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Abstract. We present an insertion algorithm of Robinson—Schensted type that applies to set-valued shifted Young
tableaux. Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch and non set-valued
shifted tableaux by Worley and Sagan. As an application, we obtain a Pieri rule for a K-theoretic analogue of the
Schur Q-functions.

Résumé Nous présentons un algorithme d’insertion de Robinson—Schensted qui s’applique aux tableaux décalés a
valeurs sur des ensembles. Notre algorithme est une généralisation de I’algorithme de Buch pour les tableaux a
valeurs sur des ensembles et de 1’algorithme de Worley et Sagan pour les tableaux décalés. Comme application, nous
obtenons une formule de Pieri pour un analogue en K -théorie des Q-functions de Schur.
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1 Introduction

This article is an extended abstract of the paper [INN] of the same title. Most details of the proofs are
omitted.

In [IN]], we introduced a non-homogeneous (K -theoretic) analogue of Schur QQ-functions. These func-
tions are labeled by strict partitions (or shifted Young diagrams), as are the original @-functions. For
a strict partition A, the corresponding K-theoretic Schur Q-function GQ () can be expressed as a
weighted generating function of shifted set-valued semistandard tableaux of shape A\, which are the central
concern of this article.

The main result of the paper is a Robinson—Schensted type insertion algorithm for the shifted set-valued
tableaux (Thm [3.4). Our algorithm is a generalization of both set-valued non-shifted tableaux by Buch
[Bu]] and non set-valued shifted tableaux by Worley [Wo] and Sagan [Sa]. As an immediate consequence
of our algorithm, we have a Pieri rule for GQ(z) (Cor. 3.3).

The original purpose for introducing functions GQ(z) was to apply them to Schubert calculus. In
[IN] we introduced function GQ(z|b) (resp. G Py (x|b)) with the equivariant parameter b = (by, ba, .. .),
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which represents the structure sheaf of the Schubert variety indexed by A in the K -ring of T-equivariant
coherent sheaves on Langangian (resp. orthogonal) Grassmannian, where 7' is the maximal torus acting
on the Grassmannians. Thus our Pieri rule gives an explicit description of K -theoretic Schubert structure
constant for an arbitrary Schubert class times a special (one row type) Schubert class in the K-ring of
Lagrangian Grassmannian.

Recently, a K-theoretic Littlewood-Richardson rule in terms of the jeu de taquin for odd orthogonal
Grassmannians of maximal isotropic subspaces has been obtained by Clifford, Thomas and Yong [CTY]].
Their method starts from a Pieri rule for the K-theory by Buch and Ravikumar [BR], which applies to
cominuscule Grassmannians. Our approach differs from them substantially. We proceeded independently
a different approach of tableaux insertion to result in the same formula as [BR], i.e. the counting of KLG-
tableaux. But our method is only applicable to the case of Lagrangian Grassmannians, although there is a
set valued tableaux description for G Py (z).

Organization of the paper is as follows. In Section 2, we give the definition of shifted set-valued
tableaux, and K-theoretic Schur Q-functions GQy(x). In Section 3, we present our main result, an
existence of a Robinson—Schensted type bijection for set-valued shifted tableaux. As a corollary, we have
a Pieri rule for GQ (). Precise description of the bijection is given by a bumping algorithm which is
given in Section 4. In Section 5, we discuss a variant of the bijection, which is analogous to the results by
Sagan and Worley. In Section 6, we give an outline of the proof of the main theorem.

2 Shifted Young diagrams, set-valued tableaux

2.1 Shifted Young diagrams

Let A denote the set {(i,7) € Z? | 1 < i < j}. Any element o = (i, 5) is called a box. If i = j, then
(i,7) is called a diagonal box. A shifted Young diagram is any finite subset A of A such that for each
a = (i,7) € \,any box 3 = (¢, 5) € A satisfying ¢’ < iand j' < j belongs to \.

We define S to be the set of shifted Young diagrams. For A € S, we define |A| to be the number of boxes
in X. For A\, 1 € S such that A\ C u, we define the skew shifted Young diagram p/ ) to be the set-theoretic
difference p — A.

