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Abstract. This paper is devoted to the evaluation of the generating series of the connection coefficients of the double
cosets of the hyperoctahedral group. Hanlon, Stanley, Stembridge (1992) showed that this series, indexed by a
partition ν, gives the spectral distribution of some random matrices that are of interest in random matrix theory.
We provide an explicit evaluation of this series when ν = (n) in terms of monomial symmetric functions. Our
development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a
new bijective construction between partitioned locally orientable hypermaps and some permuted forests.

Résumé. Cet article est dédié à l’évaluation des séries génératrices des coefficients de connexion des classes doubles
(cosets) du groupe hyperoctaédral. Hanlon, Stanley, Stembridge (1992) ont montré que ces séries indexées par une
partition ν donnent la distribution spectrale de certaines matrices aléatoires jouant un rôle important dans la théorie
des matrices aléatoires. Nous fournissons une évaluation explicite de ces séries dans le cas ν = (n) en termes
de monômes symétriques. Notre développement est fondé sur une interprétation des coefficients de connexion en
termes d’hypercartes localement orientables et sur une nouvelle bijection entre les hypercartes localement orientables
partitionnées et certaines forêts permutées.
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1 Introduction
In what follows, we denote by λ = (λ1, λ2, . . . , λk)≥ ` n an integer partition of n and `(λ) = k the
number of parts of λ. If ni(λ) is the number of parts of λ that are equal to i (by convention n0(λ) = 0),
then we write λ as 1n1(λ) 2n2(λ) . . . and let Autλ =

∏
i ni(λ)!. Also, if λ ` n, let λλ and 2λ be the

partitions of 2n (λ1, λ1, λ2, λ2, . . .) and (2λ1, 2λ2, . . .) respectively. Let [m] = {1, . . . ,m} and Sm be
the symmetric group on m elements, e.g. on [m], and let Cλ be the conjugacy class in Sm of permutations
w with cycle type type(w) = λ ` m.

We look at perfect pairings of the set [n]∪ [n̂] = {1, . . . n, 1̂, . . . , n̂} which we view as fixed point free
involutions in S2n([n]∪[n̂]). Note that for f, g ∈ S2n, the disjoint cycles of the product f ◦g have repeated
lengths i.e. f◦g ∈ Cλλ. Also, forw ∈ S2n, let fw be the pairing (w−1(1), w−1(1̂)) · · · (w−1(n), w−1(n̂)).

Let Bn be the hyperoctahedral group which we view as the centralizer in S2n of the involution f? =
(11̂)(22̂) · · · (nn̂). Then |Bn| = 2nn!, and it is well known that the double cosets ofBn in S2n are indexed
by partitions ν of n, and consist of permutations w ∈ S2n such that the cycle type of f? ◦ fw is νν [8, Ch.
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VII.2]. If we denote such double coset by Kν and pick from it a fixed element wν , then let bνλ,µ be the
number of ordered factorizations u1 ·u2 of wν where u1 ∈ Kλ and u2 ∈ Kµ. We provide a combinatorial
formula for bνλ,µ when ν = (n) = n (say w(n) = (123 . . . n)(n̂ n−̂1n−̂2 . . . 1̂)) by interpreting these
factorizations as locally orientable (partitioned) unicellular hypermaps.

Theorem 1.1 Let bnλ,µ be the number of ordered factorizations u1 · u2 of w(n) where u1 ∈ Kλ and
u2 ∈ Kµ. If pλ(x) and mλ(x) are the power and monomial symmetric functions then

1
2nn!

∑
λ,µ`n

bnλ,µ pλ(x)pµ(y) =

∑
λ,µ`n

AutλAutµmλ(x)mµ(y)
∑

A∈Mλ,µ

N (A)
A!

