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Touchard-Riordan formulas, T-fractions, and
Jacobli’s triple product identity
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Abstract. We give a combinatorial proof of a Touchard-Riordan-likenfiala discovered by the first author. As a con-
sequence we find a connection between his formula and Ja¢opié product identity. We then give a combinatorial
analog of Jacobi’s triple product identity by showing thdirdte sum can be interpreted as a generating function of
weighted Schroder paths, so that the triple product ideistrecovered by taking the limit. This can be stated in t&erm
of some continued fractions call@dfractions, whose important property is the fact that thetyséy some functional
equation. We show that this result permits to explain anegdize some Touchard-Riordan-like formulas appearing
in enumerative problems.

Résune. Nous donnons une preuve combinatoire d’'une formule a lafau-Riordan due au premier auteur. En
conséquence, nous faisons apparaitre un lien entrefogtiale et I'identité du produit triple de Jacobi. Nous dons

un analogue combinatoire a I'identité du produit tripferaontrant qu'une somme finie peut étre interprétée comme
fonction génératrice de chemins de Schroder pondéeesorte que l'identité du produit triple s’obtient en gast a

la limite. Ceci peut &tre énoncé en termes de fractiomsicoes appeléeg-fractions, dont la propriété importante
est le fait qu’elle satisfont certaines équations fonutielles. Nous montrons que ce résultat permet d’expligtier
généraliser certaines formules a la Touchard-Riorggagaissant dans des problemes d’€numeération.

Keywords: Jacobi’s triple product identity, continued fractionsyereration

1 Introduction

1.1 Touchard-Riordan formulas

The original result of Touchard [Tou52], later given morepkeitly by Riordan [Rio75], answers the
combinatorial problem of counting chord diagrams accaydinthe number of crossings. It has also been
stated in terms of a continued fraction by Read [Rea79], atttte Touchard-Riordan formula is:

[Zn] (% B [1]1qZ - [2]1112 - > _ ﬁ i ((nQ_nk) o (n_QI?—l)) (71)kq(’“§1)7 (1)

k=0
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where[z"] is the operator that extracts the coefficientdfin a series|n], denoteg1 —¢")/(1 —¢), and
we use the notation for continued fractions as in (10). Regeseveral variants have been derived. In
particular, using continued fractions and basic hypergetamseries, the first author [JV10] proved the
following formula in a slightly different form related witeanumeration of alternating permutations:

n l [1] q _ 1 - 2n 2n k(k+1) e —i2 2
[="] 1— 1 — 1 =" _(17q)2nz<(n—k)_(n—k—1))q Z(_Q) - @

k=0 i=—k

In the first part of this paper, we prove (2) combinatoriallyp do this we introduce a combinatorial
model whose weight sum is equal‘{@f:_k(fq)*iz. As a consequence of the combinatorial proof we
can letk — oo and obtain

oo

1*1. 2
= > o 3

i>1 i=—00

which is known as the special cage=€ —1) of Jacobi’s triple product identity:

[Ta-mHa+yHa+y ') Z g )
n>1 n=—oo
1.2 Jacobi’s triple product identity

Jacobi’s triple product identity (JTP) is ubiquitous in iears areas of mathematics and especially in
analytical number theory. Quite a lot of different proofengralizations and variants are known, see for
example [AB04, Ber06, Sch05, War05] and lots of referenbesstin. Some classical particular cases or
consequences are :

o0

[Ta-a)= 3 (-1/a™, (5)

i>1 j=—o00

which is known as Euler’'s pentagonal number theorem, arw(8)sand

[]c-a? :i 25+ 1)g" .
i>1 7=0

See [Ber06, Chapter 1] for a general reference about thesgities.
Now we state the main result.

