ti,0 is the unique element of Ji such
that any path from an element of Ji to 0 must pass through ti,0.

Using the notations of the previous corollary, we call a lattice point in a cell
∏
J to be good if for all i,

pi is a good lattice point of lM,Ii
∆Ji

.

A fine Minkowski cell, whose type Ia is not a base type ofM (happens when ai > lM,Ii
for some i),

does not contain any good lattice points.

Proposition 4.5 Fix a fine mixed subdivision in PM. Let p be a lattice point of PM not on any of the
coordinate hyperplanes xi = 0. Then p is a good lattice point of exactly one fine Minkowski cell.

Hence regardless of which fine mixed subdivision we use, the good lattice points of PM are going to
be the lattice points not on any of the coordinate hyperplanes.

Assuming we are given a fine mixed subdivision of PM, we will now construct a bijection between
bases ofM of type Ia and good lattice points in fine Minkowski cells of PM of type Ia. The number of
good lattice points in each lM,Ii∆Ji is equal to

(|CM,Ii
|

|Ji|−1

)
. So we can construct a bijection between good

lattice points of lM,Ii∆Ji and
(CM,Ii

|Ji|−1

)
for each i. This determines a bijection between good lattice points

of cells of type Ia and bases of type Ia for each maximal valid type a, and it results in a bijection between
good lattice points of PM and bases ofM. Figure 3 shows an example of such construction. Given such
a bijection, we can label each good lattice point of PM with B ∈ M and define dM(B) as the degree of
the corresponding lattice point.

The main goal we want to acheive with our bijection is to relate epM(B) with dM(B). The key idea is
to divide dM(B) into two parts as we did for epM(B). Let’s define dM(φ(B)) as the minimum degree
of all good lattice points inside the cell, of which the lattice point labeled B is a good lattice point inside.
And let’s define dφ(B)

M (B) as dM(B)− dM(φ(B)). Then we can write:

dM(B) = dM(φ(B)) + d
φ(B)
M (B).
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Fig. 3 – How the bijection between bases of M and good lattice points of PM is constructed.

Lemma 4.6 Let M be a transversal matroid, PM the corresponding transversalhedron and fix a fine
mixed subdivision of PM. Then there is a bijection between good lattice points in cell

∏
J of type Ia

(we have a = (|J1| − 1, · · · , |Jm| − 1)) and bases of type Ia such that we can compute dM(φ(B)) and
d
φ(B)
M (B) as:

• first set both of them to 0,

• for each Ji such that 0 6∈ Ji, add lM,Ii to dM(φ(B)) and 0 to dφ(B)
M (B),

• for each Ji such that 0 ∈ Ji, add ai to dM(φ(B)) and s−ai to dφ(B)
M (B), where the largest element

of B ∩ CM,Ii is the s-th element in CM,Ii .

Let’s look at an example. The transversalhedron forM in Figure 1 is given in Figure 5. Take a look at
cell with type sequence (0, 1, 1). The corresponding sum 2∆J1 + 3∆J2 + 4∆J3 and the corresponding
spanning tree of GM is given in Figure 4. Each good lattice point of the cell corresponds to choosing a
good lattice point in 2∆J1 , 3∆J2 , 4∆J3 . A base of this type corresponds to choosing 0, 1, 1 element from
CM,I1 , CM,I2 , CM,I3 . Now let’s take a look at dM({4, 8}) = 7. Using the above lemma, we can check
that dM(φ({4, 8})) = dM({3, 6}) = lM,I1+a2+a3 = 4 and dφ({4,8})

M ({4, 8}) = 0+(2−1)+(3−1) = 3
and their sum equals 7.
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Fig. 4 – A cell of type (0, 1, 1), its spanning tree and the corresponding sum 2∆J1 + 3∆J2 + 4∆J3 .

5 Main Result
The degree sequence obtained by the externally passive degree epM is the h-vector ofM∗ (Remark 2.2).
The degree sequence obtained by the lattice degree dM is by construction a pure O-sequence. Showing
that these two degree sequences are the same would imply Stanley’s conjecture in the cotransversal case.
So our goal is to show that there is a bijection between bases ofM and good lattice points in PM such
that epM(B) = dM(B)− r for all bases B ∈M. One should notice a similarity in the decomposition of
epM given in Lemma 2.4 and the decomposition of dM given in Lemma 4.6. All we have to show is that
there is a bijection that makes these two decompositions essentially the same. That bijection comes from
a fine mixed subdivision of PM called the canonical subdivision, defined in Oh (2010).

Lemma 5.1 Let M be a transversal matroid and PM be its transversalhedron. Look at a Minkowski
cell

∏
J of type Ia inside the canonical subdivision of the transversalhedron. And let lM,I1∆J1 + · · ·+

lM,Im∆Jm be the corresponding Minkowski sum. We have 0 6∈ Ji if and only if Ii ∈ EPM(Ia).

By combining Lemma 2.4, Lemma 4.6 and Lemma 5.1, we have dφ(B)
M (B) = ep

φ(B)
M (B). Using

Lemma 5.1 and Lemma 4.6, we get:

dM(φ(B)) =
∑

Ii∈EPM(Ia)

lM,Ii +
∑

Ii 6∈EPM(Ia)

ai.

Combining this with Lemma 2.4, we get dM(φ(B))− r = epM(φ(B)).

Proposition 5.2 Given a transversal matroidM of rank r, we look at the canonical mixed subdivision
of PM. For each base type, there exists a bijection between good lattice points in fine Minkowski cells of
that type and bases of that type. And for all bases B ∈M, we have epM(B) = dM(B)− r.
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For each good lattice point at (c1, · · · , cr), let’s make a monomial x1
c1−1 · · ·xrcr−1. Then we get a

pure order ideal of which Stanley’s conjecture is asking for.

Proposition 5.3 Let M be a cotransversal matroid. We denote M∗ for the dual matroid, which is in
this case a transversal matroid. For each good lattice point (c1, · · · , cr) in PM∗ , take a monomial
x1
c1−1 · · ·xrcr−1 to form a collection X . Then X is a pure order ideal and its degree sequence equals

the h-vector ofM.

This implies Stanley’s conjecture for cotransversal matroids.

Theorem 5.4 The h-vector of a cotransversal matroid is a pure O-sequence. In other words, Stanley’s
conjecture is true for cotransversal matroids.

We will end with an example regarding our main result. We look at a transversal matroid M given
by the bipartite graph in Figure 1. Then CM,{1} = {1, 2}, CM,{2} = {3, 4, 5}, CM,{1,2} = {6, 7, 8, 9}.
So our transversalhedron is given by 2∆{1} + 3∆{2} + 4∆{1,2}. The cells are given by base sequences
(1, 1, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2). Then one can check that dM(B) − 2 = epM(B) in Figure 5 and
the Table below. To get the h-vector ofM∗ using the polytope, we look at the degree sequence obtained
by counting how many good lattice points (lattice points not on any coordinate hyperplanes) are on each
diagonal. This gives us the sequence (1, 2, 3, 4, 5, 6, 6, 5), and one can check from the table that this is
indeed the h-vector ofM∗ (the degree sequence of epM).
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19 29
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