(n− q − 2r)!(n− p− 2r)!
(n+ 1− p− q − 2r)!

p′!q′! (r − p′)! (r − q′)!
22r−p′−q′

∏
i,j,k

(
i− 1

j, k, j + k

)(P+Q)i,j,k( i− 1
j, k, j + k − 1

)(P ′+Q′)i,j,k

(1)

Where, Mλ,µ is the set of 4-tuples A = (P, P ′, Q,Q′) of tridimensional arrays of non negative integers
with p = |P | =

∑
i,j,k≥0 Pijk 6= 0, p′ = `(λ)− p = |P ′|, q = |Q|, q′ = `(µ)− q = |Q′|, and

ni(λ) =
∑
j,k Pijk + P ′ijk, ni(µ) =

∑
j,k≥0Qijk +Q′ijk,

r =
∑
i,j,k(j + k)(Pijk + P ′ijk), r =

∑
i,j,k(j + k)(Qijk +Q′ijk),

q′ =
∑
i,j,k j(Pijk + P ′ijk), p′ =

∑
i,j,k j(Qijk +Q′ijk).

where A! =
∏
i,j,k Pijk!P ′ijk!Qijk!Q′ijk!. AndN (A) =

∑
t,u,v tPtuv if q′ = 0, otherwise if q′ 6= 0 then

N (A) =

1

q′

X
t−2u−2v>0

tPtuv

t− 2u− 2v

24(t− 2u− 2v)

0@ δp′ 6=0

p′

X
i,j,k

jQ
X
i,j,k

jP ′ +

P
i,j,k (i− 1− 2j − 2k)Q

P
i,j,k jP

n− q − 2r

1A
+ u

0@ δp′ 6=0

p′

X
i,j,k

(i− 2j − 2k)P ′
X
i,j,k

jQ′ +
X
i,j,k

(i− 2j − 2k)Q′
1 +

P
i,j,k (i− 1− 2j − 2k)P

n− q − 2r

1A35 .
Remark 1.2 For some limit values of the 4-tuple A, the summand definition in

∑
A∈Mλ,µ

· · · on the RHS
of Equation (1) is slightly different as detailed in Appendix 6 of the paper.

1.1 Background on connection coefficients bνλ,µ
By abuse of notation, let the double coset Kν also represent the sum of its elements in the group algebra
CS2n. ThenKν form a basis of a commutative subalgebra of CS2n (the Hecke algebra of the Gelfand pair
(S2n, Bn)) and one can check that Kλ ·Kµ =

∑
ν b

ν
λ,µKν . Thus, {bνλ,µ} are the connection coefficients

of this double coset algebra. We use Zλ(x) to denote the zonal polynomial indexed by λ which can be
viewed as an analogue of the Schur function sλ (for more information on these polynomials see [8, Ch.
VII]). In terms of pµ: sλ(x) =

∑
µ z
−1
µ χλµpµ(x) where zλ = Autλ

∏
i i
ni(λ), χλµ are the irreducible char-

acters of the symmetric group; and Zλ(x) = 1
|Bn|

∑
µ`n ϕ

λ(µ)pµ(x) where ϕλ(µ) =
∑
w∈Kµ χ

2λ
type(w).
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In [5, Lemma 3.3] a formula for the connection coefficients in terms of χλµ was given:

bνλ,µ =
1
|Kν |

∑
β`n

1
H2ν

ϕβ(ν)ϕβ(λ)ϕβ(µ), (2)

where |Kν | = |Bn||Cν |2n−`(ν) [2, Lemma 2.1], and H2λ is the product of all the hook-lengths of the
partition 2λ.

Let Ψν(x,y) = 1
|Bn|

∑
λ,µ b

ν
λ,µpλ(x)pµ(y). So Ψ(n) is the LHS of (1). Equation (2) immediately

implies that Ψν(x,y) = 1
|Kν |

∑
λ`n

|Bn|
H2λ

ϕλ(ν)Zλ(x)Zµ(y). Moreover, if for an n × n matrix X we
say that pk(X) = trace(Xk), then in [5, Thm. 3.5] it was shown that Ψν is also the expectation of
pν(XUY UT ) over U , where U are n×nmatrices whose entries are independent standard normal random
real variables and X,Y are arbitrary but fixed real symmetric matrices.

