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The Incidence Hopf Algebra of Graphs
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Abstract. The graph algebra is a commutative, cocommutative, graded, connected incidence Hopf algebra, whose
basis elements correspond to finite simple graphs and whose Hopf product and coproduct admit simple combinatorial
descriptions. We give a new formula for the antipode in the graph algebra in terms of acyclic orientations; our
formula contains many fewer terms than Schmitt’s more general formula for the antipode in an incidence Hopf
algebra. Applications include several formulas (some old and some new) for evaluations of the Tutte polynomial.

Résumé. L’algèbre de graphes est une algèbre d’incidence de Hopf commutative, cocommutative, graduée, et con-
nexe, dont les éléments de base correspondent à des graphes finis simples et dont le produit et coproduit de Hopf
admettent une description combinatoire simple. Nous présentons une nouvelle formule de l’antipode dans l’algèbre
de graphes utilisant les orientations acycliques; notre formule contient beaucoup moins de termes que la formule
générale de Schmitt pour l’antipode dans une algèbre d’incidence de Hopf. Les applications incluent plusieurs for-
mules (connues et inconnues) pour les évaluations du polynôme de Tutte.
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1 Introduction
The graph algebra G is a commutative, cocommutative, graded, connected Hopf algebra, whose basis
elements correspond to finite simple graphs G, and whose Hopf product and coproduct admit simple
combinatorial descriptions. The graph algebra was first considered by Schmitt in the context of incidence
Hopf algebras [Sch94, §12] and furnishes an important example in the work of Aguiar, Bergeron and
Sottile [ABS06, Example 4.5].

We derive a new formula (Theorem 3.1) for the Hopf antipode in G. Our formula is specific to the graph
algebra in that it involves acyclic orientations; therefore, it is not a consequence of Schmitt’s general for-
mula [Sch94, Thm. 4.1] for the antipode in an incidence Hopf algebra. Our formula turns out to be well
suited for studying graph invariants, including the Tutte polynomial TG(x, y) and various specializations
of it. The idea is to make G into a combinatorial Hopf algebra in the sense of Aguiar, Bergeron and Sot-
tile [ABS06] by defining a character on it, then to define a graph invariant by means of a Hopf morphism
to a polynomial ring. The antipode formula leads to combinatorial interpretations of the convolution in-
verses of several natural characters. When we view the Tutte polynomial itself as a character, its k-th
convolution power itself is a Tutte evaluation at rational functions in x, y, k (Theorem 4.1). This implies
several well-known formulas such as Stanley’s formula for acyclic orientations in terms of the chromatic
polynomial [Sta73]. Further enumerative consequences of Theorem 4.1 include interpretations of less
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familiar specializations of the Tutte polynomial (for example, TG(3, 2)), as well as an unusual-looking
reciprocity relation between complete graphs of different sizes (Eqns. (15) and (16)).

This is an extended abstract of the full paper [HM10], containing background material and theorems but
no proofs. Subsequently to writing this paper, we learned [Agu] that Aguiar and Ardila have independently
discovered a more general antipode formula than ours, in the context of Hopf monoids (for which see
[AM10]); their work will appear in a forthcoming paper.

We thank Marcelo Aguiar, Aaron Lauve, Vic Reiner and Frank Sottile for numerous helpful conversa-
tions.

2 Hopf algebras
2.1 Basic definitions
We briefly review the basic facts about Hopf algebras, omitting the proofs. Good sources for the full details
include Sweedler [Swe69] and (for combinatorial Hopf algebras) Aguiar, Bergeron and Sottile [ABS06].

Fix a field F (typically C). A bialgebraH is a vector space over F equipped with linear maps

m : H⊗H → H, u : F→ H, ∆ : H → H⊗H, ε : H → F,

respectively the multiplication, unit, comultiplication, and counit, such that the following properties are
satisfied: (1)m◦(m⊗I) = m◦(I⊗m) (associativity); (2)m◦(u⊗I) = m◦(I⊗u) = I (where I is the
identity map onH); (3) (∆⊗ I) ◦∆ = (I ⊗∆) ◦∆ (coassociativity); (4) (ε⊗ I) ◦∆ = (I ⊗ ε) ◦D = I;
and (5) ∆ and ε are multiplicative (equivalently, m and u are comultiplicative). If there exists a bialgebra
automorphism S : H → H such that m ◦ (S ⊗ I) ◦∆ = m ◦ (I ⊗ S) ◦∆ = u ◦ ε, we say that H is a
Hopf algebra, and S is its antipode(i)

A Hopf algebra H is graded if H =
⊕

n≥0Hn as vector spaces, and multiplication and comultiplica-
tion respect this decomposition, i.e.,

m(Hi ⊗Hj) ⊆ Hi+j and ∆(Hk) ⊆
∑
i+j=k

Hi ⊗Hj .