Leta = (i,7),8 = (¢, 7") € A. We say that « is weakly below (resp. weakly right of) 3 if i > i’ (resp.
J > j"). We say that « is strictly below (resp. strictly right of) B if i > i’ (resp. j > j'). We say that « is
directly below (resp. directly right of) §if i =i + 1 and j = j' (resp. i =i’ and j = j' + 1).

We call a skew shifted diagram 6 a horizontal strip (resp. vertical strip) if 6 has no pair of boxes in the
same column (resp. row). We call 8 a broken border strip if 6 contains no 2 x 2 square block.

2.2 Tableaux

Define a totally ordered set B to be disjoint union of sets A = {1,2,...} and A’ = {1’,2',...} with the
following order:
'<l<2<2<---.

We define binary relations <,. and <. on BB by
<,y <= z=ycAorz <y, r<.,y &= z=yc Aorx<y.

Note that x £, y (resp. z L. y) is equivalent to y <. z (resp. y <, x) for any x,y € B.
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Let X denote the set of non-empty finite subsets of 5. We extend the relations <,., <. on X by A <,
B<—=maxA<,mnBand A <. B <= maxA <. minB for A,B € X.

Definition 2.1 (Shifted set-valued semistandard tableaux) Let A be a shifted Young diagram. A set-
valued semistandard tableau of shape X is a map T from the set of boxes in \ to X satisfying the following
“semistandaredness” :

1. T(a) <, T(B) if B € \is directly right of o« € .
2. T(a) < . T(B) if B € \is directly below a € .

Example 2.2 An example of a set-valued tableau is given by the following:

[1112123B4
T= |24]|6}
6

We denote by 7 (\) the set of all set-valued tableaux of shape \.

2.3 K-theoretic (Q-Schur functions

Let z = (21,22, ...) be a sequence of variables. Let A € S and T' € 7 (\). We define the corresponding
monomial 27 =[], «’ ) where e; (T') denotes the total number of 4 and " appearing in T'. The weight
of T € T(\) is defined to be 3!71=IN 2T, where 3 is a formal parameter and |T| is the total number of
letters in T'. The K-theoretic (Q-Schur function GQ () is defined as the following formal sum of the

weights of the elements in 7 () :
GOa(z) = ) BT
TeT(N)

When § = 0 this becomes the Schur Q-function Q (), and when 8 = —1 this represents K -theory
Schubert class corresponding to A for Lagrangian Grassmannians. See [IN] for other expressions of
GQx(z) and geometric background.

3 Statements of main results

3.1 Admissible strips

Let & = X\/u be a broken border strip. We consider a decomposition § = C U C’, with C,C" skew
diagrams, i.e. there is a diagram v satisfying ¢ C v C Aand C = A/v and C' = v/u. Such a
decomposition of @ is called admissible of if the following conditions are satisfied:

1. in each of the diagrams C and C’, there is no pair of boxes in the same row or column.
2. there is no diagonal box in C’.

A non-empty broken border strip 6 is called a 1-admissible strip if there exists an admissible decompo-
sition of . For a 1-admissible strip 6, we denote by C(8) the set of all admissible decompositions of 6.
Later we define the notion of m-admissible decomposition of a broken border strip.
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Example 3.1 The following is an example of a 1-admissible strip and its 1-admissible decomposition,

\ 1]

1 )

1

where the boxes with entry 1’s form C and 1”’s form C".

The next result shows the role of 1-admissible strip. The detailed construction of the map is given in
Section We define the weight of a 1-admissible strip 6 to be 51?11,

Proposition 3.2 There is a weight preserving bijection:
¢:T(N) x X — | |T (1) x C(u/N)
"
where p € S runs for those  such that /X is a 1-admissible strip.

3.2 Composable admissible strips

Let A\, u,v € S be such that u C v C A. Suppose 61 = v/u,0s = A/v are 1-admissible strips. Let
(Cl,C;) € C(6;) (i = 1,2).We say that (C], C1) precedes (C},C2) and denote (C7,C1) < (C4, Ca), if
the following conditions are satisfied:

1. C{ U} is a vertical strip.

2. (7 U4y is a horizontal strip.

3. Each box in C} is strictly below any box in C1.
4. Each box in Cy is strictly right of any box in C'.
5. If Cy # 0, then C) = ().

