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Closed paths whose steps are roots of unity
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Abstract. We give explicit formulas for the number Un(N) of closed polygonal paths of length N (starting from
the origin) whose steps are nth roots of unity, as well as asymptotic expressions for these numbers when N → ∞.
We also prove that the sequences (Un(N))N≥0 are P -recursive for each fixed n ≥ 1 and leave open the problem of
determining the values of N for which the dual sequences (Un(N))n≥1 are P -recursive.

Résumé. Nous donnons des formules explicites pour le nombre Un(N) de chemins polygonaux fermés de longueur
N (débutant à l’origine) dont les pas sont des racines n-ièmes de l’unité, ainsi que des expressions asymptotiques
pour ces nombres lorsque N → ∞. Nous démontrons aussi que les suites (Un(N))N≥0 sont P -récursives pour
chaque n ≥ 1 fixé et laissons ouvert le problème de déterminer les valeurs de N pour lesquelles les suites duales
(Un(N))n≥1 sont P -récursives.
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1 Introduction
The subject of random walks is classical and appears in many areas of mathematics, physics and computer
science (see, for example, http : //en.wikipedia.org/wiki/Random walks). In this paper we combi-
natorially analyse a new type of closed random walks in the complex plane — a kind of restricted Brow-
nian motion — whose steps are given by nth-roots of unity. For n ≥ 1, let Ωn = {1, ωn, ω2

n, . . . , ω
n−1
n }

be the set of all n-th roots of unity, where ωn = exp(2πi/n) ∈ C. A polygonal path of length N , starting
at the origin in the complex plane, whose steps are n-th roots of unity can be encoded by the sequence
w = [ωk1n , . . . , ω

kN
n ] of its successive steps, ωkjn ∈ Ωn, j = 1, . . . , N . For ν = 0, . . . , n − 1, let mν be

the number of times that ωνn appears in w. We call the sequence ~m = [m0, . . . ,mn−1] the type of w, and
write ~m = type(w). Of course, the path w is closed if and only if ωk1n + · · ·+ ωkNn = 0 if and only if

m0 +m1ωn +m2ω
2
n + · · ·+mn−1ω

n−1
n = 0. (1.1)

We call a sequence ~m = [m0,m1, . . . ,mn−1] ∈ Nn admissible if (1.1) is satisfied. Figure 1 shows a
closed pentagon made of 18-th roots of unity encoded by [ω3

18, ω
11
18 , ω

5
18, ω

12
18 , ω

17
18 ] and a closed 11-gon

made of 14-th roots of unity encoded by [ω12
14 , ω14, ω

4
14, ω

5
14, ω

7
14, ω

5
14ω

11
14 , ω

11
14 , ω

9
14, ω

3
14, ω

13
14 ] .

Clearly, the number of closed paths, of length N , with admissible type ~m is given by the multinomial
coefficient N !/m0!m1! . . .mn−1!. This implies that the number Un(N) of closed polygonal paths of
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Fig. 1: Pentagon and 11-gon made of 18-th and 14-th roots of unity.

length N whose steps are n-th roots of unity is given by the formula

Un(N) =
∑

~m : admissible
m0+···+mn−1=N

N !
m0!m1! · · ·mn−1!

. (1.2)

In Section 2, we characterize admissibility and express the numbersUn(N) as constant term extractions
in suitable rational expressions. We also give a formula from which the computation of the numbers
Un(N) can be reduced to the computation of the numbers Uq(N ′), where N ′ ≤ N and q is a suitable
divisor of n. Section 3 is devoted to an analysis of recursive and asymptotic properties of the numbers
Un(N). Finally, some tables are given.

2 Constant term and reduction formulas
To take advantage of formula (1.2) for Un(N) on a symbolic algebra system, we state first a simple
characterization of admissibility for a sequence ~m ∈ Nn. This is done using the classical cyclotomic
polynomials Φn(z) =

∏
(z − ω), where ω runs through the primitive n-th roots of unity. Equivalently,

this means that ω = exp(2kπi/n), where 1 ≤ k ≤ n and GCD(n, k) = 1. Since zn − 1 =
∏
d|n Φd(z),

Moebius inversion implies that Φn(z) =
∏
d|n(xd−1)µ(n/d), where µ denotes the Moebius function. This

shows that Φn(z) is a monic polynomial in Z[z] of degree ϕ(n), the Euler function of n. The following
very easy, but basic lemma characterizes admissibility.

Lemma 2.1 (criteria for admissibility). For n ≥ 1, the sequence ~m = [m0, . . . ,mn−1] ∈ Nn is
admissible if and only if the cyclotomic polynomial Φn(z) divides the polynomial

P~m(z) = m0 +m1z + · · ·+mn−1z
n−1.