Meanwhile, H is connected if dim(H0) = 1. If H is a graded and connected bialgebra, then its antipode
can be defined inductively as follows: S(h) = h for h ∈ H0, and, then (m ◦ (S ⊗ I) ◦ ∆)(h) = 0 for
h ∈ Hi, i > 0. Most (if not all) of the Hopf algebras arising naturally in combinatorics are graded and
connected, and every algebra we consider henceforth will be assumed to have these properties.

A character of a Hopf algebra H is a multiplicative linear map φ : H → F. The convolution product
of two characters is φ ∗ ψ = (φ ⊗ ψ) ◦ ∆. That is, if ∆h =

∑
i h

(i)
1 ⊗ h

(i)
2 , then (φ ∗ ψ)(h) =∑

i φ(h(i)
1 )ψ(h(i)

2 ). (This formula can be writen more concisely in Sweedler notation: if ∆h =
∑
h1⊗h2,

then (φ ∗ ψ)(h) =
∑
φ(h1)ψ(h2).) Convolution makes the set of characters X(H) into a group, with

identity ε and inverse given by φ−1 = φ ◦ S. There is a natural involutive automorphism φ 7→ φ̄ of X(H)
given by φ̄(h) = (−1)nφ(h) for h ∈ Hn. If H is a graded connected Hopf algebra and ζ ∈ X(H),
then the pair (H, ζ) is called a combinatorial Hopf algebra, or CHA for short. A morphism of CHAs
Φ : (H, ζ) → (H′, ζ ′) is a linear transformation H → H′ that is a morphism of Hopf algebras (i.e., a
linear transformation that preserves the operations of a bialgebra) such that ζ ◦ Φ = ζ ′.
(i) It can be shown that S is the unique automorphism ofH with this property.
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2.2 The binomial and graph Hopf algebras
The binomial Hopf algebra is the ring of polynomials F[k] in one variable k, with the usual multiplicative
structure; comultiplication ∆(f(k)) = f(k⊗1+1⊗k); counit ε(f(k)) = ε0(f(k)) = f(0); and character
ε1(f(k)) = f(1). The following proposition is a consequence of work of Aguiar, Bergeron, and Sottile
[ABS06, Thm. 4.1].

Proposition 2.1 (Polynomiality) Every combinatorial Hopf algebra (H, ζ) has a unique CHA morphism
to (F[k], ε1).

We regard this Hopf morphism as a way to associate a polynomial invariant Pζ,h(k) = ζk(h) ∈ F[k]
with each element h ∈ H. In fact, Aguiar, Bergeron, and Sottile proved something much stronger: the
algebraQ of quasisymmetric functions is a terminal object in the category of CHAs, i.e., every CHA has a
unique morphism toQ. Composing this morphism with the principal specialization(ii) gives the morphism
of Proposition 2.1. We will not use the full power of the Aguiar–Bergeron–Sottile theorem (which can
be viewed as a way to associate a quasisymmetric-function invariant to each element of H). Note that
for k ∈ Z, the identity ζk(h) = Pζ,h(k) follows from the definition of a CHA morphism; therefore, it is
actually an identity of polynomials in k.

The graph algebra(iii) is the F-vector space G =
⊕

n≥0 Gn, where Gn is the linear span of isomorphism
classes of simple graphs on n vertices. This is a graded connected Hopf algebra, with multiplication
m(G⊗H) = G·H = G]H (where ] denotes disjoint union); unit u(1) = ∅ (the graph with no vertices);
comultiplication ∆(G) =

∑
T⊆V (G)G|T ⊗ G|T̄ (where G|T denotes the induced subgraph on vertex

set T , and T̄ = V (G) \ T ); and counit

ε(G) =

{
1 if G = ∅,
0 if G 6= ∅.

This Hopf algebra is commutative and cocommutative; in particular, its character group X(G) is abelian.
As proved by Schmitt [Sch94, eq. (12.1)], the antipode in G is given by S(G) =

∑
π(−1)|π||π|!Gπ,

where the sum runs over all ordered partitions π of V (G) into nonempty sets (or “blocks”), and Gπ is
the disjoint union of the induced subgraphs on the blocks. Here we have two canonical involutions on
characters:

φ̄(G) = (−1)n(G)φ(G), φ̃(G) = (−1)rk(G))φ(G),

where rk(G) denotes the graph rank of G (that is, the number of edges in a spanning tree). (Note that
φ 7→ φ̃ is not an automorphism of X(G).) The graph algebra was studied by Schmitt [Sch94] and appears
as the chromatic algebra in the work of Aguiar, Bergeron and Sottile [ABS06], where it is equipped with
the character

ζ(G) =

{
1 if G has no edges,
0 if G has an edge.