Theorem 1.1. We defingn|, . = (1 +yg¢")/(1 —g). Then

.
= ﬁ > ((ffk) - (nleil)) "D N i

k=0 i=—k
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Note that ify = —1, we get (2). In the second part of this paper we prove Theordnby finding a
functional equation satisfied by both sides of another égunaguivalent to (6), see Theorem 4.1. Finding
a combinatorial proof of Theorem 1.1 is still open. Our conatorial model for (2) is naturally extended
to a model for (6), and letting — oo as in the proof of (3), we obtain JTP. For this reason, Thedreim
is a “finite version” of JTP.

1.3 T-fractions

Notice that we have the fact¢( *") — (. *" ,)) in the sums of (1), (2) and (6). This will be explained
by the link betweers-fractions and’-fractions (see Lemma 2.5). The family Bffractions is the natural
form of two-points Padé approximants [CPU8], they also appear occasionally in combinatorics [RV96]
but much less thad§-fractions orJ-fractions. We use here a particular kindBffractions as in Defini-
tion 2 below. They are related with weighted Schroder patbghat our main result can be stated as an
exact formula for a certain weight sum of Schroder pathse firfain property off’-fractions we use to

prove the result is the fact that they satisfy certain fuorei equations.

2 Preliminaries

2.1 Penaud’s decomposition

Definition 1. A Schidder pathof length2n is a path from(0,0) to (2n,0) in N? with three kinds of
steps: an up stefd, 1), a down steff1, —1), and a horizontal stef®, 0). A Dyck pathis a Schroder path
without any horizontal step. Marked Schider pathis a Schroder path in which each up step and down
step may be marked. L&, (resp.S,., D., D,,) denote the set of Schroder paths (resp. marked Schroder
paths, Dyck paths, marked Dyck paths) of lengith Let 52 denote the subset @,, consisting of the
marked Dyck paths without any peak, i.e. an up step immdgli&aéiowed by a down step, consisting
two marked steps.

Note thatD,, C S,, andD;, C S;:. We will also consider thab,, C D}, andS,, C S by identifying a
Schroder path with a marked Schroder path without any pthstep.

Given sequenced = (a1, as,...), B = (b1,bs,...) and a marked Schroder paph we define the
weightwt(p; A, B) to be the product of;, (resp.by) for each unmarked up step (resp. unmarked down
step) between heightandh — 1, and—1 for each horizontal step (hence each marked step has wéight 1
SinceS,, C §;;, the weight is also defined for a Schroder path.

By definition, it is easy to see that

> owt(pr A B) = > wi(p; A—1,B-1), > wtps AB) = > wt(p; A—1,8-1), (7)

PEDn p€D, PESK PESK
whereA — 1 means the sequen¢e, — 1,a2 — 1,...).
Now a generalized version of Penaud’s decomposition careberitbes as follows. Here Byck prefix
is a path inN? from the origin to any point consisting of up steps and dovepst

Proposition 2.1. Eachp € D,, can be uniquely decomposed ir(tb, p’) where L is a Dyck prefix of
length2n ending at heighfk andp’ € 5;; for somek. Moreover, for any sequencesand B, we have
wt(p; A, B) = wt(p'; A, B).
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It is well known that the number of Dyck prefixes of len@th ending at heigh2k is equal to(ffk) —
(,2r ). Thus, from Proposition 2.1, we obtain

> wtmAB) =3 (7)) - () D wtmi A B). ®)
pED, k=0 Péﬁz

By (7) and (8), we get the following proposition.
Proposition 2.2. For any sequenced and B, we have

n

S wimAB) = (%) - () Y wim A= 1,8 1),

pED, k=0 peD;
On the other hand, by canceling a horizontal step and a peakwd marked steps, we obtain
> wt(p A, B) = > wi(p; A B). 9)
peESy, peDy,
By Proposition 2.2, (9) and (7), we get the following propiasi.
Proposition 2.3. For any sequenced and B, we have

n

> wtp A B) =) ((ffk) - (nf,?_l)) > wt(p; A, B).

peD,, k=0 PESK
2.2 T-fractions and S-fractions
We will use the space-saving notation for continued fratgio
W @ e 0 _ (10)
bo — b1 — b2 — al
by —
a
by — ——
b — .