Proof: Consider the euclidean division of P~m(z) by Φn(z) in the ring Z[z]:

P~m(z) = Φn(z)Q~m(z) +R~m(z), (2.1)

where degR~m(z) < deg Φn(z) = ϕ(n). Since Φn(ωn) = 0 this shows that ~m is admissible if and only
if P~m(ωn) = 0 if and only if R~m(ωn) = 0. But R~m(ωn) = 0 if and only if R~m(z) = 0 identically since
Φn(z) is known to be the minimal polynomial of any of its roots and degR~m < deg Φn. 2
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Euclidean division shows that the coefficients of R~m(z) are Z-linear combinations lk(m0, . . . ,mn−1)
of the mi’s. Hence, ~m is admissible if and only if lk(m0, . . . ,mn−1) = 0 for k = 0, . . . , ϕ(n)− 1. Table
1, made using the rem command in Maple gives the values of the lk’s for n = 1, . . . , 20. For example, for
n = 6, ϕ(n) = 2 and using Table 1, formula (1.2) takes the form

U6(N) =
∑

m0+···+m5=N
m0+m5=m2+m3
m4+m5=m1+m2

N !
m0! · · ·m5!

.

Note that, by the multinomial formula, this is equivalent to the following constant term formula

U6(N) = CT((t1 + t2 +
t1
t2

+
t2
t1

+ t−1
1 + t−1

2 )N ),

where CT(L(t1, t2, . . . )) denotes the constant term of the full expansion of L as a Laurent series in
t1, t2, . . . . This is generalized as follows.

Theorem 2.2 There is a Laurent polynomial, Λn(t1, . . . , tϕ(n)), such thatUn(N) = CT(Λn(t1, . . . , tϕ(n))N ).
Moreover, Λn(t1, . . . , tϕ(n)) is computed as follows. Let m0 + · · ·+ mn−1z

n−1 = Φn(z)Q(z) + R(z),

where the remainder isR(z) =
∑ϕ(n)−1
k=0 lk(m0, . . . ,mn−1)zk, with lk(m0, . . . ,mn−1) =

∑n−1
i=0 ck,imi,

ck,i ∈ Z, k = 0, . . . , ϕ(n)− 1. Then,

Λn(t1, . . . , tϕ(n)) =
n−1∑
j=0

t
c0,j
1 t

c1,j
2 t

c2,j
3 . . . t

cϕ(n)−1,j

ϕ(n) . (2.2)

Proof: By the multinomial theorem,n−1∑
j=0

t
c0,j
1 . . . t

cϕ(n)−1,j

ϕ(n)

N

=
∑

m0+···+mn−1=N

N !
m0! · · ·mn−1!

(
t
c0,0
1 . . . t

cϕ(n)−1,0

ϕ(n)

)m0

. . .
(
t
c0,n−1
1 . . . t

cϕ(n)−1,n−1

ϕ(n)

)mn−1

=
∑

m0+···+mn−1=N

N !
m0! · · ·mn−1!

t
l0(m0,...,mn−1)
1 . . . t

lϕ(n)−1(m0,...,mn−1)

ϕ(n) .

The result follows since the constant term is given by taking the sum of the terms corresponding to the
exponents lk = 0 for k = 0, . . . , ϕ(n)− 1. 2

Table 2 gives the rational functions Λn(t1, . . . , tϕ(n)) for n = 1, . . . , 20. Let n = pα1
1 · · · pαss be the

canonical decomposition of the integer n. By definition, the radical of n is the square-free integer q =
rad(n) = p1 · · · ps consisting of the product of the pi’s. The computation of the cyclotomic polynomial
Φn(z) is greatly simplified by making use of the well-known reduction formula

Φn(z) = Φq(zn/q), q = rad(n). (2.3)

This implies that the computation of the exponential generating function of the sequence (Un(N))N≥0 is
reduced to that of (Uq(N))N≥0 as follows.
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Proposition 2.3 (reduction formula for Un(N)). Let n ≥ 1 and q = rad(n). Then,

∑
N≥0

Un(N)
XN

N !
=

∑
N≥0

Uq(N)
XN

N !

n/q

. (2.4)

Proof: Using the remainder function, we have by linearity,

R~m(z) = rem(P~m(z),Φn(z)) =
n−1∑
k=0

mkrem(zk,Φn(z)). (2.5)

Now, for 0 ≤ ν ≤ q − 1, consider the euclidean division

zν = Φq(z)Qν(z) + ρν(z), (2.6)

where ρν(z) = rem(zν ,Φq(z)). The substitution z → zn/q in (2.6) followed by a multiplication by zr

gives, using (2.3), zνn/q+r = Φq(zn/q)zrQν(zn/q) + zrρν(zn/q) = Φn(z)zrQν(zn/q) + zrρν(zn/q).
Let k = νn/q + r, where 0 ≤ r < n/q. Then,

deg zrρν(zn/q) = r +
n

q
deg ρν(z) ≤ r +

n

q
(ϕ(q)− 1) = r + ϕ(n)− n

q
< ϕ(n).

