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A topological interpretation of the cyclotomic
polynomial
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Abstract. We interpret the coefficients of the cyclotomic polynomial in terms of simplicial homology.

Résumé. Nous donnons une interprétation des coefficients du polynôme cyclotomique en utilisant l’homologie sim-
pliciale.
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1 Introduction
This paper studies the cyclotomic polynomial Φn(x), which is defined as the minimal polynomial over Q
for any primitive nth root of unity ζ in C. It is monic, irreducible, and has degree given by the Euler phi
function φ(n), with formula

Φn(x) =
∏

j∈(Z/nZ)×

(x− ζj).

The equation xn − 1 =
∏
d|n Φd(x) gives a recurrence showing that all coefficients of Φn(x) lie in Z.

Although well-studied, the coefficients of Φn(x) are mysterious [2, 10, 11, 14, 15, 17, 29]. We of-
fer here two interpretations for their magnitudes, as orders of cyclic groups. In the first interpretation
(Corollary 5 below) this group is a quotient of the free abelian group Z[ζ] by a certain full rank sublattice.

The second interpretation is topological, given by Theorem 1 below, as the torsion in the homology of a
certain simplicial complex associated with a squarefree integer n = p1 · · · pd. These simplicial complexes
originally arose in the work of Bolker [6], reappeared in the work of Kalai [13] and Adin [1] on higher-
dimensional matrix-tree theorems, and were shown to be connected with cyclotomic extensions in work
of J. Martin and the second author [18]. We review these simplicial complexes briefly here in order to
state the result; see Section 4 for more details.

Given a positive integer p, let Kp denote a 0-dimensional abstract simplicial complex having p ver-
tices(i), which we will label by the residues

{0 mod p, 1 mod p, . . . , (p− 1) mod p}
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for reasons that will become clear in a moment. Given primes p1, . . . , pd, let

Kp1,...,pd
:= Kp1 ∗ · · · ∗Kpd

be the simplicial join, [21, §62], of Kp1 , . . . ,Kpd
. This is a pure (d− 1)-dimensional abstract simplicial

complex, that may be thought of as the complete d-partite complex on vertex sets Kp1 through Kpd

of sizes p1, . . . , pd. The facets (maximal simplices) of Kp1,...,pd
are labelled by sequences of residues

(j1 mod p1, . . . , jd mod pd). Denoting the squarefree product p1 · · · pd by n, the Chinese Remainder
Theorem isomorphism

Z/p1Z × · · · × Z/pdZ
Ξ−→ Z/nZ (1)

allows one to label such a facet by a residue j mod n; call this facet Fj mod n. Then for any subset
A ⊆ {0, 1, . . . , φ(n)}, let KA denote the subcomplex of Kp1,...,pd

which is generated by the facets
{Fj mod n} as j runs through the following set of residues:

A ∪ {φ(n) + 1, φ(n) + 2, . . . , n− 1, n}.

Our first main result interprets the magnitudes of the coefficients of Φn(x). Let H̃i(−; Z) denote
reduced simplicial homology with coefficients in Z.

Theorem 1 For a squarefree positive integer n = p1 · · · pd, with cyclotomic polynomial Φn(x) =
∑φ(n)
j=0 cjx

j ,
one has

H̃i(K{j}; Z) =


Z/cjZ if i = d− 2,
Z if both i = d− 1 and cj = 0,
0 otherwise.

We furthermore interpret topologically the signs of the coefficients in Φn(x). For this, we use oriented
simplicial homology, and orient the facet Fj mod n having j ≡ ji mod pi for i = 1, 2, . . . , d as

[Fj ] = [Fj mod n] = [j1 mod p1, . . . jd mod pd].

Theorem 2 Fix a squarefree positive integer n = p1 · · · pd with cyclotomic polynomial Φn(x) =
∑φ(n)
j=0 cjx

j .
Then for any j 6= j′ such that cj , cj′ 6= 0, one has H̃d−1(K{j,j′}; Z) ∼= Z, and any nonzero (d− 1)-cycle
z =

∑
` b`[F`] in this homology group will have bj , bj′ 6= 0, with

cj
cj′

= −bj
′

bj
.

In particular, cj , cj′ have the same sign if and only if bj , bj′ have opposite signs.

