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Abstract. We study the functions that count matrices of given rank over a finite field with specified positions equal to
zero. We show that these matrices are q-analogues of permutations with certain restricted values. We obtain a simple
closed formula for the number of invertible matrices with zero diagonal, a q-analogue of derangements, and a curious
relationship between invertible skew-symmetric matrices and invertible symmetric matrices with zero diagonal. In
addition, we provide recursions to enumerate matrices and symmetric matrices with zero diagonal by rank. Finally,
we provide a brief exposition of polynomiality results for enumeration questions related to those mentioned, and give
several open questions.

Résumé. Nous étudions certaines fonctions qui comptent des matrices à coefficients dans un corps fini d’un rang
donné ayant certaines entrées égales à zéro. Nous montrons que ces matrices sont des q-analogues des permutations
avec certaines valeurs restreintes, et nous obtenons une formule simple et fermée pour calculer le nombre de matrices
inversibles avec zéro sur toute la diagonale. De plus nous donnons des récursions pour énumérer par le rang les
matrices et les matrices symétriques avec des zéros sur la diagonale. Pour finir, nous faisons un exposé concis des
résultats sur la polynomialité des fonctions énumératives liées à celles qui sont mentionnées antérieurement, et nous
incluons plusieurs questions ouvertes.

Resumen. Estudiamos ciertas funciones que cuentan matrices con un rango dado sobre un campo finito y con ciertas
entradas iguales a cero. Mostramos que estas matrices son un q-análogo de permutaciones con ciertos valores re-
stringidos. También obtenemos una recursión simple y cerrada para el número de matrices invertibles con ceros en
toda la diagonal. Además, damos recursiones para enumerar matrices y matrices simétricas con ceros en la diagonal
por rango. Finálmente, damos una exposición breve de resultados sobre la polinomialidad de funciones enumerativas
relacionadas a las anteriormente mencionadas e incluimos varias preguntas abiertas.

Keywords: linear algebra over finite fields, q-analogues, derangements

1 Introduction
Fix a prime power q. Let Fq denote the field with q elements and let GL(n, q) denote the group of n× n
invertible matrices over Fq . The support of a matrix (Aij) is the set of indices (i, j) such that Aij 6= 0.
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Our work was initially motivated by the following question of Richard Stanley: how many matrices in
GL(n, q) have support avoiding the diagonal entries? The answer to this question is

q(
n−1

2 )−1(q − 1)n
(

n∑
i=0

(−1)i
(
n

i

)
[n− i]q!

)
,

which is proven in Proposition 2.1 as part of a more general result. This question has a natural com-
binatorial appeal and is reminiscent of the work of Buckheister (Buc) and Bender (Ben) enumerating
invertible matrices over Fq with trace zero (see also (Sta1, Prop. 1.10.15)). It also falls naturally into
two broader contexts, the study of q-analogues of permutations and the study of polynomiality results for
certain counting problems related to algebraic varieties over Fq .

In the former context, we consider the following situation: fix m,n ≥ 1, r ≥ 0, and S ⊂ {(i, j) | 1 ≤
i ≤ m, 1 ≤ j ≤ n}. Let Tq be the set of m× n matrices A over Fq with rank r and support contained in
the complement of S. Also, let T1 be the set of 0-1 matrices with exactly r 1’s, no two of which lie in the
same row or column, and with support contained in the complement of S (i.e., the set of rook placements
avoiding S). We have that T1 is a q-analogue of Tq , in the following precise sense:

Proposition 5.1 We have #Tq ≡ #T1 · (q − 1)r (mod (q − 1)r+1).

In particular, when #Tq is a polynomial function of q we have that #Tq is divisible by (q − 1)r and
#Tq/(q − 1)r|q=1 = #T1. Thus, rank r matrices whose support avoids the set S can be seen as a q-
analogue of rook placements that avoid S. Applying this to our situation where S is the set of diagonal
entries, we get that the set of invertible matrices avoiding the diagonal is a q-analogue of the set of
derangements, a fact that can also be seen directly from the explicit formula above. (There is also a more
conceptual explanation for this using the Bruhat decomposition of GL(n, q): see (LLMPSZ, Sec. 2.2).)