2 Combinatorial formulation
2.1 Unicellular locally orientable hypermaps
From a topological point of view, a locally orientable hypermap of n edges can be defined as a connected
bipartite graph with black and white vertices. Each edge is composed of two half edges both connecting
the two incident vertices. This graph is embedded in a locally orientable surface such that if we cut the
graph from the surface, the remaining part consists of connected components called faces or cells, each
homeomorphic to an open disk. The map can be represented as a ribbon graph on the plane keeping the
incidence order of the edges around each vertex. In such a representation, two half edges can be parallel
or cross in the middle. A crossing (or a twist) of two half edges indicates a change of orientation in the
map and that the map is embedded in a non orientable surface (projective plane, Klein bottle,...). We say a
hypermap is rooted if it has a distinguished half edge. In [2], it was shown that rooted hypermaps admit a
natural formal description involving triples of perfect pairings (f1, f2, f3) on the set of half edges where:
• f3 associates half edges of the same edge,
• f1 associates immediately successive (i.e. with no other half edges in between) half edges moving

around the white vertices, and
• f2 associates immediately successive half edges moving around the black vertices.

Formally we label each half edge with an element in [n] ∪ [n̂] = {1, . . . , n, 1̂, . . . , n̂}, labelling the
rooted half edge by 1. We then define (f1, f2, f3) as perfect pairings on this set. Combining the three
pairings gives the fundamental characteristics of the hypermap since:
• The cycles of f3 ◦ f1 give the succession of edges around the white vertices. If f3 ◦ f1 ∈ Cλλ

then the degree distribution of the white vertices is λ (counting only once each pair of half edges
belonging to the same edge),
• The cycles of f3 ◦ f2 give the succession of edges around the black vertices. If f3 ◦ f2 ∈ Cµµ

then the degree distribution of the black vertices is µ (counting only once each pair of half edges
belonging to the same edge),
• The cycles of f1 ◦ f2 encode the faces of the map. If f1 ◦ f2 ∈ Cνν then the degree distribution of

the faces is ν
In what follows, we consider the number Lnλ,µ of rooted unicellular, or one-face, locally orientable hy-
permaps with face distribution ν = (n) = n1, white vertex distribution λ, and black vertex distribution
µ.
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Let f1 be the pairing (1 n̂)(2 1̂)(3 2̂) . . . (nn−̂1) and f2 = f? = (1 1̂)(2 2̂) . . . (n n̂). We have f1 ◦f2 =
(123 . . . n)(n̂n−̂1n−̂2 . . . 1̂) ∈ C(n)(n). Then by the above description, one can show that

Lnλ,µ = | {f3 pairings in S2n([n] ∪ [n̂]) | f3 ◦ f1 ∈ Cλλ, f3 ◦ f2 ∈ Cµµ} | . (3)

Moreover, the following relation between Lnλ,µ and bnλ,µ holds [2, Cor 2.3]

Lnλ,µ =
1

2nn!
bnλ,µ. (4)

Thus we can encode the connection coefficients as numbers of locally orientable hypermaps.

Example 2.1 Figure 1 depicts a locally orientable unicellular hypermap in Lnλ,µ with λ = 11223141 and
µ = 314151 (at this stage we disregard the geometric shapes around the vertices).
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Fig. 1: A unicellular locally orientable hypermap

2.2 Partitioned locally orientable hypermaps
Next, we consider locally orientable hypermaps where we partition the white vertices (black resp.). In
terms of the pairings, this means we “color” the cycles of f3 ◦ f1 (f3 ◦ f2 resp.) allowing repeated colors
but imposing that the two cycles corresponding to each white (black resp.) vertex have the same color.
The following definition in terms of set partitions of [n] ∪ [n̂] makes this more precise.

Definition 2.2 (Locally orientable partitioned hypermaps) We consider the set LPnλ,µ of triples of the
form (f3, π1, π2) where f3 is a pairing on [n]∪ [n̂], π1 and π2 are sets partitions on [n]∪ [n̂] with blocks of
even size and of respective types 2λ and 2µ (or half types λ and µ) with the constraint that πi (i = 1, 2) is
stable by fi and f3. Any such triple is called a locally orientable partitioned hypermap of type (λ, µ).
In addition, let LPnλ,µ =| LPnλ,µ |.
Remark 2.3 The analogous notion of partitioned or colored map is common in the study of orientable
maps. e.g. see [7],[4] for maps. Recently Bernardi in [1] extended the approach in [7] to find a bijection
between locally orientable partitioned maps and orientable partitioned maps with a distinguished planar
submap. As far as we know [1, Sect. 7] this technique does not extend to locally orientable hypermaps.
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Lemma 2.4 The number of hat numbers in a block is equal to the number of non hat numbers