We will study several characters on G other than ζ.

(ii) If F (x1, x2, . . . ) is a formal power series, then its principal specialization is obtained by setting xi = 1 and xi = 0 for all
i > 1.

(iii) The literature contains many other instances of “Hopf algebras of graphs”; for example, the algebra G is not the same as that
studied by Novelli, Thibon and Thiéry [NTT04].
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3 A new antipode formula
Our first result is a new formula for the Hopf antipode in G. Unlike Schmitt’s formula, our formula applies
only to G and and does not generalize to other incidence algebras. On the other hand, our formula involves
many fewer summands, which makes it useful for enumerative formulas involving characters.

Theorem 3.1 Let G be a graph with vertex set [n] and edge set E. Then

S(G) =
∑
F⊆E
F is a flat

(−1)n−rk(F )a(G/F )GV,F

where a(G) is the number of acyclic orientations of G, rk(F ) is the rank of the flat F , and GV,F is the
graph with vertices V and edges F .

For the proof, see [HM10]. An easy consequence is the following:

Proposition 3.2 Let P be any family of graphs such that G ]H ∈ P if and only if G ∈ P and H ∈ P .
That is, the function

χP (G) =

{
1 if G ∈ P,
0 if G 6∈ P

is a character. Then
χ−1
P (G) =

∑
flats F⊆G: F∈P

(−1)n−rk(F )a(G/F ).

Example 3.3 Let P be the family of graphs with no edges. Then χP = ζ and χ−1
P (G)(−1)na(G), which

is Stanley’s well-known formula [Sta73].

Example 3.4 Let P be the family of acyclic graphs, and let α = χP . Then

α−1(G) =
∑

acyclic flats F

(−1)n−rk(F )a(G/F ).

First, let G = Cn. The acyclic flats of G are just the sets of n − 2 or fewer edges, so an elementary
calculation (which we omit) gives α−1(Cn) = (−1)n + 1, the Euler characteristic of an n-sphere. (For
many other families P , the P -free flats of the n-cycle are just the flats, i.e., the edge sets of cardinality
6= n− 1. In such cases, the same omitted calculation gives χP (Cn) = (−1)n.)

Second, let G = Kn. The acyclic flats of G are matchings; for 0 ≤ k ≤ bn/2c, the number of k-edge
matchings is n!/(2k(n−2k)!k!), and contracting such a matching yields a graph whose underlying simple
graph is Kn−k. Therefore, α−1(Kn) =

∑bn/2c
k=0 (−1)n−k n!

2k(n−2k)!k!
(n− k)!. These numbers (starting at

n = 1) are
−1, 1, 0,−6, 30,−90, 0, 2520,−22680, 113400, 0,−7484400, . . . .

This is sequence A009775 in [Slo10]; the generating function is − tanh(ln(1 + x)).

Example 3.5 Fix any connected graph S. Say that G is S-free if it has no subgraph isomorphic to S.
[Note: This is stronger than saying that G has no induced subgraph isomorphic to S.] Let ηS be the
corresponding “avoidance character”: ηS(G) = 1 if G is S-free, otherwise ηS(G) = 0. For example,
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ηK1 = ε and ηK2 = ζ, and δm := ηKm,1 detects whether or not G has maximum degree < m. For an
avoidance character, the sum in Proposition 3.2 is taken over all S-free flats F . For example, we have

η−1
Km

(Kn) =
m−1∑
j=0

(
n

j

)
(−1)n−j−1(n− j)!.

Another consequence: if T is a tree with r = n− 1 edges, then

η−1
S (G) =

∑
S-free forests F ⊆ T

(−1)r+1−|F |2r−|F | = −
∑

S-free forests F ⊆ T

(−2)r−|F |.

Moreover, PηT
(T ; k) = kn(T ) − k.

Example 3.6 Let S be a connected graph and ηS the corresponding avoidance character. ThenPηS
(G; k)

equals the number of k-colorings such that every color-induced subgraph is S-free. For instance, if S is
the star Km,1, then PηS

(G; k) is the number of k-colorings such that no vertex belongs to m or more
monochromatic edges. This “degree-chromatic polynomial” counts colorings of G in which no color-
induced subgraph has a vertex of degree≥ m; ifm = 1, then we recover the usual chromatic polynomial.
In general, two trees with the same number of vertices need not have the same degree-chromatic polyno-
mials. For example, if G is the three-edge path on four vertices, H is the three-edge star, and S is the
two-edge path, then PηS

(G; k) = k4− 2k2 + k and PηS
(H; k) = k4− 3k2 + 2k. Based on experimental

evidence, we conjecture that if T is any tree on n vertices, m < n, and η = δm (see Example 3.5), then

Pη(T ; k) = kn −
∑

v∈V (T )

(
dT (v)
m

)
kn−m + (lower order terms).