This implies that rem(zk,Φn(z)) = zrρν(zn/q). Substituting this into (2.5) and collecting terms, we find
that the ϕ(n) conditions for admissibility, [lk(m0,m1, . . . ,mn−1) = 0]0≤k≤ϕ(n)−1, split into n/q blocks
of ϕ(q) conditions, [li(mj ,mn

q +j ,m2nq +j , . . . ,m(q−1)nq +j) = 0]0≤i≤ϕ(q)−1, 0 ≤ j ≤ n
q − 1, from

which (2.4) follows. 2

Table 3 gives the numerical values of Un(N) for 1 ≤ n ≤ 20 and 0 ≤ N ≤ 20.

3 Analysis of the sequences
Let us say that a path is normalized if its first step is the complex number 1 (i.e. the path starts horizontally
along the positive real axis). Each normalized path [1, ων2n , . . . , ω

νN
n ] generates, by rotation, n distinct

paths ωkn[1, ων2n , . . . , ω
νN
n ] = [ωkn, ω

k+ν2
n , . . . , ωk+νNn ], k = 0, 1, . . . , n − 1. This implies that n divides

Un(N) for every n ≥ 1 andN ≥ 1. As Tables 1 and 2 indicate, the structure of the sequence (Un(N))N≥0

heavily depend on the arithmetical nature of n. For example, let n = p be a prime number. Then for such
values of n, admissibility for a vector ~m ∈ Np means that m0 = m1 = · · · = mp−1 since, in this case,
Φp(z) = 1 + z+ · · ·+ zp−1 and R~m(z) = (m0−mp−1) + (m1−mp−1)z+ · · ·+ (mp−2−mp−1)zp−2,
(see Table 1, for example). Formula (1.2) then takes the form

Up(N) =
N !

(Np )!p
if p|N, 0 otherwise. (3.1)

Note that when p = 2, (3.1) corresponds to the classical central binomial coefficients enumerating one-
dimensional closed lattice paths of length N . When p = 3, (3.1) corresponds to the De Bruijn numbers
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(sequence A006480 in Sloane-Plouffe encyclopedia [Sloane(2010)]). For prime powers n = pα, we have
by Proposition 2.3, ∑

N≥0

Upα(N)
XN

N !
=

∑
k≥0

Xkp

k!p

pα−1

(3.2)

since, in this case q = p. Note that when n = 8 = 23, then U8(N) is the number of 4-dimensional closed
lattice paths in Z4 of length N starting at the origin (see sequence A039699 in Sloane). The reader can
check that, more generally, U2α(N) is the number of closed lattice paths in Z2α−1

of length N starting at
the origin. Interestingly enough, for any other dimension d 6= 2α−1, such a connection betweens lattice
paths in Zd and plane paths whose steps are roots of unity does not exist.

When n is not a prime power, the situation is more delicate. For example, if n = 6, then, using the
Maple package GFUN [Salvy and Zimmermann(1994)], it can be seen that (Un(N))N≥0 satisfies the
following linear recurrence with polynomial coefficients,

(N+3)2U6(N+3) = (N+2)(N+3)U6(N+2)+24(N+2)2U6(N+1)+36(N+1)(N+2)U6(N) (3.3)

with initial conditions U6(0) = 1, U6(1) = 0, U6(2) = 6. Such sequences are called polynomially
recursive (P -recursive for short) and are characterized by the fact that their (ordinary or exponential)
generating series are D-finite (i.e. satisfy a linear differential equation with polynomial coefficients). As
a consequence, P -recursive sequences are closed under many operations including linear combinations,
pointwise and Cauchy products [Stanley(1980)]. Moreover their asymptotic estimates, as N → ∞, are
well behaved. In our context, the general situation is summarized by Theorem 3.2. below. We need first
the following technical lemma.

Lemma 3.1 Let ~t = (t1, . . . , tϕ(n)) ∈ Cϕ(n). Then the Laurent polynomial Λn satisfies

max
|tν |=1

1≤ν≤ϕ(n)

|Λn(~t)| = n. (3.4)

Moreover, if n = pα, a prime power, then the maximum value (3.4) is attained precisely at the p distinct
points (e2πiν/p, . . . , e2πiν/p), ν = 0, . . . , p − 1 and we have Λn(e2πiν/p, . . . , e2πiν/p) = ne2πiν/p. If n
is not a prime power, then the maximum value (3.4) is attained only at the point (1, . . . , 1) and we have
Λn(1, . . . , 1) = n.