Example 3 We illustrate these theorems for n = 15. Here d = 2, p1 = 3, p2 = 5, and φ(n) = 2 · 4 = 8.
The cyclotomic polynomial is

Φ15(x) = 1− x+ x3 − x4 + x5 − x7 + x8

= (+1) · (x0 + x3 + x5 + x8) + (−1) · (x1 + x4 + x7) + 0 · (x2 + x6).
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Fig. 1: The case of Φ15(x)

The complex Kp1,p2 = K3,5 is a complete bipartite graph with vertex sets labelled as in Figure 1(a).
The subcomplex K∅ generated by the edges Fj mod 15 with j ∈ {φ(n) + 1, φ(n) + 2, . . . , n − 1} =
{9, 10, 11, 12, 13, 14} is the subgraph shown in Figure 1(b).

To see why the coefficient c6 = 0 in Φ15(x), one adds the edge F6 mod 15 to the graph K∅, obtaining
the graph K{6}, shown in Figure 1(c), which has

H̃0(K{6}; Z) = Z = Z/0Z

H̃1(K{6}; Z) = Z.

To see why the coefficients c5 = +1 or c7 = −1 have magnitude 1, one adds the edge F5 mod 15 or
F7 mod 15 to the graph K∅, obtaining the graphs K{5} or K{7} shown in Figures 1(d) and 1(e), which
have

H̃0(K{5}; Z) = 0 = Z/(+1)Z
H̃0(K{7}; Z) = 0 = Z/(−1)Z.

To understand the signs of the coefficients, note first that, by convention, Φ15(x) is monic, so the
coefficient c8 = cφ(n) = +1. Therefore any other coefficient cj should have sign

sgn(cj) =
sgn(cj)
sgn(c8)

= − sgn(b8)
sgn(bj)

where z =
∑
i bi[Fi] is a nontrivial cycle in K{j,8}, in which the edge [Fj ] is directed from the vertex

(j1 mod 3) toward the vertex (j2 mod 5). As shown in Figures 1(f) and 1(g), the nontrivial cycle in
K{7,8} has [F7], [F8] oriented in the same direction, explaining why c7 = −1, while the nontrivial cycle
in K{5,8} has [F5], [F8] oriented in the opposite direction, explaining why c5 = +1.
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The remainder of the paper is structured as follows. Section 2 describes our first interpretation for the
cyclotomic polynomial, which applies much more generally to any monic polynomial in Z[x]. Section 3
reviews some facts, underlying the main results, about duality of matroids, Plücker coordinates, and
oriented matroids. Section 4 recalls results and establishes terminology on Kalai’s higher dimensional
spanning trees in a simplicial complex. Section 5 discusses further properties of the simplicial complex
Kp1,...,pd

whose subcomplexes appear in Theorem 1 and 2. Section 6 proves these theorems. We end with
Section 7, where we discuss known properties of Φn(x) that manifest themselves topologically.

2 Coefficients of monic polynomials in Z[x]
Our goal here is the first interpretation for the coefficients of Φn(x), which applies more generally to the
coefficients of any monic polynomial f(x) in Z[x]. Recall that when f(x) is of degree r, one has an
isomorphism of Z-modules

Zr −→ Z[x]/(f(x))

(a0, a1, . . . , ar−1) 7−→
r−1∑
j=0

ajx
j .

As notation, given a subset A of some abelian group, let ZA denote the collection of all Z-linear combi-
nations of elements of A.

Proposition 4 For a monic polynomial f(x) =
∑r
j=0 cjx

j of degree r in Z[x], one has an isomorphism
of abelian groups (

Z[x]/(f)
)
/ ZA ∼= Z/cjZ

where A is the subset of size r given as {1, x, x2, . . . , xr} \ {xj}.

Proof: Consider the matrix in Zr×(r+1)
1 0 0 · · · 0 −c0
0 1 0 · · · 0 −c1
0 0 1 · · · 0 −c2
...

...
...

...
...

0 0 0 · · · 1 −cr−1


whose columns express the elements of {1, x, x2, . . . , xr} uniquely in the Z-basis {1, x, x2, . . . , xr−1} for
Z[x]/(f). The r×r submatrix obtained by restricting this matrix to the columns indexed byA is equivalent
by row and column permutations to a upper triangular matrix with diagonal entries (1, 1, . . . , 1,−cj).
Hence

(
Z[x]/(f)

)
/ ZA ∼= Z/cjZ. 2

The special case where f(x) is the cyclotomic polynomial Φn(x) leads to the following considerations.
Fix once and for all a primitive nth root of unity ζ.