Proof: If a non hat number i belongs to block πk1 then f1(i) = i−̂1 also belongs to πk1 . The same
argument applies to blocks of π2 with f2(i) = î. 2

Example 2.5 As an example, the locally orientable hypermap on Figure 1 is partitioned by the blocks:

π1 = {{1̂2, 1, 3̂, 4, 7̂, 8, 1̂1, 12}; {1̂, 2, 6̂, 7, 8̂, 9}; {2̂, 3, 1̂0, 11}; {4̂, 5, 5̂, 6, 9̂, 10}}
π2 = {{1, 1̂, 3, 3̂, 6, 6̂, 10, 1̂0}; {2, 2̂, 7, 7̂, 11, 1̂1}; {4, 4̂, 5, 5̂, 8, 8̂, 9, 9̂, 12, 1̂2}}

(blocks are depicted by the geometric shapes around the vertices, all the vertices belonging to a block
have the same shape).

Let Rλ,µ be the number of unordered partitions π = {π1, . . . , πp} of the set [`(λ)] such that µj =∑
i∈πj λi for 1 ≤ j ≤ `(µ). Then for the monomial and power symmetric functions, mλ and pλ, we

have: pλ =
∑
µ�λAutµRλ,µmµ. We use this to obtain a relation between Lnλ,µ and LPnλ,µ

Proposition 2.1 For partitions ρ, ε ` n we have LPnν,ρ =
∑
λ,µRλνRµρL

n
λ,µ, where λ and µ are refine-

ments of ν and ρ respectively.

Proof: Let (f3, π1, π2) ∈ LPnν,ρ. If f3 ◦ f1 ∈ Cλλ and f3 ◦ f2 ∈ Cµµ then by definition of the set
partitions we have that λ and µ are refinements of type(π1) = ν and type(π2) = ρ respectively. Thus, we
can classify the elements ofLPnν,ρ by the cycle types of f3◦f1 and f3◦f2. i.e.LPnν,ρ =

⋃
λ,µ LP

n
ν,ρ(λ, µ)

where
LPν,ρ(λ, µ) = {(f3, π1, π2) ∈ LPnν,ρ | (f3 ◦ f1, f3 ◦ f2) ∈ Cλλ × Cµµ}.

If LPnµρ(λ, µ) = |LPnµρ(λ, µ)| then it is easy to see that LPnµ,ρ(λ, µ) = RλνRµρL
n
λµ.

2

By the change of basis equation between pλ and mλ, this immediately relates the generating series Ψn

and the generating series for LPnλ,µ in monomial symmetric functions. i.e. Ψn(x,y) is∑
λ,µ`n

Lnλ,µpλ(x)pµ(y) =
∑
λ,µ`n

AutλAutµLP
n
λ,µmλ(x)mµ(y). (5)

Definition 2.6 Let LP(A) be the set, of cardinality LP (A), of partitioned locally orientable hypermaps
with n edges where A = (P, P ′, Q,Q′) are tridimensional arrays such that for i, j, k ≥ 0:
• Pijk (resp. P ′ijk) is the number of blocks of π1 of half size i such that:

(i) either 1 belongs to the block or its maximum non-hat number is paired to a hat number by f3
(resp. blocks of π1 not containing 1 such that the maximum non-hat number of the block is
paired to a non-hat number by f3),

(ii) the block contains j pairs {t, f3(t)} where t is the maximum hat number of a block of π2 such
that f3(t) is also a hat number, and,

(iii) the block contains as a whole j + k pairs {u, f3(u)} where both u and f3(u) are non-hat
numbers.

• Qijk (resp. Q′ijk) is the number of blocks of π2 of half size i such that:
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(i) the maximum hat number of the block is paired to a non-hat (resp. hat) number by f3,
(ii) the block contains j pairs {t, f3(t)} where t is the maximum non-hat number of a block of π1

non containing 1 and such that f3(t) is also a non-hat number, and
(iii) the block contains as a whole j+k pairs {u, f3(u)} where both u and f3(u) are hat numbers.