4 Tutte characters
The Tutte polynomial TG(x, y) is a powerful graph invariant. It can be viewed as a universal deletion-
contraction invariant of graphs (in the sense that every graph invariant satisfying a deletion-contraction
recurrence can be obtained from TG(x, y) via a standard “recipe” [Bol98, p. 340]. It is defined in closed
form by the formula

TG(x, y) =
∑

A⊆E(G)

(x− 1)rk(G)−rk(A)(y − 1)null(A)

where rk(A) is the graph rank of A, and null(A) = |A| − rk(A) (the nullity of A). For much more on the
background and application of the Tutte polynomial, see [BO92]. We note that TG(x, y) is multiplicative
on connected components, so we can regard it as a character on the graph algebra:

τx,y(G) = TG(x, y).

We may regard x, y either as indeterminates or as (typically integer-valued) parameters. It is often more
convenient to work with the rank-nullity polynomial

RG(x, y) =
∑
A⊆E

(x− 1)rk(A)(y − 1)null(A) = (x− 1)rk(G)TG(x/(x− 1), y) (1)
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which carries the same information as TG(x, y), and is also multiplicative on connected components,
hence is a character on G. Note that RG(1, y) = 1, and that

TG(x, y) = (x− 1)rk(G)RG(x/(x− 1), y). (2)

Let ρx,y denote the function G 7→ RG(x, y), viewed as a character of the graph algebra G. Let
Px,y(G; k) = ρkx,y(G) be the image of G under the CHA morphism (G, ρx,y)→ F(x, y)[k] (see Proposi-
tion 2.1); note that Px,y(G; k) is a polynomial function of k.

For later use, we record the relationship between ρ and τ :

τx,y = (x− 1)rk(G)ρx/(x−1),y, ρx,y = (x− 1)rk(G)τx/(x−1),y. (3)

In particular,
τ0,y = ρ̃0,y and ρ2,y = τ2,y. (4)

Our main theorem on Tutte characters is that Px,y(G; k) is itself a Tutte polynomial evaluation, as
follows:

Theorem 4.1 We have

ρkx,y(G) = Px,y(G; k) = kc(G)(x− 1)rk(G)TG

(
k + x− 1
x− 1

, y

)
.

As is typical for Tutte polynomial identities, the idea of the proof is to show that the left-hand side
satisfies a deletion-contraction recurrence.

4.1 Applications to Tutte polynomial evaluations
Theorem 4.1 has many enumerative consequences, some familiar and some less so. Many of the formulas
we obtain resemble those in the work of Ardila [Ard07]; the precise connections remain to be investigated.

First, observe that setting x = y = t in Theorem 4.1 yields

ρkt,t(G) = Pt,t(G; k) = kc(G)(t− 1)rk(G)TG

(
k + t− 1
t− 1

, t

)
= kc(G)χ̄CG(k; t) (5)

where χ̄ denotes Crapo’s coboundary polynomial(iv); see [MR05, p. 236] and [BO92, §6.3.F]. A conse-
quence is the following pair of identities:

Corollary 4.2 For k ∈ Z and y arbitrary, the Tutte characters τ2,y and τ0,y satisfy the identities

(τ2,y)k (G) = kc(G)TG(k + 1, y), (6)

(τ̃0,y)k (G) = kc(G)(−1)rk(G)TG(1− k, y). (7)

In particular, (τ̃0,y)−1 = τ2,y.

(iv) The bar is standard notation and has no relation to the involution φ 7→ φ̄ on X(G).



The Incidence Hopf Algebra of Graphs 523

In this vein, we can find combinatorial interpretations of convolution powers of the characters τ2,2,
τ2,0, τ̃0,2, and τ̃0,0. In the last case, we recover the standard formula for the chromatic polynomial as a
specialization of the Tutte polynomial. Note that τ̃0,0 = τ0,0, because these characters are both zero on
any graph with one or more edges.