Corollary 5 The cyclotomic polynomial Φn(x) =
∑φ(n)
j=0 cjx

j has

Z[ζ]/ZA ∼= Z/cjZ

where A = {1, ζ, ζ2, . . . , ζφ(n)} \ {ζj}.
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Proof: Apply the previous proposition with f(x) = Φn(x) and r = φ(n), noting that the ring map
Z[x]→ Z[ζ] sending x to ζ will also send xj to ζj , and induce an isomorphism Z[x]/(Φn(x))→ Z[ζ]. 2

For later use (see the proof of Theorem 20), we note here that the set

Pn := {ζm}m∈(Z/nZ)×

of all primitive nth roots of unity within Z[ζ] forms a Z-basis whenever n is squarefree. This is a sharp-
ening of an observation of Johnsen [12], who noted that Pn forms a Q-basis of Q[ζ] in the same situation.

Proposition 6 When n is squarefree, the collection Pn of all primitive nth roots of unity forms a Z-basis
for Z[ζ].

Proof: The result is easy when n is prime and can be deduced from the Chinese Remainder Theorem in
the general case. See [22] for details. 2

3 Duality of matroids or Plücker coordinates
We will need a version of the linear algebraic duality between Plücker coordinates for complementary
Grassmannians G(r,Fn), G(n− r,Fn), or equivalently, the duality between bases and cobases in coordi-
natized matroids.

Proposition 7 Let 0 ≤ r ≤ n. Let M and M⊥ be matrices in Fr×n and F(n−r)×n, respectively, both
of maximal rank, with the following property: kerM is equal to the row space of M⊥, or equivalently,
kerM⊥ is the row space of M . Then

(i) there exists a scalar α in F× having the following property: for every (n− r)-subset T of [n], with
complementary set T c,

det
(
M
∣∣
T c

)
= ±α · det

(
M⊥

∣∣
T

)
where A

∣∣
J

denotes the restriction of a matrix A to the subset of columns indexed by J , and the ±
sign depends upon the set T .

(ii) if one furthermore assumes that F = Q, that M and M⊥ have entries in Z, and that there exists at
least one (n − r)-subset T0 for which M

∣∣
T c

0
,M⊥

∣∣
T0

are both invertible over Z, then the scalar α
above equals ±1, and one has for every (n− r)-subset T ,

coker
(
M
∣∣
T c

) ∼= coker
(
M⊥

∣∣
T

)
.

Here, we are thinking of coker M as signifying a map between powers of Z.

Proof: Both assertions can be reduced via row and column operations to the case whereM takes the form
[Ir|A] for some r-by-(n− r) matrix A, where they are easier to verify. See [22] for details. 2

The proof of Theorem 2 will ultimately rely on the following statement about duality of oriented ma-
troids for vectors in a vector space over an ordered field F, such as F = Q.
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Proposition 8 Let F be an ordered field, M and let M⊥ be matrices in Fr×n and F(n−r)×n as in Propo-
sition 7, that is, both of maximal rank, with kerM perpendicular to the row space of M⊥. Let the vectors
v` in Fr and v⊥` in Fn−r be the `th columns of M and M⊥. Let A be an (r + 1)-subset of {1, 2, . . . , n}
such that the matrix M

∣∣
A

in Fr×(r+1) has full rank r, with∑
`∈A

c`v` = 0 (2)

the unique dependence among its columns, up to scaling. Then for any pair of nonzero coefficients
cj , cj′ 6= 0, the matrix M⊥

∣∣
Ac∪{j,j′} in F(n−r)×(n−r+1) has full rank n− r, and the unique dependence

among its columns, up to scaling, ∑
`∈Ac∪{j,j′}

b`v
⊥
` = 0, (3)

will have both bj , bj′ 6= 0, with
cj
cj′

= −bj
′

bj
.

In particular, cj , cj′ have the same sign if and only if bj , bj′ have opposite signs.

Proof: The main observation here is that vectors in the row space of M⊥ are covectors for {v⊥` }. See
[22] for details.

2

4 Simplicial spanning trees
For a collection of subsets S of some vertex set V , let 〈S〉 denote the (abstract) simplicial complex S on
V generated by S, that is, 〈S〉 ⊂ 2V consists of all subsets of V contained in at least one subset from S.
We recall the notion of a simplicial spanning tree in S, following Adin [1], Duval, Klivans and Martin [8],
Kalai [13], and Maxwell [19].

Definition 9 Let S be the collection of facets of a pure k-dimensional (abstract) simplicial complex. Say
that R ⊂ S is an S-spanning tree if

(i) 〈R〉 contains the entire (k − 1)-skeleton of 〈S〉,

(ii) H̃k(〈R〉; Z) = 0, and

(iii) H̃k−1(〈R〉; Z) is finite.