3.3 Main results

Let 6 = 11/ A be a broken border strip, and m be a positive integer. Suppose there is a nested sequence of
shifted diagrams
A=20 cpM0) ,2 ...-pm — L (1)

such that () := v /p(=1) (1 < 4 < m) are 1-admissible strips. If, moreover, there is a sequence of
1-admissible decompositions (C?, C;) € C(0™) (1 < i < m) such that
(01/701) < (Oz(-‘rlaci-‘rl)a (1 < { <m-— 1) (2)

then we say 6 is an m-admissible strip. For an m-admissible strip 0, let C,,,(60) denote the set of pairs
({l/(i)}?ll, {(Cl, C;)},) satisfying the above conditions, which we call m-admissible decompositions
of 6. Note C; () = C(6) since condition (2)) is vacant for m = 1.
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Example 3.3 The following is a 4-admissible strip

\ 1]4]

2

where the boxes with entry ¢ are C;, and ¢’ are C..

We denote by (m) the shifted diagram consisting of one row with m boxes. We simply denote 7 (m) for
T ((m)). Recall that we define the weight of T € 7 (\) as 8171~} 2T, Define the weight of U € C,,,(6)
to be Blo1-m.

Theorem 3.4 By algorithm we have a weight preserving bijection:

bm : T(A\) x T(m) — | | T (1) x Con(1/ ), (3)

where (i runs for shifted diagrams p such that 1 O X and j1/ X\ are m-admissible strips.
As an immediate consequence, we have the following.

Corollary 3.5 (Pieri rule) We have

GQA(@) - GQu(w) =Y BTN 4C,, (1/A) x GQu(x),

HOA

where i runs for shifted diagrams p such that ;1 O X and /) are m-admissible strips.

For example we have

GQa1 - GQ2 = 2GQu 1 +2GQ32 + 33GQuz + BGQs1 + BGQ321 + B°GQs2 + B*GQuz 1.

In order to give the coefficient of GQ4 2, we count the elements in Co(p/A) with g = (4,2), A = (2,1) :

L2l O] Jufe] [ Jv]2]
2| 1] 7’ 2|

N.B. The elements in C,,(11/\) are exactly the K LG-tableaux of shape p/A with content {1,2, ..., m}
in [BR].

4 Bumping algorithm

The aim of this section is to describe the bijection of Prop[3.2]

The input of our algorithm is a pair (T, w) with T' € 7 () for some A € S and w € X. Basic output is
a tableau 7" of some shape 1 € S such that 4 D . The skew diagram 6 = 1/, the set of “new boxes”,
turns out to be a 1-admissible strip. We also have some “recording data” on § which gives an element of

c().



532 IKEDA, Takeshi and NARUSE, Hiroshi and NUMATA, Yasuhide

4.1 Parts of “L” shape of a tableau
Let A € S. Let £()\) be the number of rows of A. For 1 <t < \; we define a subset of A by

Li(A) ={(i,j)eA|i=torj=t}.

For example, L1 (\) consists of the boxes in the first row. For k > £(\), L (\) is just the k-th column. In
general, this is a subset of shape “L” including the diagonal box (¢,t). Let T" € 7 (\). By restriction we
have amap L;(T) : L;(\) — X, which we call the ¢-th part of T

Our algorithm starts from inserting w = w(®) € X into L; = L (T), the first row of T, resulting a row
L' with possibly a new box at the right end, and a set w(!) € X’ “bumped out” from the procedure. Then
we modify the original tableau 7' = T(©) by replacing L; with L to obtain T (1), Next we insert w(!) into
the second part of the modified tableau 7(2). We repeat this procedure until no boxes are bumped out.

4.2 Insertion into a part of “L” shape (a rough idea)

We define a procedure to insert some sets w € X into an L part X of a tableaux.