Note that for an arbitrary set S of positions, the function #Tq need not be a polynomial in q. (Stem-
bridge (Ste1) gives an example of non-polynomial #Tq with n = m = 7, r = 7, and a set S with
#S = 28.) The second context concerns the question of which sets S give a polynomial #Tq and is
deeply related to a speculation of Kontsevich from 1997 (see Stanley (Sta2) and Stembridge (Ste1)) that
was proven false by Belkale and Brosnan (BB). We provide further background on this topic in Section 5.

We close this introduction with a summary of the results of our paper.
Section 2 is concerned with Stanley’s question on the enumeration of matrices in GL(n, q) with zero

diagonal. We attack this problem by enumerating larger classes of matrices. We provide two recursions,
one based on the size of the matrix and the other based on the rank of the matrix, and we provide a
closed-form solution for the first recursion.

In Section 3, we enumerate symmetric matrices in GL(n, q) whose support avoids the diagonal in
the case that n is even. These matrices may be viewed as a q-analogue of fixed point-free involutions.
A curious byproduct of our formula (originally due to Jones (Jon)) is that it also counts the number of
symmetric matrices in GL(n − 1, q) and the number of skew-symmetric matrices in GL(n, q). In fact,
the varieties associated to these three classes of matrices are pairwise non-isomorphic, and we have not
found a satisfactory reason that their solution sets have the same size.

In Section 4, we attack the general problem of enumerating symmetric matrices with zeroes on the
diagonal with given rank. We provide recursions for arbitrary rank and solve the full rank case to obtain the
enumeration of symmetric matrices in GL(n, q) when n is odd. The situation in this case is significantly
more complicated than in Sections 2 and 3.
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Finally, in Section 5 we revisit Proposition 5.1, discuss the two broader contexts mentioned above, and
give some open questions about families of sets S for which #Tq(m× n, S, r) is a polynomial in q.

For a complete version of this extended abstract, see (LLMPSZ).

Notation

Given an integer n, we define the q-number [n]q = qn−1
q−1 , the q-factorial [n]q! = [n]q · [n−1]q · [n−2]q · · ·

and the q-double factorial [n]q!! = [n]q · [n− 2]q · [n− 4]q · · · . In addition, we use a number of invented
notations; to avoid confusion and for easy reference, we include a table of these functions here. The last
column indicates the sections in which the notation is used.

set # set description section
Mat0(n, k, r) mat0(n, k, r) set of n× n matrices of rank r over Fq with first k

diagonal entries equal to zero
2

Sym(n) sym(n) set of n× n symmetric invertible matrices over Fq 3, 4
Sym(n, r) sym(n, r) set of n× n symmetric matrices over Fq of rank r 4
Sym0(n, r) sym0(n, r) set of n × n symmetric matrices with rank r over

Fq with diagonal entries equal to zero
4

S(n, k) s(n, k) set of n×n symmetric invertible matrices with first
k diagonal entries equal to zero

3, 4

Sym0(n, k, r) sym0(n, k, r) set of n × n symmetric matrices with rank r with
first k diagonal entries equal to zero

4

Tq(m× n, S, r) #Tq(m× n, S, r) set of m× n matrices over Fq with rank r and sup-
port contained in the complement of S

1, 5

T1(m× n, S, r) #T1(m× n, S, r) set of 0-1 matrices with exactly r 1’s, no two of
which lie in the same row or column, and with sup-
port contained in the complement of S

1, 5

2 Matrices with zeroes on the diagonal
In this section, we consider the problem of counting invertible matrices over Fq with zero diagonal. In
Section 2.1 we recursively count full rank matrices of rectangular shape with all-zero diagonal and in
Section 2.2 we recursively count square matrices by rank and number of zeroes on the diagonal. We solve
the first recursion and obtain a closed form formula for the number of invertible matrices with zeroes
on the diagonal. These numbers give an enumerative q-analogue of the derangements, i.e., dividing all
factors of q − 1 and setting q = 1 in the result gives the number of derangements.