We point out here three well-known features of this definition.

Proposition 10 Fix the collection of facets S of a pure k-dimensional simplicial complex.

(i) Condition (i) in Definition 9 is equivalent to H̃k(〈S〉, 〈R〉; Z) = Z|S\R|.

(ii) Condition (ii) in Definition 9 is equivalent to H̃k(〈R〉; Q) = 0.
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(iii) All S-spanning trees R have the same cardinality, namely

|R| = |S| − rankZH̃k(〈S〉; Z). (4)

Proof: See [22] for details. 2

The following key observation essentially goes back to work of Kalai [13, Lemma 2].

Proposition 11 Fix a vertex set V and a collection of k-dimensional simplices S. Consider a collection
of (k + 1)-dimensional faces T of cardinality

|T | := rankZH̃k(〈S〉; Z)

for which T ∪ 〈S〉 forms a simplicial complex K, that is, all boundaries of faces in T lie in 〈S〉.
Then the following two assertions hold for any choice of an S-spanning tree R.

(i) The |T | × |T | matrix ∂ that represents the relative simplicial boundary map

Ck+1(K, 〈R〉; Z) → Ck(K, 〈R〉; Z)
‖ ‖

Z|T | Z|S\R|

is nonsingular if and only if H̃k+1(K; Q) = 0.

(ii) When the matrix ∂ is nonsingular, then coker(∂) = H̃k(K, 〈R〉; Z).

Proof: See [22] for details. 2

Definition 12 Given a collection of k-simplices S, and an S-spanning treeR, say(ii) thatR is torsion-free
if Condition (iii) in Definition 9 is strengthened to the vanishing condition

(iv) H̃k−1(〈R〉; Z) = 0.

Example 13 For example, when 〈R〉 is a contractible subcomplex of 〈S〉 then it satisfies Condition (ii) of
Definition 9 as well as the vanishing condition (iv). If it furthermore satisfies Condition (i) of Definition 9,
then R becomes a torsion-free S-spanning tree.

A frequent combinatorial setting where this occurs (such as in Proposition 15 below) is when S is the
set of facets of a (pure) shellable [3] simplicial complex, and R is the subset of facets which are not fully
attached along their entire boundaries during the shelling process.

Proposition 14 Using the hypotheses and notation of Proposition 11, if one assumes in addition that
R is torsion-free, assertion (ii) of Proposition 11 becomes the following assertion about (non-relative)
homology:

(ii) When the matrix ∂ is nonsingular, then coker(∂) = H̃k(K; Z)

Proof: When R is torsion-free, the long exact sequence for the pair (K, 〈R〉) shows that H̃k(K; Z) ∼=
H̃k(K, 〈R〉; Z). 2

(ii) This condition on an S-spanning tree also plays an important role in [9] by Duval, Klivans and Martin.
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5 More on the complete d-partite complex
It is well-known and easy to see that for a positive integer n having prime factorization n = pe11 · · · p

ed

d

with ei ≥ 1, one always has Φn(x) = Φp1···pd
(xn/p1···pd). Thus it suffices to interpret the coefficients of

cyclotomic polynomials for squarefree n.
In this section, we fix such a squarefree n = p1 · · · pd, and discuss further properties of the simplicial

complexes Kp1,...,pd
, defined in Section 1, appearing in Theorems 1 and 2.

Proposition 15 The (d− 2)-dimensional skeleton of Kp1,...,pd
is shellable, with

H̃d−2(Kp1,...,pd
; Z) = Zn−φ(n).

Proof: To show that the (d − 2)-skeleton is shellable, we note the following three facts: (i) zero-
dimensional complexes are all trivially shellable, (ii) joins of shellable complexes are shellable [24, Sec.
2], and (iii) skeleta of (pure) shellable simplicial complexes are shellable [5, Corollary 10.12]. Having
shown that this skeleton is shellable, it therefore has only top homology; see, for example [3, Appendix].
This homology is free abelian, with rank the absolute value of its reduced Euler characteristic, namely∣∣∣∣∣∣

∑
i≥−1

(−1)irankZ(Ci)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
i≥−1

(−1)i
∑

I({1,2,...,d}
|I|=i+1

∏
i∈I

pi

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

I({1,2,...,d}

(−1)|I|−1
∏
i∈I

pi

∣∣∣∣∣∣
= |(p1 − 1) · · · (pd − 1)− p1 · · · pd| = |φ(n)− n|.