Here we present a rough idea of constructing the procedure. First, we look at the minimum letters of
each boxes in order to decide the box into which a letter in w to be inserted, in the same manner as the
classical bumping procedure (some letters go into empty box at the end). If we might simply insert these
letters into X, some letters in w may violate the semistandardness, while some letters are not. So we
eject some element in X before inserting w. Let w be the set of letters in w which do not conflict any
original letters in X, and let & := w — w0 be the complement. If w # (), let @ be the set of elements in X
that conflict some element in . To ensure the semistandardness, we first eject the elements in % from the
tableau. Furthermore, if a letter in w is inserted into a non-empty box, we eject all the remaining (original)
entries of the box. Thus any letter inserted into a non-empty box “does some work™ (bumps out at least
one letter). This feature is important for constructing the inverse algorithm.

There is a flaw in this idea. For example, we consider a tableau 7' = and w = w® = {1}

According to the naive algorithm above, the resulting tableau is 7)) = , and the ejected set is w(?) =
{1’}. Since the second part is empty, the final result is , which is not semistandard. This is a reason
why we need the “unmark”™ process introduced in the next section. In fact, we should care for the case of
inserting elements into the diagonal boxes.

4.3 Insertion into a diagonal box

Let X € X, and u be a subset of X. We insert w € X into X, where we consider X to be a diagonal box.
Algorithm 4.1 (Bumping for a diagonal box)

input X, w,u € & satisfying v C X and maxw <. min X.

output Y, v.

procedure

1. If X # u,thenletY = (X —u) Uw and v = u; and return Y, v.

2. Ifi = max(w) € A/andi € X, ¢/ ¢ X, thenletY = {i}U (w— {4 })and v = X; and
return Y, v.
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3. If / = max(w) € A'andi’ € X, i ¢ X, thenletY =wandv ={i}U(X — {4 }); and

return Y, v.
4. If /' = max(w) € A’ and i,7' € X, thenletY = {i} Uwandv =X — {¢ };andreturn Y,
v.

5. Otherwise, let Y = w and v = X; and return Y, v.

For example, if u = X = and w = 13/, then we apply (2) to obtain Y = rather than , and
u = 34. Thus letter 3’ is unprimed to be 3 in u. If v = X = 3’4 and w = 13', then we apply (3) to obtain
Y = and u = 34, rather than u = 34. In this case, two 3’ are involved, and one may think of this
process as umpriming “bigger” 3’. Case (4) is a bit strange. If u = X = and w = 3', then we have
Y = and v = 3. This case we are unpriming “bigger” 3’ also, and let it remain in the box.

4.4 Insertion into a part of “L” shape (definition)

Let T be a tableau of shape A, and ¢ be a positive integer such that t < \;. Let X = L;(T) be the t-th
part of T. If ¢ = 1, then X isarow: X = (X(11) <r X(12) <p o+ < X(q,0))- If £ > £(X) then X is
acolumn: X = (X4 <. -+ <. X(iy)) for some k < t. We say that X is a pure column in this case
(note that X does not contain diagonal box). If 1 < ¢ < ¢(\) then X = L(T) is a sequence of elements
in X :

X = (X(l,t) <cr e X(tfl,t) <c X(t,t) <r X(t,t+1) <p o Sy X(t,t+)\t71))~

The following algorithm takes as an input a sequence of elements in X" satisfying
X = (X—k <o <o X SCXO <X < ST’XZ);

for some k,l > 0, and w € X. If kK = 0, we consider X as a row. Output is a triple (Y, Y}, v), where Y’
is a sequence Y = (Yi)ﬁz_k satisfying the same condition as X, and Y, ,v € X U (. If Y # 0 we will
make a new box with entry Y, at the right end of Y.

Algorithm 4.2 (Bumping rule for an L part)
input X = (Xi)ﬁz_k : tableau of L shape, i.e.
X=X p<e e X< X< X -0 S0 X)),
andw € &.

output Y tableau of L shape of the same length of X, and Y, v € X U 0.

procedure
1. Define the subsets w_g, . .., w;4+1 of w by
{rew|zr <, mnX_,} = —k)
{z € w|min X;_; <.z <, min X;} =—k,...,—1)

(t

(t
wy = {rew|mnX_; <.z <,min Xy} (t=

{z € w|min X;_; <, x <, min X;} (t

(t

{r € w|minX; <, z}
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2. Decompose w; into the subsets w; and w; defined by
Wi (t = —k‘)
Wy =< {rcw |maxXy; 1 <.z} (t=-k+1,...,0),
{zew | max X, 1 <,z} (t=1,...,1+1)

wt:wt—wt,fort:—k:,...,l—i—l,
3. Define @, @, and ug, (t = —k,...,1) by:
@ (ifﬁ}t+1 =®)
’[Lt: {yGXt\yﬁcmian_l} (ift:—k,...,—landwt+17é@),
{ye Xy |y L minwyy } (ift=0,...,land w1 # 0)
e (if W, = 0)
P Xe—ae (i dy £ 0)

uy = Uy Uty C Xy.