As a direct consequence, for LP (A) to be non zero A has to check the conditions of Theorem 1.1.
Furthermore:

LPnλ,µ =
∑

A∈Mλ,µ

LP (A) (6)

Example 2.7 The partitioned hypermap on Figure 1 belongs to LP(A) for P = E4,1,0 +E3,0,1 +E2,0,0,
P ′ = E3,0,1, Q = E5,0,1 + E4,1,0, Q′ = E3,0,1 where Et,u,v , the elementary array with Et,u,v = 1 and
0 elsewhere.

One can notice that a hypermap is orientable if and only if f3(t) is a hat number when t is a non hat
number (we go through each edge of the map in both directions and there are no changes of direction
during the map traversal). As a result, a hypermap in LP(A) is orientable if and only if:
• p′ = q′ = r = 0 and
• Pijk = Qijk = 0 if j > 0 and/or k > 0.

In this particular case, we have the following values for N (A) and A! :
• N (A) =

∑
i,i,k iPijk =

∑
t ini(λ) = n

• A! =
∏
i Pi,0,0!Qi,0,0! = AutλAutµ

If we denote cnλ,µ the number of such orientable maps, by Theorem 1.1, Equation 6, Lemma 5 and Relation
4 we recover the following combinatorial result from [9, Thm. 1]:

Corollary 2.8 [9, Thm. 1]∑
λ,µ`n

cnλ,µpλ(x)pµ(y) = n
∑
λ,µ`n

(n− `(λ))!(n− `(µ))!
(n+ 1− `(λ)− `(µ))!

mλ(x)mµ(y). (7)

Remark 2.9 Note that {cnλ,µ}λ,mu are better known as the connection coefficients of the symmetric group
which count the number of ordered factorizations w1 · w2 of the long cycle (1, 2, . . . , n) in Sn where
w1 ∈ Cλ and w2 ∈ Cµ.

2.3 Permuted forests and reformulation of the main theorem
We show that partitioned locally orientable hypermaps admit a nice bijective interpretation in terms of
some recursive forests defined as follows:

Definition 2.10 (Rooted bicolored forests of degree A) In what follows we consider the set F(A) of
permuted rooted forests composed of:
• a bicolored identified ordered seed tree with a white root vertex,
• other bicolored ordered trees, called non-seed trees with either a white or a black root vertex,
• each vertex of the forest has three kind of ordered descendants : tree-edges (connecting a white

and a black vertex), thorns (half edges connected to only one vertex) and loops connecting a vertex
to itself. The two extremities of the loop are part of the ordered set of descendants of the incident
vertex and therefore the loop can be intersected by thorns, edges and other loops as well.
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The forests in F(A) also have the following properties:
(i) the root vertices of the non-seed trees have at least one descending loop with one extremity being the

rightmost descendant of the considered vertex,
(ii) the total number of thorns (resp. loops) connected to the white vertices is equal to the number of

thorns (resp. loops) connected to the black ones,
(iii) there is a bijection between thorns connected to white vertices and the thorns connected to black

vertices. The bijection between thorns will be encoded by assigning the same symbolic latin labels
{a, b, c, . . .} to thorns associated by this bijection,

(iv) there is a mapping that associates to each loop incident to a white (resp. black) vertex, a black (resp.
white) vertex v such that the number of white (resp. black) loops associated to a fixed black (resp.
white) vertex v is equal to its number of incident loops. We will use symbolic greek labels {α, β, . . .}
to associate loops with vertices except for the maximal loop of a root vertex r of the non-seed trees.
In this case, we draw an arrow ( ) outgoing from the root vertex r and incoming to the vertex
associated with the loop. Arrows are non ordered, and

(v) the ascendant/descendant structure defined by the edges of the forest and the arrows defined above
is a tree structure rooted in the root of the seed tree.

Finally the degree A of the forest is given in the following way:
(vii) Pijk (resp P ′ijk) counts the number of non root white vertices (including the root of the seed tree)

(resp. white root vertices excluding the root of the seed tree) of degree i, with j incoming arrows
and a total of j + k loops.

(viii) Qijk (resp Q′ijk) counts the number of non root black vertices (resp. black root vertices) of degree
i, with j incoming arrows and total j + k loops.