2.1 Recursion by size

For 1 ≤ k ≤ n, denote by fk,n the number of k × n matrices A over Fq such that A has full rank k and
such that Aii = 0 for 1 ≤ i ≤ k. We give a recursive proof of a simple explicit formula for fk,n. In
particular, we will have a formula for fn,n, the number of invertible n × n matrices with zeroes on the
diagonal.
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Proposition 2.1 For 1 ≤ k ≤ n,

fk,n = q(
k−1
2 )(q − 1)k

(
q−1

k∑
i=0

(−1)i
(
k

i

)
[n− i]q!
[n− k]q!

)

is the number of k × n matrices of rank k with zeroes on the diagonal. In particular,

fn,n = q(
n−1

2 )(q − 1)n
(
q−1

n∑
i=0

(−1)i
(
n

i

)
[n− i]q!

)

is the number of invertible n× n matrices with zeroes on the diagonal.

Proof idea: We proceed recursively, building matrices up by adding one row at a time. This leads to the
recursion

fk+1,n = qk−1(q − 1)(fk,n · [n− k]q − fk,n−1)

with initial values f1,n = qn−1 − 1, from which the result follows. 2

Remark 2.2 In the expression for fn,n, the q = 1 specialization of the alternating sum is

n∑
i=0

(−1)i
(
n

i

)
(n− i)! = n!

n∑
i=0

(−1)i

i!
,

which is the number of derangements of length n. The above proof does not “explain” this fact, but one
can give more conceptual proofs based on the Bruhat decomposition of GL(n, q) (see (LLMPSZ, Sec.
2.2) for details) or on Proposition 5.1. �

2.2 Recursion by rank
In this section, we use recursive methods to attack the problem of enumerating square matrices with a
prescribed number of zeroes on the diagonal by rank. We use the following strategy: each n × n matrix
can be inflated to q2n+1 different (n+1)× (n+1) matrices, and we count these by keeping careful track
of what their rank is and how many zeroes they have on the diagonal. We are unable to obtain a closed
formula for this recursion, but the we use the same proof technique successfuly in Sections 3 and 4.

Let mat0(n, k, r) be the number of n× n matrices over Fq of rank r whose first k diagonal entries are
zero (and the other diagonal entries may or may not be zero).

Proposition 2.3 We have the following recursion:

mat0(n+1, k+1, r+1) =
1
q

mat0(n+1, k, r+1)+(qr+1−qr) mat0(n, k, r+1)−(qr−qr−1) mat0(n, k, r)

with initial conditions

mat0(n, 0, r) =
q(

r
2)(q − 1)r

[r]q!

(
r−1∏
i=0

[n− i]q

)2

.
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Proof idea: We proceed by decomposing each (n+1)× (n+1) matrix A as A =
[
a u
v B

]
where a is an

element of Fq , u is a row vector over Fq of length n, and v is a column vector over Fq of length n, and B
is an n × n matrix. We compute for each B the possible ranks of A, taking into account whether a = 0
and sum over all B to get the recursion. 2

The preceding recursion works by reducing the number of zeroes required to lie on the diagonal. How-
ever, we can easily modify the proof to work only with matrices of all-zero diagonal.

Corollary 2.4 For r ≥ 0, the number gn,r of n × n matrices over Fq of rank r and with zero diagonal
satisfies the recursion

gn+1,r+1 = (qn − qr−1)2gn,r−1 + (q2r+1 + qr+1 − qr)gn,r+1

+ (2qn+r − q2r − q2r−1 − qr + qr−1)gn,r

with initial conditions gn,0 = 1, gn,−1 = 0 and g1,1 = 0.

3 Symmetric and skew-symmetric matrices
A natural next step is to consider symmetric matrices, which are (at least morally) a q-analogue of in-
volutions, suggesting the possibility of interesting combinatorial results. This also brings us closer to a
speculation by Kontsevich (see Section 5). In this section, we begin by enumerating symmetric invertible
matrices over Fq whose diagonal is all zero, a q-analogue of involutions with no fixed points. This leads
to two very unintuitive facts: in Section 3.1, we show that the number of these matrices of size 2n is the
same as the number of invertible symmetric matrices of size 2n − 1; in Section 3.2, we show that both
of these numbers are equal to the number of invertible skew-symmetric matrices of the size 2n. We give
more refined but less beautiful versions of the first of these results in Section 4.