Definition 2. To any sequenck = {\,, },,>1, we associate th§-fractionS, (z) and thel'-fractionT’ (z):

A A A 1 A A A
12 22 32 o T)\(Z): 1% 22 32 (11)
1 1 -1 - l+2—-1+2z—-142z—-14+2—

= =

Sx(z) =

The combinatorial interpretation ¢f-fractions in terms of weighted Dyck paths is widely knownt b

the analogous result f@r-fractions is not as common.
(a1,az,...),B=(b1,ba,...) betwo sequences ang = apby. Then

Lemma2.4. Let A =

Z > wt(pi A B),  Ta( Z > wi(p; A, B). (12)

p€D, = PESH
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Proof. This can be proved by a classical method, see for example4|GJO O

By Lemma 2.4 and Proposition 2.3, we obtain the followingnesnwhich gives a relation between the
coefficients of arb-fraction and & -fraction. This is a key step in our proofs of the Touchard/Ban-like
formulas.

Lemma 2.5. Given a sequenck = {\,, },,>1, we defing: = {1, }n>0 andv = {v,, },,>0 such that:
Z pnz" = Sx(z), Z vnz™ =Th(2). (13)
n=0 n=0

Then for anyn > 0 we have the relatiop,, = f: ((Tffk) — (nfl?fl)) V.
k=0

3 Combinatorics on weighted Dyck paths
3.1 A combinatorial proof of (2)
From now on, we will fix two sequences
U=(1,,2,.--), V=0-gl-d¢..)

By Lemma 2.4, Proposition 2.2, and the fact thatp; U, U) = wt(p; V, V) /(1 — q)** forall p € D,
the left hand side of (2) is equal to

n

> wt(piU,U) = ﬁ > ((j_”k) - (nfg_l)) > wt(pV -1,V - 1). (14)

pED, k=0 peD;

Thus in order to get (2) it is sufficient to show the followirtentity:

k

S owt(pV =1,V —1) = ¢t 3 (—g) 7 (15)
peD; i=—k
We introduce some terminologies. We denotedpyhe staircase partitiotk, k — 1,...,1).

Definition 3. A d,-configurationis a pair(\, A) of a partition\ C d,—; and a setd of arrows occupying
a whole row or a whole column df; /A such that no inner corner @f, /X is occupied by two arrows.
Here, by an inner corner we mean a celt 0, /) such that\ U c is a partition. Thdengthof an arrow
is the number of cells occupied by the arrow. gt denote the set afi-configurations. We define the
g-weightof a d;-configurationA = (), A) to be

wtg(A) = (,1)|A|q2|M+HAH,

where|| 4] is the sum of arrow lengths.
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=
Figure 1: A §,-configuration and the corresponding marked Dyck path, e/hegirked steps are the thicker steps.

= 1]

— 1

Figure 2: The two fixed points ir®s which will not be sent t@,.

For example, th@-weight of thed,-configuration in Figure 1 i§—1)7 g2 8+1+3+4+34+3+342

There is a simple bijection betwe@)t and®, as follows. ForA = (A, A) € &, the north-westborder
of 4, /) defines a marked Dyck path of lendth where the marked steps correspond to the segments on
the border with an arrow, see Figure 1. Moreovep, i 5;; corresponds ta\ € &, one can show that
wt(p;V — 1,V — 1) = ¢*¢+D wt 1 (A). Thus we obtain the following lemma.

Lemma 3.1. For any nonnegative integér, we have

Z wt(p;V — 1,V — 1) = ¢Fk+1) Z wtg—1(A).

—
pED,, Ae®y,

We prove the proposition below by constructing a weightspreing-sign-reversing involution ofi.
More precisely, we construct such an involution®p such that the fixed point set is in weight-preserving
bijection with®_; except the two fixed pointA = (\, A) with A = §;,_1 and A consisting ofn arrows
alternating as shown in Figure 2. Thus our involution implie

D wig(A)= D7 wig(A) + 2.