Example 2.11 As an example, Figure 2 depicts two permuted forests. The one on the left is of degree
A = (P, P ′, Q,Q′) for P = E4,1,0 +E3,0,1 +E2,0,0, P ′ = E3,0,1, Q = E5,0,1 +E4,1,0, andQ′ = E3,0,1

while the one on the right is of degree A(2) = (P (2), P ′(2), Q(2), Q′(2)) for P (2) = E7,0,3 + E4,1,0,
P ′(2) = {0}i,j,k, Q(2) = E7,0,2, and Q′(2) = E4,0,2.
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Fig. 2: Two Permuted Forests

Lemma 2.12 Using the Lagrange theorem for implicit functions, one can show that F (A) equals

N (A)

A!

(n− q − 2r)!(n− p− 2r)!

(n+ 1− p− q − 2r)!

p′!q′! (r − p′)! (r − q′)!
22r−p′−q′

Y
i,j,k

“ i− 1

j, k, j + k

”(P+Q)ijk“ i− 1

j, k, j + k − 1

”(P ′+Q′)ijk
.
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Reformulation of the main theorem
In order to show Theorem 1.1 the next sections are dedicated to the proof of the following stronger result:

Theorem 2.13 There is a bijection ΘA : LP(A)→ F(A) and so LP (A) = F (A).

3 Bijection between partitioned locally orientable unicellular hy-
permaps and permuted forests

We proceed with the description of the bijective mapping ΘA between partitioned locally orientable hy-
permaps and permuted forests of degree A. Let (f3, π1, π2) be a partitioned hypermap in LP(A). The
first step is to define a set of white and black vertices with labeled ordered half edges such that:
• each white vertex is associated to a block of π1 and each black vertex is associated to a block of π2,
• the number of half edges connected to a vertex is half the cardinality of the associated block, and
• the half edges connected to the white (resp. black) vertices are labeled with the non hat (resp. hat)

integers in the associated blocks so that moving clockwise around the vertices the integers are sorted
in increasing order.

Then we define an ascendant/descendant structure on the vertices. A black vertex b is the descendant of a
white one w if the maximum half edge label of b belongs to the block of π1 associated to w. Similar rules
apply to define the ascendant of each white vertex except the one containing the half edge label 1.
If black vertex bd (resp. white vertex wd) is a descendant of white vertex wa (resp. black vertex ba) and
has maximum half edge label m such that f3(m) is the label of a half edge of wa (resp. ba), i.e. f3(mb) is
a non hat (resp. hat) number, then we connect these two half edges to form an edge. Otherwise f3(m) is a
hat (resp. non hat) number and we draw an arrow ( ) between the two vertices. Note that descending
edges are ordered but arrows are not.

Lemma 3.1 The above construction defines a tree structure rooted in the white vertex with half edge 1.

Proof: Let black vertices b1 and b2 associated to blocks πb12 and πb22 be respectively a descendant and the
ascendant of white vertex w associated to πw1 . We denote by mb1 , mb2 and mw their respective maximum
half edge labels (hat, hat, and non hat) and assume mb1 6= n̂. As πw1 is stable by f1, then f1(mb1) is
a non hat number in πw1 not equal to 1. It follows mb1 < f1(mb1) ≤ mw < f2(mw). Then as πb22 is
stable by f2, it contains f2(mw) and f2(mw) ≤ mb2 . Putting everything together yields mb1 < mb2 . In
a similar fashion, assume white vertices w1 and w2 are descendant and ascendant of black vertex b. If we
note mw1 , mw2 and mb their maximum half edge labels (non hat, non hat, and hat) with mb 6= n̂, one can
show that mw1 < mw2 . Finally, as f1(n̂) = 1, the black vertex with maximum half edge n̂ is descendant
of the white vertex containing the half edge label 1. 2

Example 3.2 Using the hypermap of Figure 1 we get the set of vertices and ascendant/descendant struc-
ture as described on Figure 3.

Next, we proceed by linking half edges connected to the same vertex if their labels are paired by f3 to
form loops. If i and f3(i) are the labels of a loop connected to a white (resp. black) vertex such that
neither i nor f3(i) are maximum labels (except if the vertex is the root), we assign the same label to the
loop and the black (resp. white) vertex associated to the block of π2 (resp. π1) also containing i and f3(i).
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Fig. 3: Construction of the ascendant/descendant structure

As we assign at most one label from {α, β, . . .} to a given vertex, several loops may share the same label.