While extending the approach of Section 2.1 to the case of symmetric matrices seems impossible, the
ideas of Section 2.2 can be adjusted to work in this context. The major complicating factor is that the
bilinear form uBv that we worked with implicitly in Section 2.2 must be replaced with the quadratic form
vBvT . Quadratic forms behave very differently in even and odd characteristic, so we give the following
proviso:

Remark 3.1 Our proofs of the results in this section are only valid for q odd. �

Of course, some of the results still hold when q is even: for example, symmetric matrices of rank r with
all-zero diagonal are equinumerous with skew-symmetric matrices of rank r over fields of characteristic
2 for the silly reason that they are exactly the same set of matrices. For a more thorough treatment of the
case q even, see (Mac) and (Sta2).

3.1 Symmetric matrices with zeroes on the diagonal
Let Sym0(n) denote the set of n×n symmetric matrices in GL(n, q) with zero diagonal and let sym0(n) =
# Sym0(n). Similarly, let S(n, k) be the set of n × n symmetric matrices in GL(n, q) whose first k di-
agonal entries are zero and let s(n, k) = #Sym0(n, k), so S(n, n) = Sym0(n).

In (Mac, Theorem 2), MacWilliams shows
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Theorem The number of symmetric invertible matrices (for any characteristic) is

sym(n) = q(
n+1

2 )
dn/2e∏
j=1

(1− q1−2j). (3.2)

Observe that when n is even, sym(n − 1) is a q-analogue of (n − 1)!!, the number of fixed point-free
involutions in Sn.

Theorem 3.3 When n is even, the number of (n− 1)× (n− 1) symmetric invertible matrices is equal to
the number of n× n symmetric invertible matrices with zero diagonal, i.e., sym(n− 1) = sym0(n).

Proof idea: Naively, one might expect that about q−k of all matrices in Sym(n) have first k diagonal
entries equal to 0. We begin by showing that, remarkably, this estimate is actually exact when n is even.
The proof of this lemma proceeds by decomposing a matrix as in Section 2.2 followed by the classification
of symmetric bilinear forms over fields of odd characteristic (see (Wan, Theorem 1.22)). Thanks to this
lemma and Equation (3.2), the proof is an easy induction. 2

Note that the case for q even was done by MacWilliams (Mac, Theorems 2, 3) (see also Equation (4.3)).

3.2 Skew-symmetric matrices
In this section, we count invertible skew-symmetric matrices by rank, obtaining a q-analogue of fixed
point-free “partial involutions.” It is not clear a priori that there is any connection between these matrices
and symmetric matrices, but we obtain as a consequence of the result that the when n is even, the number
of n × n invertible skew-symmetric matrices is the same as the number of (n − 1) × (n − 1) invertible
symmetric matrices (and so, by Theorem 3.3, also the same as the number of n× n invertible symmetric
matrices with all-zero diagonal). After the first write-up of this paper we found that this was proven by
Jones (Jon, Theorems 1.7, 1.7′, 1.8′, 1.9) using topological methods.

Proposition 3.4 Let sk(n, r) be the number of n × n skew-symmetric matrices of rank r. When r is odd
we have sk(n, r) = 0 and when r is even we have

sk(n, r) = qr(r−2)/4(1− q)r/2 · [n]q!
[n− r]q! · [r]q!!

.

In particular, when r = n is even we have sk(n, n) = sym(n− 1).

One interesting observation is that this is a q-analogue of
(
n
r

)
(r−1)!!, the number of “partial involutions

of rank r” with no fixed points, i.e., the number of pairs of an r-subset of {1, . . . , n} together with
a fixed point-free involution on that set. Note that in (LLMPSZ, Sec. 3.3) we give another proof of
sk(n, n) = sym(n− 1) via Schubert varieties.