AedB, AEBL_1

The key idea of the involution is “moving” the arrows upwanido the left to decrease the arrow length
by 1. We omit the details.

Proposition 3.2. For a nonnegative integet, we have

k

3 wtg(A) = Y (—9)"

Ae®y, i=—k

By Lemma 3.1 and Proposition 3.2 we obtain (15), thus cormpgehe combinatorial proof of (2).
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3.2 Limiting case k — oo and a connection with JTP

ForA = (A, A) € &, if there is an arrow coming from a row or a column)afone can easily see thglt
divideswt,(A). In other words, ifit, (A) is not divisible byg”, then the partition, the horizontal arrows
and the vertical arrows are completely separated. Thus wédrealy choose a patrtition, vertical arrows
of distinct length and horizontal arrows of distinct lengithis argument gives us the following.

Proposition 3.3. For any nonnegative integdr, we have

Z wtg(A) = H%qm H(l —qi)H(l —¢') = H 1= ql. mod ¢".

1 2
AE®,, i>1 i>1 i>1 i>1 T4

Letting k — oo in Propositions 3.2 and 3.3, we get (3).
Now we define they, ¢)-weightof a §;-configurationA = (), A) to be

Wty o(A) = (—1) A g2AFIAl (g yor()=ov(a)
whereoh(A) (resp.ov(A)) is the number of odd-length horizontal (resp. verticalpess in A. For

example, théy, q)-weight of thes,-configuration in Figure 1 i§—1)7¢? 8+ 13+4+3+343+2(_y3-2
The proof of the lemma below is similar to that of Lemma 3.1réd&e define

‘-7:(1+yq)1_q271+yq351_q47"')5 j/:(1+y_1q71_q271+y_1q371_q4a"')'

Lemma 3.4. For any nonnegative integer, we have

3wt T — 1,7 = 1) =" 3wty (A).

pEDy, Ae®y,

By the same argument as in the proof of Proposition 3.3 tayetith

]._.[ : —1q2i H(l _ q2i)(1 + yq2i—1) H(1 _ qu)(l i y—qui—l)

i>1 i>1 i>1

=[] -HA+y HA+y Y,
i>1

we obtain the following.

Proposition 3.5. For any nonnegative integér, we have

> wtyo(A) =[]0 =) +y® A +y ") mod ¢*. (16)
Ae®By, i>1

Since the right hand side of (16) is one side of JTP, it is rEtorguess

k
Z Wty q(A) = Z yiqiz- (17)

AEG, i=—k
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Using Lemma 3.4 and the same argument as in (14), one canst¢&This equivalent to Theorem 1.1.
This is in fact the way the authors first discovered Theorem Motice also that by Lemma 3.4, (9) and
(7) in this order, we have

N Wty o (A) = Y wi(pr LT 1) = Y wt(p -1, -1) = Y wi(p; T, J).
A€y, peD;, pESK PESk

Thus (17) is also equivalent to

> wt(p: T, T) Z y! gh D=7 (18)

PESk Jj=—k
We will prove this in the next section.
3.3 Generalized g-secant numbers
For two nonnegative integetsandb, we define
1 la+1] [b+1] =z |la+2] [b+2] 2z
E*(q) = [2"] <I | ]‘ﬂ bz | ]qg l > .

ThenE?%(q) is ag-secant number anl%:!(q) is ag-tangent number, see [JV10].
By (2), we have

n

Ey°(q) = S Z ((n2fk) - (nfl?—l)) qk(kﬂ)Tk(q_l),

_ 2n
(1—qPr =

whereTy(q) = Zf:_k(fq)f. Note that by (3) we have

i (49
Jmm Tila) = (=@ @)oo’

where we use the usual notation ¢),, = (1 —a)(1 —aq)--- (1 — ag"~*) and(a;q)oo = (1 — a)(1 —
aq) - - - . We generalize this as follows.