Proof: By Theorem 2.2, Λn can be written as a sum of n terms,

Λn(~t) = t1 + · · ·+ tϕ(n) + Γn(~t), (3.5)

where Γn is a sum of n − ϕ(n) unitary Laurent monomials in t1, . . . , tϕ(n). Each of the n terms in
Λn has modulus 1 when |tν | = 1, ν = 1, . . . , ϕ(n). Hence (3.4) follows from the triangular inequality
and the fact that Λn(1, . . . , 1) = n. Note that the maximum value in (3.4) is attained only at points
~t∗ = (t∗1, . . . , t

∗
ϕ(n)) for which the n monomials take a common value, eiθ

∗
, say. In particular, from (3.5),

we must have t∗1 = t∗2 = · · · = t∗ϕ(n) = eiθ
∗
. We consider two cases:

(i) if n = pα, then it can be checked that each term in Γn has total degree −(p− 1). This implies that
eiθ

∗
= e−i(p−1)θ∗ . That is, eiθ

∗
is a p-th root of unity: e2πiν/p, ν = 0, . . . , p− 1;
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(ii) if n 6= pα, the situation is more delicate. If we can show that at least one of the terms in Γn has total
degree 0, then the maximal value in (3.4) will be attained only at the point (1, . . . , 1), since this
would imply that eiθ

∗
= (eiθ

∗
)0 = 1. The existence of such a 0-degree term is proved as follows.

By (2.2), the general term t
c0,j
1 t

c1,j
2 · · · tcϕ(n)−1,j

ϕ(n) has total degree
∑ϕ(n)−1
k=0 ck,j . When j = ϕ(n),

this total degree is 0. To see this, note that
∑ϕ(n)−1
k=0 ck,jz

k = rem(zj ,Φn(z)). Taking j = ϕ(n),
z = 1, this gives

∑ϕ(n)−1
k=0 ck,ϕ(n) = rem(zϕ(n),Φn(z))|z=1 = (zϕ(n) − Φn(z))|z=1 = 0, since

Φn(1) = 1 when n 6= pα.

2

Theorem 3.2 For any n > 1, we have an asymptotic estimate of the form

Un(N) ∼ an
nN

N
1
2ϕ(n)

(
1 +

b1,n
N

+
b2,n
N2

+ . . .

)
, asN →∞, (3.6)

where an, bj,n are independent of N . When n = pα is a prime power, then N must be a multiple of p as
it goes to infinity in (3.6). More explicitly, the leading coefficient an is given by

an =

 (n/2π)
1
2ϕ(n)/

√∏
p|n p

ϕ(n)/(p−1) if n is not a prime power,

p · (n/2π)
1
2ϕ(n)/

√∏
p|n p

ϕ(n)/(p−1) if n = pα is a prime power.

For each n ≥ 1, the sequence (Un(N))N≥0 is P -recursive but is not algebraic when n > 2.

Proof: In order to establish the asymptotic estimate (3.6), first note that the constant term extraction
Un(N) = CT(Λn(t1, . . . , tϕ(n))N ) can be expressed as the multiple integral

Un(N) =
1

(2π)ϕ(n)

∫
· · ·
∫

(−π,π]ϕ(n)
Λn(eiu1 , . . . , eiuϕ(n))Ndu1 · · · duϕ(n) (3.7)

which is the average value of ΛNn over the ϕ(n)-dimensional torus {(t1, . . . , tϕ(n)) ∈ Cϕ(n)| |tν | = 1, ν =
1, . . . , ϕ(n)}. Now by Theorem 2.2,

Ln(~u) := Λn(eiu1 , . . . , eiuϕ(n)) =
n−1∑
j=0

eiλj(~u), (3.8)

where λj(~u) =
∑ϕ(n)−1
k=0 ck,juk+1 is a real-valued linear combination of u1, . . . , uk, 0 ≤ j ≤ ϕ(n)− 1.

By the triangular inequality, |Ln(~u)| ≤ n for every ~u ∈ (−π, π]ϕ(n). To obtain the asymptotic estimate of
(3.6) it suffices to approximate (3.7) by a gaussian distribution around each point ~u∗ = (u∗1, . . . , u

∗
ϕ(n)) ∈

(−π, π]ϕ(n) for which the maximum value |Ln( ~u∗)| = |neiθ∗ | = n is attained. This is Laplace’s method
[De Bruijn(1981)]. By Lemma 3.1,

(i) if n 6= pα, then ~u∗ = ~0 is the only point in (−π, π]ϕ(n) for which |Ln( ~u∗)| = n. In fact θ∗ = 0;