Proof idea: We decompose the skew-symmetric matrices in the same way as in preceding sections to
obtain the recurrence

sk(n, r) = qr sk(n− 1, r) + (qn−1 − qr−2) sk(n− 1, r − 2),

with initial values sk(n, 0) = 1 and sk(n, 1) = 0, whose solution is the formula stated above. In the case
r = n is even, compare with Equation (3.2) to obtain sk(n, n) = sym(n− 1). 2
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4 Refined enumeration of symmetric matrices
In this section, we attack the problem of enumerating n × n symmetric matrices over Fq with zeroes on
the diagonal by rank. Roughly speaking, we should expect this problem to be a q-analogue of counting
fixed point-free involutions, or of “partial fixed point-free involutions” when we consider matrices of less
than full rank. As in the preceding sections, we construct a recursion to count the desired objects. Our
basic approach is the same as in Section 2.2. The main difference is that the symmetry of our matrices
forces us to introduce a sort of parity condition depending on whether or not we can write a matrix in the
form M ·MT for some other matrix M . The details on whether or not we can do this are different for
odd and even characteristic. We begin by mentioning both cases to then restrict our attention and results
to the odd case.

Remark 4.1 (q even) It was shown by Albert (Alb, Thm. 7) that a symmetric matrixA in GL(n, q) can be
factored in the formA = M ·MT for some matrixM in GL(n, q) if and only ifA has at least one nonzero
diagonal entry. Thus #{A ∈ Sym(n) | A = M ·MT for some M ∈ GL(n, q)} = sym(n)− sym0(n).
MacWilliams (Mac) gave an elementary proof of Albert’s theorem and also calculated sym0(n, r), the
number of n× n symmetric matrices of rank r with zero diagonal, when q is even.

Theorem (Mac, Thm. 3, Sec. III) For q even, if r = 2s+ 1 is odd then

sym0(n, 2s+ 1) = 0 (4.2)

while if r = 2s is even then

sym0(n, 2s) =
s∏
i=1

q2i−2

q2i − 1

2s−1∏
i=0

(qn−i − 1). (4.3)

Henceforth, we will always assume that q is odd. �

For q odd, define ψ : F×q → {+,−} by ψ(δ) = + if and only if δ is a perfect square in Fq . In other
words, ψ is the Legendre symbol for Fq . We can also extend ψ naturally to symmetric matrices using the
following remark.

Remark 4.4 By applying symmetric row and column reductions, every n×n symmetric matrix A of rank
r > 0 can be written either in the form A = M · diag(1r, 0n−r) ·MT for some M ∈ GL(n, q) or in the
form M · diag(1r−1, z, 0n−r) ·MT for some non-perfect square z ∈ Fq and some M ∈ GL(n, q). �

In the former case we say that A has (quadratic) character ψ(A) = ψ(1) = + and in the latter case
we say it has character ψ(A) = ψ(z) = −. Two notable special cases are that if A ∈ GL(n, q) then
ψ(A) = ψ(detA), while if A is diagonal then ψ(A) = + if and only if the product of the nonzero
diagonal entries of A is a square in Fq .

Let sym0(n, k, r) be the number of n× n symmetric matrices with rank r and the first k diagonal ele-
ments equal to 0, with no other restrictions. Thus, we have for example that sym0(n, n, r) = sym0(n, r)
while sym0(n, 0, r) = sym(n, r) is the number of symmetric matrices of rank r with no other restrictions
which has been calculated in (Mac, Thm. 2, Sect. III). Let symψ

0 (n, r, k) count only those matrices that
have character ψ. We now give a recurrence for sym0(n, k, r). We use this recurrence to enumerate
invertible symmetric matrices over Fq with zero diagonal (Theorem 4.7), generalizing Theorem 3.3.



652 Lewis and Liu and Morales and Panova and Sam and Zhang

Proposition 4.5 If r is odd, define t = 0 if (−1)(r+1)/2 is a square in Fq and t = 1 otherwise. Then

symψ
0 (n+ 1, k + 1, r + 1) =

1
q

symψ
0 (n+ 1, k, r + 1)+

+ (−1)t · ψ ·
(

1
2

sym0(n, k, r) + symψ
0 (n, k, r + 1)

)
· (q(r+1)/2 − q(r−1)/2).

If r is even and r > 0, define t = 0 if (−1)r/2 is a square in Fq and t = 1 otherwise. Then

symψ
0 (n+ 1, k + 1, r + 1) =

1
q

symψ
0 (n+ 1, k, r + 1)−

− (−1)t

2
(sym+

0 (n, k, r)− sym−0 (n, k, r))(qr/2 − qr/2−1).