4. Define YV; = (X; — uy) U w; and v, = uy for ¢ # 0.
5. Let (Yo, vo) be the pair obtained from the triple (X, wo, uo) by Algorithm@.1]if I > 0.
6. LetY = (Y_i,..., V), Yy =wiyq,and v = Uf::—k vg; and return Y, Y, v.

Example 4.3 Let X = (X _5, X_1; Xo; X1, X5, X3) be

134 TE]56[8 9]

Let us insert w = 25’6’79’9 € X into X. Since the minimums in X is

[ Tl5[8]9):

we have (w_s,...,wy) = (0,2,5,0,6'7,9’,9). Since the maximums of X is

Elfd 5 EEL

we have
t|-2 -1 0 1 2 3 4
wy | 0 o 5 0 7 9 9
we | 02 0 0 6 0 0]
| 0 W 5 0 8 9 —
w3 O 0 6 0 0 -

Finally we get

V=[1p4l5[579] Y+ ={9}, u={3,56,89}.

We need to define the bumping algorithm applicable also when X = L;(T) is a pure column case, i.e.
t > ¢()\). However, extension of the algorithm to the column case is straightforward, so we omit detailed
description here.
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4.5 Insertion of w into arbitrary tableau

We define a procedure to insert an element w € X into an arbitrary tableau 7. In the procedure, we insert
w into the first L part of the tableaux. When some letters are bumped out, we insert them into the second
L part of the tableau. Then, while some letters are bumped out, we try to insert them into the next L part
of the tableux until no letters are bumped out.

Algorithm 4.4

input 7' € 7(\) andw € X.
output U, 5', S.

procedure

l. Letu=w,U=T,S=0and S’ = 0.
2. While u # §), do the following:
(a) Let X be the ¢-th L part of U,
(b) Let (Y, Y, ,u) be the triple obtained from (X, u) by Algorithm[4.2}
(c) Let U be the tableaux obtained from U by replacing the ¢-th L part by Y.
(d) If Y, # 0, then do the following:
i. Add a new box to the end of ¢-th L part of U, and insert Y7 into the box.
ii. If X is a pure column, then add the new box to .9, else add the new box to S’.
3. Return U, S’ and S.

Example 4.5 Let T be the leftmost tableau below. We insert w = { 1’,1,2’,3 } into T as follows.

Il s | {rafuflees|s | jrafo frees] s | jvef1 |1 |3]
23| 3 3| 3 | 2 || 3 2’ (23
u=112'3 w=12 u=123 u=1223'3

vif1 |1 fizeys 3]

11 |1 12233 |3

—

For each step, the relevant part of modification is enclosed.
Sets S’ and S are as follows:

()

where the box with entry 1’ (resp. 1) is S’ (resp. 5).
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4.6 Definition of the map ¢

In order to complete the description of the map ¢, we need one more combinatorial idea. Let 6 be a
1-admissible strip. We define an involution g : C() — C(0). A box « € 6 is said to be isolated if « is not
a diagonal box and there is no other box than « in the row and column where « presents. For each isolated
box, apply its entry the obvious involution 1 — 1, 1’ — 1, while the non-isolated boxes are untouched.
The resulting decomposition of 6 is obviously admissible. For example, we have

| 1 V|
1’1 ) 1|1

—

1 1

It is obvious that g is an involution.

Proposition 4.6 Let A\ € S, T € T(\), and w € X = T(1). We have by Algorithm 4.4 a tableau
U= (T «— w) € T(u)for some p € S such that . O X and a decomposition (S’,S) of 0 = p/\. We
have (S',S) € C(0), and therefore 0 is a 1-admissible strip.