(ii) if n = pα, then there are exactly p possible values of u∗ for which |Ln( ~u∗)| = n. In fact θ∗ =
2νπ/p mod 2π ∈ (−π, π], ν = 0, . . . , p− 1.
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We conclude by estimating (3.7) by a sum of moments of gaussian distributions in the following way:

Un(N) ∼ nN

(2π)ϕ(n)

∑
Ln( ~u∗)=neiθ∗

eiNθ
∗
∫ +∞

−∞
· · ·
∫ +∞

−∞
e−

N
2nQ

∗(~u− ~u∗)H∗(~u− ~u∗)Ndu1 . . . duϕ(n),

where, for each ~u∗ such that Ln( ~u∗) = neiθ
∗
,

1
n
Ln(~u) = eiθ

∗
(

1− 1
2n
Q∗(~u− ~u∗) +O(‖ ~u− ~u∗ ‖3)

)
= eiθ

∗
e−

1
2nQ

∗(~u− ~u∗)H∗(~u− ~u∗), (3.9)

where Q∗(~v) is the positive definite quadratic form associated to the symmetric ϕ(n) × ϕ(n) matrix
K = CCT in which C = [ck,j ]0≤k≤ϕ(n)−1,0≤j≤n−1, where the ck,j’s are defined by (2.2) and H∗(~v) =
1 + O(‖ ~v ‖3). It turns out that det(K) =

∏
p|n p

ϕ(n)/(p−1), which is a consequence of the known fact
that the absolute value of the discriminant of Φn(z) is equal to nϕ(n)

∏
p|n p

ϕ(n)/(p−1), for n > 2.
The P -recursivity of (Un(N))N≥0 is established as follows. Fix n ≥ 1 and let k = ϕ(n). We shall

show that the series ∑
N≥0

Un(N)XN = CTt1,...,tk
1

1−XΛn(t1, . . . , tk)
(3.10)

is D-finite in X where CTt1,...,tk means constant term extraction relative to the variables t1, . . . , tk.
First, fix integers m1 > 0, . . . ,mk > 0 in such a way that tm1

1 . . . tmkk Λn(t1, . . . , tk) is a polynomial in
t1, . . . , tk. The rational function

f(t1, . . . , tk, X) =
1

1− tm1
1 . . . tmkk XΛn(t1, . . . , tk)

=
∑

n1,...,nk,N≥0

a(n1, . . . , nk, N)tn1
1 . . . tnkk XN

(3.11)
is obviouslyD-finite in the variables t1, . . . , tk, X . By Theorem 2.2, the numbersUn(N) can be expressed
as the following coefficient extraction in f(t1, . . . , tk, X):

Un(N) = [tm1N
1 . . . tmkNk XN ]f(t1, . . . , tk, X).

Hence, by (3.10), ∑
N≥0

Un(N)XN =
∑
N≥0

a(m1N, . . . ,mkN,N)XN . (3.12)

Consider now the algebraic, hence D-finite, series

g(t1, . . . , tk, X) =
∑

n1,...,nk,N≥0

b(n1, . . . , nk, N)tn1
1 . . . tnkk XN ,

where b(n1, . . . , nk, N) = a(m1n1, . . . ,mknk, N). Formula (3.12) shows that∑
N≥0

Un(N)XN =
∑
N≥0

b(N, . . . , N,N)XN

which is a (full) diagonal of g(t1, . . . , tk, X). We conclude using the fact that any diagonal of a D-finite
series is also D-finite, a result due to Lipshitz [Lipshitz(1988)]. The non algebraicity of (Un(N))N≥0,
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for each n > 2, follows from the fact that ϕ(n) is even and the dominant term of the asymptotic formula
contains N−positive integer. This is incoherent with Puiseux expansion around an algebraic singularity. 2

A better control of the coefficients bj,n can be achieved by a smooth local change of variables, ~u =
~u∗ + ~g(~w), ~g(~0) = ~0 in (3.9) such that 1

nLn(~u) = eiθ
∗
e−

1
2nQ

∗(~w). This is always possible by Morse
Lemma [Morse(1925)]. The first terms of the asymptotic estimates of Theorem 3.2 are given in Table 4
for n = 1, . . . , 20.

Corollary 3.3 If n is not a prime power, then ∃N0 = N0(n) such that Un(N) > 0 for N ≥ N0. 2

The sequences (Un(N))N≥0, n = 1, 2, . . . , can be considered in a dual way: for each fixed N , one
can consider the sequence (Un(N))n≥1 by reading each column of Table 3. The first five of these dual
sequences, (Un(0))n≥1, (Un(1))n≥1, . . . , (Un(4))n≥1, are P -recursive. The fifth one, (Un(4))n≥1, can
be described as follows: Un(4) = 3n(n − 1)χ(2|n), where χ(T (n)) = 1 if T (n) is true and 0 other-
wise. This can be checked by noting that closed paths of length 4 whose steps are nth roots of unity are
(possibly degenerated and non-convex) rhombuses. Following extensive computations we conjecture that
(Un(5))n≥1 is also P -recursive and is of the form Un(5) = 24nχ(5|n) + 20n(n − 3)χ(6|n). We leave
open the problem of determining the values of N for which (Un(N))n≥1 is P -recursive.