We have initial values

symψ
0 (n+ 1, k + 1, 1) =

1
2

sym0(n+ 1, k + 1, 1) =
q − 1

2

n−k−1∑
i=0

qi =
qn−k − 1

2
,

sym+
0 (n, 0, 2s+ 1) =

1
2

sym(n, 2s+ 1),

and

sym+
0 (n, 0, 2s) =

1
2
qs + (ψ(−1))s

qs
sym(n, 2s).

Proof idea: As before, we proceed by building larger matrices by adding rows and columns to smaller
matrices; for each n× n symmetric matrix B, we consider the (n+ 1)× (n+ 1) matrices of the form

A =
[
a v
vT B

]
and analyze them (taking into account whether a = 0) to write down a recursion. The number of matrices
A of a given rank associated to a matrix B now depends on the rank of B (as in Proposition 2.3) and
also on its quadratic character. At important junctures we use Wan’s result (Wan, Theorem 1.26) on the
number of zeroes over Fq of certain quadratic forms. The k = 0 base cases are provided by (Mac, Thm.
2, Sect. III). 2

We do not have a solution for this recurrence. However, we use it to obtain two partial results towards
its solution:

Corollary 4.6 We have

sym+
0 (n+ 1, , k + 1, 2s+ 1) = sym−0 (n+ 1, k + 1, 2s+ 1) =

1
2

sym0(n+ 1, k + 1, 2s+ 1),

and

sym0(n+ 1, k + 1, 2s) + sym0(n+ 1, k + 1, 2s+ 1) =
1

qk+1
(sym(n+ 1, 2s) + sym(n+ 1, 2s+ 1)).
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We also use Proposition 4.5 to obtain an explicit formula in the case of invertible symmetric matrices
(i.e., when r = n). Let s(n, k) = sym0(n, k, n) be the number of invertible n×n symmetric matrices with
first k diagonal elements are equal to 0, with no other restrictions. We use the recurrence in Proposition
4.5 to give a recurrence for this full rank case.

Theorem 4.7 Let s(n, k) be the number of invertible n× n symmetric matrices with the first k diagonal
elements equal to 0 and let sym(n) be the number of invertible n × n symmetric matrices with no other
restrictions. We have

s(2m, k + 1) =
1

qk+1
sym(2m),

and

s(2m+ 1, k + 1) =
1

qk+1

2m+1∑
j=0

(−1)dj/2eqbj/2c(2m+1−bj/2c)(q − 1)j
(
k + 1
j

)
sym(2m+ 1− j).

Proof idea: Substitute r = n into Proposition 4.5, sum up the two different characters, and iterate. 2

5 Polynomiality, q-analogues, and some open questions
So far, we have fixed sets of the form S = {(i, i) | 1 ≤ i ≤ k}, counted matrices over Fq with support
avoiding S by rank, and done analogous counts for symmetric and skew-symmetric matrices. In this
section, we briefly examine what happens when we enumerate matrices of given rank whose support
avoids an arbitrary fixed set of entries.

5.1 q-analogues and the proof idea of Proposition 5.1
Fix m,n ≥ 1, r ≥ 0, and S ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let Tq = Tq(m× n, S, r) be the set of
m × n matrices A over Fq with rank r and support contained in the complement of S. We consider the
problem of computing #Tq , the number of such matrices.

A first observation is that, holding m,n, r, S fixed and letting q vary, the function #Tq need not be
polynomial in q. We have already seen this phenomenon in the case of symmetric matrices; for instance,
setting m = n = r to be an odd positive integer and S = {(i, i) | 1 ≤ i ≤ n} we have from Equations
(4.2) and (4.3) and Theorem 4.7 that #(Tq(n × n, S, n) ∩ Sym(n)) = sym0(n) is equal to zero when
q is even but is nonzero when q is odd. This lack of polynomiality also occurs in the not-necessarily
symmetric case. Stembridge (Ste1, Section 7) showed that for n = m = 7, if S′ is the complement of
the incidence matrix of the Fano plane, then the number of invertible 7× 7 matrices in Fq whose support
avoids S′ is given by two different polynomials depending on whether q is even or odd. (This is the
smallest such example in the sense that Tq(n × n, S, n) is a polynomial if n < 7 for any set S, and if
n = 7 and #S > 28.)