Let T € T(\) and w € X as in the above proposition. We define ¢(7T', w) to be (U, o(5’,5)) €
T (p) x C(u/A).

4.7  Proof of Prop.

To show that ¢ is a bijection, we construct its inverse map. See [INN] for details.

5 Robinson—Schensted type correspondence
5.1 Quasi-standard tableaux

We will define a notion of “recording” tableaux in our setting. The resulting object is an analogue of a
standard tableau, which we will call a quasi-standard tableau.

For T € T(\) and w € X we denote by T' < w the tableau given in Prop. Let T € 7(\) and
(w1, ..., wy) € X™. By the consecutive insertions

T(z‘):(...((Tgwl)ng)...gwi)

we have a tableaux 7 € T (1)) for some shifted diagram v(*) and an element of C(v(¥) /v(i=1)) given
by Proposition Thus we have a nested sequence of shifted diagrams

A=vO M cp@c...cpm =, 4)

and also 1-admissible decompositions (C?, C;) of §%) = () /u(i=1) These objects are expressed as a
tableau like

\ [1]27]4]
U[2/]2[3"]4'[4
1/11(3|3|4'|4 ,

—_
B2
w
S




Bumping algorithm for set-valued shifted tableaux 537

where the boxes filled with ¢ (resp. i) are C; (resp. CY).
We call such a tableau a quasi-standard tableau of degree m. The precise definition is the following.

Definition 5.1 A map U : u/\ — By, := {1',1,...,m/,m} is a quasi-standard tableau of degree m,
if U is semistandard in the sense of Def. andfor any 1 < i <m,U({i,i'}) is a 1-admissible strip
with admissible decomposition given by (U~1(i"), U~1(i)).

Let S, (14/ ) denote the set of quasi-standard tableaux of degree m on u/\.

Remark. By the construction, S;(u/\) is non-empty if and only if § = u/\ is an 1-admissible strip.
Then we have S;(6) = C(0) = C1(0). For an m-admissible strip 6, the set C,,,(6) is a subset of S, ().
5.2 Robinson-Schensted correspondence

The following result is an immediate consequence of Prop.
Proposition 5.2 Let T € T (\) and (w1, ..., wy) € X™. By consecutive insertions

T/ = (o (T = wr) = wg) o = i)

we have a tableaux T’ € T (p) for some shifted diagram . O X and the recording tableau U. Then we
have U € S,,,(11/\). By this correspondence we have a weight preserving bijection

bt TO) x X — | | T (1) x St/ ), s)
w

where the sum runs for shifted diagrams 1 such that S,, (p/\) # 0.

Then we have immediately the following:
Corollary 5.3 We have

GQA(@) - GQu(x)™ =y _ BT #8,0 (1/A) x GQu(),
o

where the sum runs for shifted diagrams  such that Sy, (/) # 0.

As a special case of A = (), we have the following.

Corollary 5.4 (Robinson—-Schensted correspondence) There is a weight preserving bijection

X — | [T x Sm(N).
A

This bijection is a set-valued extension of the results in [Sal] and [Wol.

Example 5.5 Let (wy,ws,ws) = (2'3,12'2,134). By the correspondence in Cor. we have pair of
tableaux

<

—_

(]1 2234 [1]2 2|3’|3\)
P3 T2 ’

as a result of bumping process:

[12[2]2]ws[1][1]2]2]34]

0~ b33

&
«

{5
[\
B
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6 Outline of proof of Thm
Now we have the bijection ¢,,, in Prop. Since a tableau in 7 (m) is a sequence in X" such that
Xl S’r e S’I' Xma

we can think of 7 (m) as a subset of X™. Thus we only need to determine the image of 7 (\) x 7 (m)
under the map ¢,,,. The case m = 1 is obvious since 7 (1) = X. The case m = 2 is crucial.

Lemma 6.1 Let T € T (\) and w = (w1, ws) € X2, and
¢2(T,w) = (T", (C1, C1), (C3, Ca)).
Then the following are equivalent:
1. wy <, wo.
2. (C1,C1) < (CY,Cy).

It is easy to see that the lemma leads to a proof of Thm 3.4, We show this lemma by an argument using
“bumping routes”. Details are given in [INN].
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