2

As noted in the introduction, the Chinese Remainder Theorem isomorphism (1) identifies elements of
Z/nZ with the (d − 1)-dimensional simplices of Kp1,...,pd

. Lower dimensional faces of Kp1,...,pd
can

also be identified as cosets of subgroups within Z/nZ, but we will use this identification sparingly in this
paper. For the sake of writing down oriented simplicial boundary maps, choose the following orientation
on the simplices of Kp1,...,pd

, consistent with the orientation of facets preceding Theorem 2: choose
the oriented (` − 1)-simplex [ji1 mod pi1 , . . . , ji` mod pi` ] with i1 < . . . < i` as a basis element of
C`−1(Kp1,...,pd

; Z). The following simple observation was the crux of the results in [18].

Proposition 16 If one identifies the indexing set Z/nZ for the columns of the boundary map

Cd−1(Kp1,...,pd
; Z)→ Cd−2(Kp1,...,pd

; Z) (5)

with the set µn := {ζj}j∈Z/nZ of all nth roots of unity, then every row of this boundary map represents a
Q-linear dependence on µn.

Proof: A row in this boundary map is indexed by an oriented (d− 2)-face, which has the form

[j1 mod p1, . . . , ̂jk mod pk, . . . , jd mod pd]

for some jk ∈ {0, 1, . . . , pk−1} and 1 ≤ k ≤ d. This row will contain mostly zeroes. Its non-zero entries
are all (−1)k−1, and lie in the columns indexed by those ζj having j ≡ ji mod pi for i 6= k, and j mod pk
arbitrary. These exponents j are exactly those lying in one coset of the subgroup p1 · · · p̂k · · · pdZ/nZ
within Z/nZ. Summing ζj over j in such a coset gives zero. 2
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Example 17 Let n = 15 as in Example 3, and consider the matrix for the simplicial boundary map
C1(K3,5; Z)→ C0(K3,5; Z). One of its rows is indexed by the 0-face [2 mod 5] and this row has exactly
three nonzero entries, all equal to (−1)0 = +1. To see these signs, we rewrite [2 mod 5] in three ways,
all of which involve deleting the first entry out of two in an oriented 1-face:

[2 mod 5] = [ ̂0 mod 3, 2 mod 5] = [ ̂1 mod 3, 2 mod 5] = [ ̂2 mod 3, 2 mod 5].

The columns corresponding to these three 1-faces are indexed by the roots of unity ζ12, ζ7, and ζ2,
respectively. Summing these up with coefficients of positive one, we get

1 · ζ12 + 1 · ζ7 + 1 · ζ2 = ζ2(ζ10 + ζ5 + 1),

which is the sum of ζj over j lying in a coset of 5Z/15Z, and hence is zero.

Definition 18 Assume that n is squarefree and let T denote any set of n−φ(n) columns of the boundary
map (5). Identify the complementary set T c of φ(n) columns with a subset of the nth roots-of-unity
µn. Create a subcomplex of Kp1,...,pd

by including its entire (d− 2)-skeleton and attaching the subset of
(d− 1)-faces indexed by T . We denote this subcomplex as K[T ].

With this definition in mind, we will make use of an interesting feature of this labelling of the boundary
map and the set Pn of primitive nth roots of unity, noted already in [18, Remark 5]. For this next result,
we let P cn denote the (n − φ(n))-element subset of µn indexed by the nth roots of unity which are not
primitive.

Proposition 19 Let n be a squarefree integer and P cn be as above. Then the subcomplex K[Pnc] of
Kp1,...,pd

is contractible.

Proof: Observe that the primitive roots in Z/nZ are exactly those elements which do not vanish modulo
pi for i = 1, . . . , d. Tracing through the labelling of the (d− 1)-faces via Ξ, we obtain the description

K[Pnc] =
d⋃
i=0

starKp1,...,pd
(0 mod pi),

where star∆(v) denotes the simplicial star of the vertex v inside a simplicial complex ∆. Furthermore,
each intersection of these stars is nonempty and contractible, because it is the star of another face: for
I ⊂ [d], ⋂

i∈I
starKp1,...,pd

(0 mod pi) = starKp1,...,pd
({0 mod pi}i∈I) .