Lemma 3.3 The number of loops connected to the vertex labeled α is equal to its number of incoming
arrows plus the number of loops labeled α incident to other vertices in the forest.

Proof: The result is a direct consequence of the fact that in each block the number of hat/hat pairs is equal
to the number of non hat/non hat pairs 2

As a final step, we define a permutation between the remaining half edges (thorns) connected to the
white vertices and the one connected to the black vertices. If two remaining thorns are paired by f3 then
these two thorns are given the same label from {a, b, . . .}. All the original integer labels are then removed.
We denote by F̃ the resulting forest.

Example 3.4 We continue with the hypermap from Figure 1 and perform the final steps of the construction
as described on Figure 4.(Note that the geometric shapes are here for reference only, they do not play any
role in the final object F̃ ).
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Fig. 4: Final steps of the permuted forest construction

As a direct consequence of definition 2.10, F̃ belongs to F(A).
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4 Proof of the bijection
We show that mapping ΘA : (f3, π1, π2) 7→ F̃ is indeed one-to-one.

4.1 Injectivity
We start with a forest F̃ in F(A) and show that there is at most one triple (f3, π1, π2) in LP(A) such that
ΘA(f3, π1, π2) = F̃ . The first part is to notice that within the construction in ΘA, the original integer
label of the leftmost descendant (thorn, half loop or edge) of the root vertex of the seed tree is necessarily
1 (this root is the vertex containing 1 and the labels are sorted in increasing order from left to right).
Assume we have recovered the positions of integer labels 1, 1̂, 2, 2̂, . . . , i, for some 1 ≤ i ≤ n − 1, non
hat number. Then four cases can occur:
• i is the integer label of a thorn of latin label a. In this case, f3(i) is necessarily the integer label of

the thorn connected to a black vertex also labeled with a. But as the blocks of π2 are stable by both
f3 and f2 then î = f2(i) is the integer label of one of the descendants of the black vertex with thorn
a. As these labels are sorted in increasing order, necessarily, î labels the leftmost descendant with
no recovered integer label.
• i is the integer label of a half loop of greek label α. Then, in a similar fashion as above î is

necessarily the leftmost unrecovered integer label of the black vertex with symbolic label α.
• i is the integer label of a half loop with no symbolic label (i.e, either i or f3(i) is the maximum label

of the considered white vertex). Then, î is necessarily the leftmost unrecovered integer label of the
black vertex at the other extremity of the arrow outgoing from the white vertex containing integer
label i.
• i is the integer label of an edge. î is necessarily the leftmost unrecovered integer label of the black

vertex at the other extremity of this edge.
Finally, using similar four cases for the black vertex containing the descendant with integer label î and the
fact that blocks of π1 are stable by f3 and f1, the thorn, half loop or edge with integer label i+ 1 = f1(̂i)
is uniquely determined as well.

We continue with the procedure described above up until we fully recover all the original labels [n]∪[n̂].
According to the construction of F̃ , the knowledge of all the integer labels uniquely determines the blocks
of π1 and π2. The pairing f3 is as well uniquely determined by the loops, edges and thorns with same
latin labels.

Example 4.1 Assume the permuted forest F̃ is the one on the right hand side of Figure 2. The steps
of the reconstruction are summarized in Figure 5. We get that the unique triple (f3, π1, π2) such that
ΘA(f3, π1, π2) = F̃ is:

f3 = (1 4)(1̂ 8̂)(2 9)(2̂ 3̂)(3 1̂1)(4̂ 1̂0)(5 7)(5̂ 6)(6̂ 11)(7̂ 9̂)(8 10)

π1 = {{1̂1, 1, 1̂, 2, 2̂, 3, 3̂, 4, 7̂, 8, 8̂, 9, 9̂, 10}; {4̂, 5, 5̂, 6, 6̂, 7, 1̂0, 11}}
π2 = {{2, 2̂, 3, 3̂, 5, 5̂, 6, 6̂, 7, 7̂, 9, 9̂, 11, 1̂1}; {1, 1̂, 4, 4̂, 8, 8̂, 10, 1̂0}}