Theorem 3.6. For nonnegative integers andb, there is a famin{T,f’b(q)}kZO of polynomials iny such
that

B40) = ez O () = () e T,

(1—q) =
Moreover, for allk > 0, we have

1 (59
(@ a@G @)y (—¢:9)

Ty (q) mod ¢",

which implies

aby 1 (59)x
dim T(a) = (@ DalG:)s (=6 0)so
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4 The finite version of Jacobi’s triple product and consequences

4.1 Main result

By Lemma 2.5, Theorem 1.1 is equivalent to the following tle@o. This is also equivalent to (17) and
(18), and as we have seen, these identities give JTP wiemds to infinity.

Theorem 4.1. There holds

0o k
k(b 1)— 1 (I+q)+qHz 1-¢°)z
k J o k(k+1)—5° _
E Py E yq = el (29)
= = 1+2z— 1+2 - 1+z -

Ja—
where the continued fraction beiflg (z) with \,, = (1+¢"y)(1+¢"y~!) foroddn and),, = (1—¢")?
for evenn.

Proof. We show that both sides satisfy a common functional equatioteed, ifH (z) is the left-hand
side of (19) and:; ;,(z) = zFy7¢**+1=7" we have

H(z) = Z ¢jk(2), cjr+1(2) = ZQQCj,k(ZqQ)a (20)
J,k€Z, k>|j]
and it follows that

1 N 1
—yqz  1—-y lqz

H(z) = 2¢°H(2¢°) = ) ¢;)5(2) = 1
JEZ

(21)

To show the last equality, note that whier= || the termk? cancels with—32 in ¢; . (z) and splitting the
j-sum according to the sign gfgives two geometric series. 36(z) is the unique formal power series
satisfying the functional equation:

1 1

H(z) =
(2) 1—yqz + 1—y1lgz

— 1+ 2¢*H(2¢%). (22)

Uniqueness comes from the fact that by iterating (22), wegeinmore and more terms in the expansion
of H(z). It remains only to show that the continued fraction in thghtihand side of (19) satisfies the
same functional equation, which is done in a separate lenatoavb O

Lemma 4.2. Let X as in Theorem 4.1, then we have

1
- lfyqszl—y—lqz

Ty(2) 14 262 Ty (242). (23)

Proof. We will identify 2 x 2-matrices and Mobius transformation in the usual way:

a b aX +b
(c d) Xl=7a (24)




572 Matthieu Josuat-Vegs and Jang-Soo Kim

i.e. we use a bracket notation for the evaluation of a Mobmissformation. A continued fraction can be
obtained by iterating such transformations. In the presasé, we have

1 _ z(lqu2)2X7(1+z) (25)
(1+wqy)(1+wqy ™ )z z2(14+2)(1-wq?)2 X +(1+wqy) (1+wqy — 1) z—(1+2)2’
I4z— 1+2z—(1—wgq?)22zX

so we can introduce the matrix

— z(1 — wg?)? —1-=z
M2 = (oo L0 g (1w e 4 22) (26)

and we have
Tn(z) = [[ M(a*", 2). (27)
n=0

The partial products are just the convergents of the coatritaction. More precisely, the infinite product
is convergentin the following sense: the partial produotsMdbius transformations, and these converge
pointwise to the formal power series in the left-hand sid€2G1).

Let S be the matrix . .

2
— (*T 1= T T2 1
S < 0 ] . (28)

The functional equation that we want to prove can be written:

11 M 2) =S [] M, 2. (29)
n=0 n=0

By examining the previous equation, it is natural to introela matrix?,, by
Qn = M(q2na Z)il e M(L z)ilsM(L qu) e M(q2n7 zqz)a (30)

where we understand that only even powers appear within the dots. It can be calculated explicitly, as
given in Lemma 4.3 below, so that we obtain:

1-— 22q2
22z —y —y ) +1 - 2%

Qn[0] = (31)

The important point is that from this closed form, we can éhbat(2,,[0] is well-defined at = 0 (i.e. it
has no pole at = 0). Letw,, = Q,[0], by definition of(2,, we have:

M(1,2) - M(q*", 2)[wn] = SM(1,2¢%) - - M(¢°", z¢*)[0], (32)

and at this point it remains only to lettend to infinity in (32) to prove (29), which was a rewriting of
(23). The only subtlety is in the left-hand side, where wednidxe fact thato,, is indeed a formal power
series inz (as opposed to a formal Laurent series) to take the limit. éMoecisely, one can show by a
straightforward calculation that the left-hand side in)(@2es not depend om,, up to aO(z"*1), and
this is why we can take the limit — co. |
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Lemma 4.3. The matrix(,, defined in(30) has the explicit form:

(qQZ(2qQ"+2 —2¢”"3(y +y7h) +2%¢2 — 1) Lo )
(1 —*""2)2(2%¢% — 1)z¢? 2P 3 (2qz —y —y~ 1) +1 - 2%¢°

(1 —yzq)(1 -y 'zq)

Proof. Although calculations are quite cumbersome, there is agstifarward recursive verification of
the given expression, using the relation, fop 1,

Q, =

(33)

Qn = M(q2n7Z)_lﬂn—lM(q2n52q2)7 (34)

where we definé), = S. There aret coefficients in(2,,, each appears as a sum4oferms when we
expand the previous equation, and each of this term is a ptad3 coefficients of the matrices in (26)
and (33). So there is a small “explosion” of the size of corapiahs to perform. However, this is a
verification that can be done with no particular clevernssg;e expanding everything in (34) will clearly
makes possible a term-by-term identification of both sid&g. omit details and invite the unconvinced
reader to use some computer algebra system for checkinththlgmma is true. O

4.2 New Touchard-Riordan-like formulas

From Theorem 4.1, we can derive a whole family$fractions having associated Touchard-Riordan
formulas, as given in the theorem below. A very interestingpprty of these is that there are exponential
generating functions linked with trigonometric functio$ie theorem below is also a wide generalization
of the result in (2), which is related with @analog of secant numbers having exponential generating
functionsec(z). Note that in the definition ofn], = (1 — ¢")/(1 — ¢), n can be any number, not
necessarily an integer.

Theorem 4.4. For any numbers andb, we defingu, (a, b, ¢) by
[nb+al, [nb—a], ifnisodd

Z pn(a,b,q)z" = Sx(z), where X\, = ) (35)
n=0 [nb], if n is even

Then we have
n k

tn(a,b,q) = ﬁ Z ((ffk) _ (nf;ih)) Z (_1)jqaj+b(k(k+1)—j2)7 (36)
k=0 j=—Fk
and ,
Nt 2*" cos(az)
;Nn(avbal)m - COS(bZ). (37)

Proof. Consider the identity obtained by substitutingq) with (—q¢, ¢*) in (19), and apply Lemma 2.5
to thisT-fraction. This gives the desired formula for — ¢)*"u,, (a, b, q).

It remains only to obtain the exponential generating fuorctf i, (a,b,1) as a ratio of cosines. Ac-
tually, this was essentially known by Stieltjes [Sti90] amalytical methods. It is also possible to prove
this going through an addition formula satisfied &s(az)/ cos(bz), and using a theorem of Stieltjes
and Rogers, see for example in [GJ04, Chapter 5] (this meathgenerally well-suited for trigonometric
functions). O
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Note thatu(a, b, q) is a polynomial ing with nonnegative coefficients in the following situatianand
b are integers such that< a < b, and also (this is less obvious):andb are half-integers satisfying the
same inequalities. This implies that a function suchas$z/2)/ cos(3z/2) is the exponential generating
function for a sequence of nonnegative integers. Thus Emat.4 opens some problems, for a better
understanding of these quantities(a, b, ¢). We can ask if there is a combinatorial interpretation from
which both the ordinary generating function and the exptinbone (forqg = 1) can be obtained. It would
be quite remarkable to thus obtain the continued fractiooma side and the trigonometric function on
the other side.
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