A second observation is that we expect #Tq to be a q-analogue of a closely related problem for per-
mutations. Specifically, let T1 = T1(m× n, S, r) be the set of 0-1 matrices with exactly r 1’s, no two of
which lie in the same row or column, and with support contained in the complement of S. The following
proposition makes this precise.
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Proposition 5.1 Fix m,n ≥ 1, r ≥ 0, and S ⊂ {(i, j) | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Let Tq =
Tq(m × n, S, r) be the set of m × n matrices A over Fq with rank r and support contained in the
complement of S, and T1 be the set of 0-1 matrices with exactly r 1’s, no two of which lie in the same row
or column, and with support contained in the complement of S. Then we have

#Tq ≡ #T1 · (q − 1)r (mod (q − 1)r+1).

In particular, for any infinite set of values of q for which #Tq is a polynomial in q we have that (q−1)r

divides #Tq as a polynomial and that #Tq/(q − 1)r |q=1= #T1.

Proof idea: For each `, identify (F×q )` with the group of invertible diagonal ` × ` matrices. Con-
sider the action of (F×q )m × (F×q )n on Tq given by (X,Y ) · A = XAY −1. For any A ∈ Tq , let
G be the bipartite graph with vertices v1, . . . , vm, w1, . . . , wn and an edge viwj if Aij 6= 0. Then
(x1, . . . , xm, y1, . . . , yn) ∈ (F×q )m × (F×q )n stabilizes A if and only if xi = yj for all edges viwj of
G. Thus, the size of the stabilizer of A is (q − 1)C(G), where C(G) is the number of connected compo-
nents of G, and the size of the orbit of A is therefore (q − 1)m+n−C(G).

Since A has rank r, at least r of the vi and r of the wi have positive degree. It follows that C(G) ≤
m+n−r with equality if and only ifG consists of r disjoint edges, that is, whenG is the graph associated
to a matrix in T1. It follows that the size of each orbit is (q−1)a for some a ≥ r, and the number of orbits
of size (q − 1)r is #T1. 2

Remark 5.2 The technique in the proof of Proposition 5.1 is widely applicable to similar problems. For
example, we can use it in the case of symmetric matrices (when q is odd) with rank 2s with zero diagonal.
Here, the group (F×q )n of invertible diagonal matrices acts on the set of symmetric matrices by the rule
X ·A = XAX and we consider the graphG on n vertices v1, . . . , vn with edge vivj if and only ifAij 6= 0.
Proceeding in a similar way it is then possible to conclude that (looking modulo (q− 1)s+1) we have that
symmetric matrices with zero diagonal are a q-analogue of “partial fixed point-free involutions.” �

5.2 Polynomiality and a speculation of Kontsevich
As mentioned in Section 1, the question of the polynomiality of #Tq is related to a speculation from
Kontsevich. We briefly provide some background on Stanley’s (Sta2) reformulation of this speculation
and on its relation to the polynomiality of #Tq .

Let G be an undirected connected graph with edge set E, and form the polynomial ring Z[xe | e ∈ E].
We consider the polynomial QG(x) =

∑
T

∏
e∈T xe, where the sum is over all spanning trees T of G.

Let gG(q) = #{x ∈ FEq | QG(x) 6= 0}. Kontsevich inquired whether for fixed G, gG(q) is a polynomial
function in the parameter q.

Let v1, . . . , vn be the vertices of G and suppose that vn is adjacent to all the other vertices. By the
Matrix-Tree Theorem, one may conclude that gG(q) is the number of symmetric matrices in GL(n−1, q)
such that the (i, j)-th entry is 0 whenever i 6= j and vi and vj are not connected. Therefore, setting
SG = {(i, j) | i 6= j and vivj 6∈ E} we have gG(q) = #(Tq(n× n, SG, n) ∩ Sym(n)).