A standard nerve lemma [4, Theorem 10.6] then shows that K[Pnc] itself is contractible. 2

Theorem 20 Let n be a squarefree integer and T be a subset of µn of size n − φ(n). Let K[T ] be the
subcomplex of Kp1,...,pd

of Definition 18. Then

H̃i(K[T ]; Z) ∼=


Z[ζ]/ZT c if i = d− 2,
Z if both i = d− 1 and rankZ(ZT c) < φ(n),
0 otherwise.

where ZT c is the sublattice Z-spanned by the roots-of-unity T c ⊂ µn.
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Proof: Choose any Z-basis for Z[ζ]. Let M in Zφ(n)×n be the matrix that expresses the nth roots of
unity µn in this basis. We construct a particular matrix M⊥ to accompany M as in Proposition 7 part
(ii). Consider the collection S of all (d − 2)-faces in the complete d-partite complex Kp1,...,pd

. The
complex 〈S〉 generated by S is therefore the (d − 2)-skeleton of Kp1,...,pd

. Proposition 15 implies that
〈S〉 is shellable, and that it has rankZH̃d−2(〈S〉; Z) = n − φ(n). Therefore, we are in the situation
of Example 13, implying that there exists a torsion-free S-spanning tree R, and any such R will have
|S \R| = n− φ(n).

Our candidate for the matrix M⊥ in Z(n−φ(n))×n is the restriction of the boundary map from (5) to its
rows indexed by S \ R. Proposition 16 shows that the rows of M⊥ are all perpendicular to the rows of
M . Now choose T, T c so that T c indexes the set Pn of primitive nth roots of unity. Proposition 6 implies
that the maximal minor M

∣∣
T c of M is invertible over Z, while Proposition 19 implies that the maximal

minor M⊥
∣∣
T

of M⊥ is invertible over Z. Thus M,M⊥ satisfy the hypotheses of Proposition 7 part (ii),
and combining this with Proposition 14 gives the assertion of the theorem. 2

6 Proof of Theorems 1 and 2
We are now in a position to prove Theorems 1 and 2.

Proof of Theorem 1: Let T c = {1, ζ, ζ2, . . . , ζφ(n)} \ {ζj} so that we have the equality of complexes
K[T ] = K[{ζφ(n)+1, ζφ(n)+2, . . . , ζn−1} ∪ {j}] = Kj . The theorem then follows from Theorem 20 and
Corollary 5. 2

Proof of Theorem 2: We prove Theorem 2 by applying Proposition 8 to the matrices M,M⊥ in the
proof of Theorem 20, with A = {1, ζ, ζ2, . . . , ζφ(n)}. The dependence (2) among the columns of M |A
has the same coefficients (up to scaling) as the cyclotomic polynomial, and the dependence (3) among the
columns of M⊥

∣∣
Ac∪{j,j′} has the same coefficients (up to scaling) as a nonzero cycle z =

∑
` b`[F`] in

H̃d−1(K{j,j′}; Z). 2

7 Concordance with known properties of Φn(x)

Here are some results about Φn(x) that manifest themselves topologically. See [22] for details.

1. The two maps Z/nZ → Z/nZ that send j to −j and send j to j + 1 generate a dihedral group of
simplicial automorphisms of Kp1,p2,...,pd

. One such automorphism sends the subcomplex K{j} to
K{φ(n)−j}, and the subcomplex K{j,φ(n)} to K{0,φ(n)−j}, explaining the symmetry cj = cφ(n)−j
in Φn(x).

2. The fact that Φ2n(x) = Φn(−x) when n is odd manifests itself topologically as follows: the sub-
complex K{j} whose homology interprets the coefficient of xj for Φ2n(x) is homotopy-equivalent
to the suspension of the corresponding complex for Φn(x). Furthermore, there is a similar suspen-
sion relation between the complexes that predict the coefficients’ signs.
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3. When d = 2 so n = p1p2 is the product of only two primes, all the subcomplexes K{j} of Kp1,p2

are graphs. Hence their (d − 2)-dimensional homology is torsion-free. It follows that the only
nonzero coefficients of Φn(x) are ±1, agreeing with a well-known old observation of Migotti [20].
The explicit expansion of Φp1p2(x) is given in Elder [10], Lam and Leung [16], and Lenstra [17].

4. In contrast to above, when d ≥ 3 and the pi’s are odd primes, Φn(x) often has coefficients with
absolute value ≥ 2. For example, Φ105(x) has coefficient −2 on x7 and x41. The 2-dimensional
subcomplexes K{7} and K{41}, whose 1-homology equals Z/2Z, turn out to be surprisingly non-
trivial. For example, neither one can be collapsed down to a real projective plane.
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