Acknowledgements. The authors wish to thank B. Salvy for his assistance in the proof of the second part
of Theorem 3.2, J. Tremblay for his LATEX / Maple help, and a referee for his constructive suggestions.
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n Linear combinations for admissibility

1 [m0]

2 [m0 −m1]

3 [m0 −m2,m1 −m2]

4 [m0 −m2,m1 −m3]

5 [m0 −m4,m1 −m4,m2 −m4,m3 −m4]

6 [m0 −m2 −m3 +m5,m1 +m2 −m4 −m5]

7 [m0 −m6,m1 −m6,m2 −m6,m3 −m6,m4 −m6,m5 −m6]

8 [m0 −m4,m1 −m5,m2 −m6,m3 −m7]

9 [m0 −m6,m1 −m7,m2 −m8,m3 −m6,m4 −m7,m5 −m8]

10 [m0 −m4 −m5 +m9,m1 +m4 −m6 −m9,m2 −m4 −m7 +m9,m3 +m4 −m8 −m9]

11 [m0 −m10,m1 −m10,m2 −m10,m3 −m10,m4 −m10,m5 −m10,m6 −m10,m7 −m10,

m8 −m10,m9 −m10]

12 [m0 −m4 −m6 +m10,m1 −m5 −m7 +m11,m2 +m4 −m8 −m10,m3 +m5 −m9 −m11]

13 [m0 −m12,m1 −m12,m2 −m12,m3 −m12,m4 −m12,m5 −m12,m6 −m12,m7 −m12,

m8 −m12,m9 −m12,m10 −m12,m11 −m12]

14 [m0 −m6 −m7 +m13,m1 +m6 −m8 −m13,m2 −m6 −m9 +m13,m3 +m6 −m10 −m13,

m4 −m6 −m11 +m13,m5 +m6 −m12 −m13]

15 [m0 −m8 −m9 −m10 +m13 +m14,m1 +m8 −m11 −m13,m2 +m9 −m12 −m14,

m3 −m8 −m9 +m14,m4 +m8 −m13 −m14,m5 −m8 −m10 +m13,

m6 −m9 −m11 +m14,m7 +m8 +m9 −m12 −m13 −m14]

16 [m0 −m8,m1 −m9,m2 −m10,m3 −m11,m4 −m12,m5 −m13,m6 −m14,m7 −m15]

17 [m0 −m16,m1 −m16,m2 −m16,m3 −m16,m4 −m16,m5 −m16,m6 −m16,m7 −m16,

m8 −m16,m9 −m16,m10 −m16,m11 −m16,m12 −m16,m13 −m16,m14 −m16,m15 −m16]

18 [m0 −m6 −m9 +m15,m1 −m7 −m10 +m16,m2 −m8 −m11 +m17,m3 +m6 −m12 −m15,

m4 +m7 −m13 −m16,m5 +m8 −m14 −m17]

19 [m0 −m18,m1 −m18,m2 −m18,m3 −m18,m4 −m18,m5 −m18,m6 −m18,m7 −m18,m8 −m18,

m9 −m18,m10 −m18,m11 −m18,m12 −m18,m13 −m18,m14 −m18,m15 −m18,m16 −m18,

m17 −m18]

20 [m0 −m8 −m10 +m18,m1 −m9 −m11 +m19,m2 +m8 −m12 −m18,m3 +m9 −m13 −m19,

m4 −m8 −m14 +m18,m5 −m9 −m15 +m19,m6 +m8 −m16 −m18,m7 +m9 −m17 −m19]

Tab. 1: The linear combinations (lk(~m))0≤k≤ϕ(n)−1 for admissibility, n = 1, . . . , 20.
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n Λn(t1, . . . , tϕ(n))

1 t1

2
(
t1 + t1

−1
)

3
(
t1 + t2 + 1

t1t2

)
4

(
t1 + t2 + t1

−1 + t2
−1
)

5
(
t1 + t2 + t3 + t4 + 1

t1t2t3t4

)
6

(
t1 + t2 + t1

t2
+ t2

t1
+ t1

−1 + t2
−1
)

7
(
t1 + t2 + t3 + t4 + t5 + t6 + 1

t1t2t3t4t5t6

)
8

(
t1 + t2 + t3 + t4 + t1

−1 + t2
−1 + t3

−1 + t4
−1
)