4.2 Surjectivity
To prove that ΘA is surjective, we have to show that the reconstruction procedure of the previous section
always finishes with a valid output.
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Fig. 5: Recovery of the integer labels and the partitioned map

Assume the procedure comes to an end at step i before all the integer labels are recovered (where i is
for example non hat, the hat case having a similar proof). It means that we have already recovered all
the labels of vertex vi identified as the one containing î (or i + 1) prior to this step. This is impossible
by construction provided vi is not the root vertex of the seed tree since the number of times a vertex
is identified for the next step is equal to its number of thorns, plus its number of edges, plus twice the
number of loops that have the same greek label as vi, plus twice the incoming arrows. Using Property (iv)
of Definition 2.10, we have that the sum of the two latter numbers is twice the number of loops of vi. As a
consequence, the total number of times the recovering process goes through vi is exactly (and thus never
more than) the degree of vi.

If v is the root vertex of the seed tree, the situation is slightly different due to the fact that we recover
label 1 before we start the procedure. To ensure that the procedure does not terminate prior to its end, we
need to show that the | v |-th time the procedure goes through the root vertex is right after all the labels of
the forest have been recovered. Again, this is always true because:
• The last element of a vertex to be recovered is the label of the maximum element of the associated

block. Consequently, all the elements of a vertex are recovered only when all the elements of the
descending vertices (through both arrows and edges) are recovered.
• Property (v) of Definition 2.10 states that the ascendant/descendant structure involving both edges

and arrows is a tree rooted in v. As a result, the procedure goes the v-th time through v only when
all the elements of all the other vertices are recovered.

5 On proving Theorem 1.1 using Zonal polynomials
In the orientable case, one can use Schur symmetric functions and the irreducible characters of the sym-
metric group to prove the identity in Equation (7) (see [6]). This requires: (i) (pλ → sµ) the Murnaghan-
Nakayama rule, (ii) (sµ → mν) finding the number of semistandard Young tableaux of hook shape
λ = a 1n−a and type µ which is just

(
`(µ)−1
r

)
, and (iii) using inclusion exclusion. One could try to repli-

cate this on Ψn and obtain an algebraic proof of Theorem 1.1. We show the outcome after step (i)’ using
[5, Cor. 5.2]. Steps (ii)’ and (iii)’ appear quite less tractable.

(i)’ Ψn(x,y) = |Bn|
|K(n)|

∑
a≥b≥1

ϕ(a,b,1n−a−b)(n)
H2(a,b,1n−a−b)

Z(a,b,1n−a−b)(x)Z(a,b,1n−a−b)(y).
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6 Appendix: completion of the main formula
For Theorem 1.1 to be exact, the following additional definitions for some limit values of A are needed:

(i) If q′ 6= 0, then there is at most one given (i0, j0, k0) with i0 = 2(j0 + k0), for which Pi0j0k0 = 1
instead of 0. In that situation, we define N (A)

` i0−1
j0,k0,j0+k0

´Pi0j0k0 =

j0

q′

“ i0

j0, k0

”0@ δp′ 6=0

p′

X
i,j,k

(i− 2j − 2k)P ′
X
i,j,k

jQ′ +
X
i,j,k

(i− 2j − 2k)Q′
1 +

P
i,j,k (i− 1− 2j − 2k)P

n− q − 2r

1A
(ii) When q′ 6= 0 and n − q − 2r = 0, which can only occur if p = 1 (we assume P = Et,u,v , the

elementary array with Et,u,v = 1 and 0 elsewhere) the whole summand reduces to:
1

A!

"
δ(n−2r)p′ 6=0

(t− 2u− 2v)
P

j,k,l jQ

(n− 2r)p′
+ δp′ 6=0u

P
i,j,k jQ

′

p′q′
+ δp′=0

#

×
(n− 2r)!p′!q′! (r − p′)! (r − q′)!

22r−p′−q′

“ t

u, v, u+ v

”Y
i,j,l

“ i− 1

j, k, j + k

”Qijk“ i− 1

j, k, j + k − 1

”(P ′+Q′)ijk
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