Belkale and Brosnan showed in (BB) that Kontsevich’s speculation is false by showing that the func-
tions gG(q) are as complicated (in a very precise sense) as the functions counting the number of solutions
over Fq of any variety defined over Z. In addition, Stembridge and Schnetz in (Ste1) and (Sch) showed
that gG(q) is a polynomial for graphsG with≤ 12 and 13 edges respectively, and the latter found six non-
isomorphic graphs with 14 edges such that gG(q) is not a polynomial in q. Given these results, it becomes



Matrices with restricted entries and q-analogues of permutations (extended abstract) 655

an interesting problem to determine when gG(q) is a polynomial in q. Taken together with Proposition 5.1,
they also suggest the following question:

Question 5.3 For which families of sets S is #Tq(m× n, S, r) a polynomial in q?

Note that #Tq(m × n, S, r) is invariant under permutations of rows and columns. For simplicity, we
restrict the question to the case of square matrices. Below, we describe one class of sets S for which the
answer is already known by the theory of q-rook numbers.

Let S denote the complement of the set S. We say that S ⊆ [n]× [n] is a straight shape if its elements
form a Young diagram. Thus, to every integer partition λ with at most n parts and with largest part at
most n (i.e., to each sequence of integers (λ1, λ2, . . . , λn) such that n ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) there
is an associated set S = Sλ. We have that #Sλ =

∑
λi = |λ| is the sum of the parts of λ. Similarly, if λ

and µ are partitions such that Sµ ⊆ Sλ then we say that the set Sλ \ Sµ is a skew shape and we denote it
by Sλ/µ. Next we give three easy facts about straight and skew shapes.

Remark 5.4 (i) Up to a rotation of [n] × [n], the complement Sλ of the straight shape Sλ is also a
straight shape. However, Sλ/µ is typically not a skew shape.

(ii) If (i, j) ∈ Sλ then the rectangle {(s, t) | 1 ≤ s ≤ i, 1 ≤ t ≤ j} is contained in Sλ. General skew
shapes Sλ/µ do not have this property.

(iii) If λ = (n, n − 1, . . . , 2, 1) and µ = (n − 1, n − 2, . . . , 1, 0) are so-called “staircase shapes” then
Sλ/µ is, up to rotation, the set of diagonal entries. Thus the value #Tq(n × n, Sλ/µ, n) is given in
Proposition 2.1 while trivially Tq(n× n, Sλ/µ, n) = #{invertible diagonal matrices} = (q − 1)n.

�

Given a set S ⊆ [n]×[n], the r q-rook number of Garsia and Remmel (GR) isRr(S, q) =
∑
C q

inv(C,S),
where the sum is over all rook placements C ∈ T1(n× n, S, r) of r non-attacking rooks in S and where
inv(C, S) is the number of squares in S not directly above (in the same column) or to the left (in the same
row) of any placed rook.

The following result of Haglund shows that when S = Sλ, we have that Tq(n× n, Sλ, n) is a polyno-
mial, and in fact is the product of a power of q − 1 and a polynomial with nonnegative coefficients.

Theorem (Hag, Theorem 1) For straight shapes Sλ, #Tq(n×n, Sλ, r) = (q−1)rqn
2−|λ|−rRr(Sλ, q−1).

Question 5.5 The proof of the above theorem relies on Remark 5.4 (ii) and it does not immediately extend
to skew shapes Sλ/µ. However, computations using Stembridge’s Maple package reduce (Ste2) suggest
that when S is a skew shape, #Tq is still a polynomial and that when S is the complement of a skew
shape, #Tq is a power of q − 1 times a polynomial with nonnegative coefficients. Is this true for all skew
shapes and their complements?

(Recall that any counter-examples satisfy n = 7 and #S ≥ 28 or n ≥ 8.)

Question 5.6 Haglund’s theorem and the preceding question suggest similarities between #Tq for S and
S that is reminiscent of the classical reciprocity of rook placements and rook numbers (see (Cho) for a
short combinatorial proof). Dworkin (Dwo, Theorem 8.21) gave an analogue of this classical reciprocity
for q-rook numbers Rr(S, q) when S = Sλ. By Haglund’s result, this implies a reciprocity formula
relating Tq(n×n, Sλ, r) and Tq(n×n, Sλ, r). Can this reciprocity be extended to skew or other shapes?
If so, we could recover the formula for fn,n in Proposition 2.1 from the formula of its complement:
(q − 1)n.
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