9
(
t1 + t2 + t3 + t4 + t5 + t6 + 1

t1t4
+ 1

t2t5
+ 1

t3t6

)
10

(
t1 + t2 + t3 + t4 + t1t3

t2t4
+ t2t4

t1t3
+ t1

−1 + t2
−1 + t3

−1 + t4
−1
)

11
(
t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + 1

t1t2t3t4t5t6t7t8t9t10

)
12

(
t1 + t2 + t3 + t4 + t1

t3
+ t3

t1
+ t2

t4
+ t4

t2
+ t1

−1 + t2
−1 + t3

−1 + t4
−1
)

13
(
t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t9 + t10 + t11 + t12 + 1

t1t2t3t4t5t6t7t8t9t10t11t12

)
14

(
t1 + t2 + t3 + t4 + t5 + t6 + t1t3t5

t2t4t6
+ t2t4t6

t1t3t5
+ t1

−1 + t2
−1 + t3

−1 + t4
−1 + t5

−1 + t6
−1
)

15
(
t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t1t4t7

t3t5t8
+ t2t5t8

t1t4t6
+ t1t6

t2t5t8
+ t3t8

t1t4t7
+ 1

t1t6
+ 1

t2t7
+ 1

t3t8

)
16

(
t1 + t2 + t3 + t4 + t5 + t6 + t7 + t8 + t1

−1 + t2
−1 + t3

−1 + t4
−1 + t5

−1 + t6
−1 + t7

−1 + t8
−1
)

17
(
t1 + t2 + · · ·+ t16 + 1

t1t2t3t4t5t6t7t8t9t10t11t12t13t14t15t16

)
18

(
t1 + t2 + t3 + t4 + t5 + t6 + t1

t4
+ t4

t1
+ t2

t5
+ t5

t2
+ t3

t6
+ t6

t3
+ t1

−1 + t2
−1 + t3

−1 + t4
−1 + t5

−1 + t6
−1
)

19
(
t1 + t2 + · · ·+ t18 + 1

t1t2t3t4t5t6t7t8t9t10t11t12t13t14t15t16t17t18

)
20

(
t1 + t2 + · · ·+ t8 + t1t5

t3t7
+ t3t7

t1t5
+ t2t6

t4t8
+ t4t8

t2t6
+ t1

−1 + t2
−1 + t3

−1 + t4
−1 + t5

−1 + t6
−1 + t7

−1 + t8
−1
)

Tab. 2: The Laurent polynomials Λn for n = 1, · · ·, 20.



Closed paths whose steps are roots of unity 609

n Un(N), N = 0, . . . , 20
1 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2 1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, 0, 924, 0, 3432, 0, 12870, 0, 48620, 0, 184756
3 1, 0, 0, 6, 0, 0, 90, 0, 0, 1680, 0, 0, 34650, 0, 0, 756756, 0, 0, 17153136, 0, 0
4 1, 0, 4, 0, 36, 0, 400, 0, 4900, 0, 63504, 0, 853776, 0, 11778624, 0, 165636900, 0, 2363904400, 0, 34134779536
5 1, 0, 0, 0, 0, 120, 0, 0, 0, 0, 113400, 0, 0, 0, 0, 168168000, 0, 0, 0, 0, 305540235000
6 1, 0, 6, 12, 90, 360, 2040, 10080, 54810, 290640, 1588356, 8676360, 47977776, 266378112, 1488801600,

8355739392, 47104393050, 266482019232, 1512589408044, 8610448069080, 49144928795820
7 1, 0, 0, 0, 0, 0, 0, 5040, 0, 0, 0, 0, 0, 0, 681080400, 0, 0, 0, 0, 0, 0
8 1, 0, 8, 0, 168, 0, 5120, 0, 190120, 0, 7939008, 0, 357713664, 0, 16993726464, 0, 839358285480, 0,

42714450658880, 0, 2225741588095168
9 1, 0, 0, 18, 0, 0, 2430, 0, 0, 640080, 0, 0, 215488350, 0, 0, 84569753268, 0, 0, 36905812607664, 0, 0
10 1, 0, 10, 0, 270, 240, 10900, 25200, 551950, 2116800, 32458860, 169092000, 2120787900, 13427013600

149506414200, 1075081207200, 11143223412750, 87198375264000, 865743970019500, 7171730187336000,
69416724049550020

11 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 39916800, 0, 0, 0, 0, 0, 0, 0, 0, 0
12 1, 0, 12, 24, 396, 2160, 23160, 186480, 1845900, 17213280, 171575712, 1703560320, 17365421304,

178323713568, 1856554560432, 19487791106784, 206411964321420, 2201711191213248, 23642813637773616
255355132936441824, 2772650461148938656

13 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6227020800, 0, 0, 0, 0, 0, 0, 0
14 1, 0, 14, 0, 546, 0, 32900, 10080, 2570050, 2540160, 238935564, 465696000, 25142196156, 76886409600,

2900343069624, 12211317518400, 359067702643650, 1915829643087360, 47006105030584700,
300455419743198720, 6437718469449262996

15 1, 0, 0, 30, 0, 360, 7650, 0, 302400, 4544400, 11226600, 324324000, 4310633250, 24324300000, 437404968000,
5634178329780, 45972927000000, 697866761592000, 8962716395833200, 88725951057744000,
1258898645656852200

16 1, 0, 16, 0, 720, 0, 50560, 0, 4649680, 0, 514031616, 0, 64941883776, 0, 9071319628800, 0, 1369263687414480,
0, 219705672931613440, 0, 37024402443528248320

17 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 355687428096000, 0, 0, 0
18 1, 0, 18, 36, 918, 5400, 82800, 801360, 10907190, 132053040, 1802041668, 24199809480, 340640607384,

4834708246368, 70229958125184, 1032223723667136, 15391538570569590, 231935110984687968,
3531542904056225916, 54244559313713885688, 839979883121036697468

19 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121645100408832000, 0
20 1, 0, 20, 0, 1140, 480, 102800, 151200, 12310900, 38707200, 1812247920, 9574488000, 313983978000,

2391608419200, 62051403928800, 611744666332800, 13627749414064500, 160896284989440000,
3253345101771050000, 43527416858084016000, 829176006298475046640

Tab. 3: The sequences (Un(N))0≤N≤20 for n = 1, . . . , 20.
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n Asymptotic estimate of Un(N) as N →∞ Extra condition

1 0 NIL

2
√

2√
π
· 2N√

N

(
1− 1

4N + 1
32N2 +O( 1

N3 )
)

N ≡ 0 (mod 2)

3 3
√

3
2π ·

3N

N

(
1− 2

3N + 2
9N2 +O( 1

N3 )
)

N ≡ 0 (mod 3)

4 2
π ·

4N

N

(
1− 1

2N + 1
8N2 +O( 1

N3 )
)

N ≡ 0 (mod 2)

5 25
√

5
4π2 · 5N

N2

(
1− 2

N + 2
N2 +O( 1

N3 )
)

N ≡ 0 (mod 5)

6
√

3
2π ·

6N

N

(
1− 1

2N + 1
12N2 +O( 1

N3 )
)

NIL

7 343
√

7
8π3 · 7N

N3

(
1− 4

N + 8
N2 +O( 1

N3 )
)

N ≡ 0 (mod 7)

8 8
π2 · 8N

N2

(
1− 1

N + 1
N2 +O( 1

N3 )
)

N ≡ 0 (mod 2)

9 243
√

3
8π3 · 9N

N3

(
1− 3

N + 4
N2 +O( 1

N3 )
)

N ≡ 0 (mod 3)

10 5
√

5
4π2 · 10N

N2

(
1− 1

N + 3
4N2 +O( 1

N3 )
)

NIL

11 161051
√

11
32π5 · 11N

N5

(
1− 10

N + 50
N2 +O( 1

N3 )
)

N ≡ 0 (mod 11)

12 3
π2 · 12N

N2

(
1− 1

N + 2
3N2 +O( 1

N3 )
)

NIL

13 4826809
√

13
64π6 · 13N

N6

(
1− 14

N + 98
N2 +O( 1

N3 )
)

N ≡ 0 (mod 13)

14 49
√

7
8π3 · 14N

N3

(
1− 3

2N + 3
N2 +O( 1

N3 )
)

NIL

15 1125
16π4 · 15N

N4

(
1− 4

N + 25
3N2 +O( 1

N3 )
)

NIL

16 512
π4 · 16N

N4

(
1− 2

N + 9
N2 +O( 1

N3 )
)

N ≡ 0 (mod 2)

17 6975757441
√

17
256π8 · 17N

N8

(
1− 24

N + 288
N2 +O( 1

N3 )
)

N ≡ 0 (mod 17)

18 81
√

3
8π3 · 18N

N3

(
1− 3

2N + 5
2N2 +O( 1

N3 )
)

NIL

19 322687697779
√

19
512π9 · 19N

N9

(
1− 30

N + 450
N2 +O( 1

N3 )
)

N ≡ 0 (mod 19)

20 125
π4 · 20N

N4

(
1− 2

N + 7
N2 +O( 1

N3 )
)

NIL

Tab. 4: Asymptotic estimates of Un(N) as N →∞, for n = 1, . . . , 20.
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