This setup leads to combinatorial interpretations of other Tutte evaluations. If G is connected, then
substituting y = 2 and k = 2 into (6) yields

2T (G; 3, 2) = P2,2(G; 2) = (τ2,2 ∗ τ2,2)(G) =
∑

U⊆V (G)

2e(G|U )2e(G|Ū ) =
∑

U⊆V (G)

2e(G|U )+e(G|Ū ). (8)

That is, T (G; 3, 2) counts the pairs (f,A), where f is a 2-coloring of G and A is a set of monochromatic
edges.

In order to interpret more general powers of Tutte characters, we use (3) to rewrite the left-hand side of
Theorem 4.1 as

kc(G)(x− 1)rk(G)TG

(
k + x− 1
x− 1

, y

)
=

∑
V1]···]Vk=V (G)

k∏
i=1

(x− 1)rk(Gi)τx/(x−1),y(Gi)

where Gi = G|Vi
. Note that in the special case G = Kn, we have Gi ∼= K|Vi| and rk(Gi) = |Vi| − 1 for

all i, so the equation simplifies to

(x− 1)n−1TKn

(
k + x− 1
x− 1

, y

)
= k−1(τx/(x−1),y)k(Kn). (9)

This equation has further enumerative consequences: setting x = 2 gives

TKn(k + 1, y) =
1
k

∑
a1+···+ak=n

n!
a1!a2! . . . ak!

τ2,y(Ka1) . . . τ2,y(Kak
). (10)

Setting y = 0 in (10), and observing that τ2,0(Ka) = a! gives TKn
(k+ 1, 0) = (n+ k− 1)!/k! (which is

not a new formula—it follows from the standard specialization of the Tutte polynomial to the chromatic
polynomial, and the well-known formula k(k − 1) · · · (k − n+ 1) for the chromatic polynomial of Kn).
On the other hand, setting y = 2 in (10), and recalling that τ2,2(Ka) = 2|E(Ka)| = 2(a

2), gives

TKn(k + 1, 2) =
1
k

∑
a1+···+ak=n

n!
a1!a2! . . . ak!

2(a1
2 )+···+(ak

2 ) (11)

This formula may be obtainable from the generating function for the coboundary polynomials of complete
graphs, as computed by Ardila [Ard07, Thm. 4.1]; see also sequence A143543 in [Slo10]. Notice that
setting k = 2 in (11) recovers (8).

It is natural to ask what happens when we set x = 1, since this specialization of the Tutte polynomial
has well-known combinatorial interpretations in terms of, e.g., the chip-firing game [ML97] and parking
functions [GS96]. The equations (1) and (2) degenerate upon direct substitution, but we can instead take
the limit of both sides of Theorem 4.1 as x→ 1, obtaining (after some calculation, which we omit)

ρk1,y(G) = kn(G).
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We now examine what can be said about Tutte characters in light of the polynomiality principle (Propo-
sition 2.1). Replacing x with (k + x− 1)/(x− 1) in Theorem 4.1, we get

P(k+x−1)/(x−1),y(G; k) = kc(G)(k/(x− 1))rk(G)T (G;x, y) = kn(G)(x− 1)− rk(G)T (G;x, y). (12)

One consequence is a formula for the Tutte polynomial in terms of P :

T (G;x, y) = k−n(G)(x− 1)rk(G)P(k+x−1)/(x−1),y(G; k). (13)

In addition, this implies that the left-hand-side of (12) — which is an element of F(x, y)[k] — is actually
just kn(G) times a rational function in x and y. Setting k = x − 1 or k = 1 − x, we can write down
simpler formulas for the Tutte polynomial in terms of P :

T (G;x, y) = (x− 1)−c(G)P2,y(G;x− 1),

T (G;x, y) = (−1)n(G)(x− 1)c(G)P0,y(G; 1− x).

5 A reciprocity relation between Kn and Km

For each scalar c ∈ C, define a character on G by ξc(G) = cn(G). It is not hard to see that

(ξc ∗ ζ)(G) =
∑

cocliquesQ

cn−|Q|.

In particular, (ξ1 ∗ ζ)(G) is the number of cocliques in G, and −(ξ−1 ∗ ζ)(G) is the reduced Euler
characteristic of its clique complex.

Define a k-near-coloring to be a function f : V → [0, k], not necessarily surjective, such that each of
the color classes V1 = f−1(1), . . . , Vk = f−1(k), but not necessarily V0 = f−1(0), is a coclique. Then

(ξc ∗ ζ)k(G) =
∑
f

(ck)|V0| =
∑

V0⊆V (G)

(ck)|V0|(# of k-colorings of G− V0). (14)

To see the first equality in (14), consider a partition of V into 2k subsets. The union of the first k blocks is
V0, and the last k blocks are V1, . . . , Vk. Since V0 is arbitrarily divided into k blocks, each k-near-coloring
is counted k|V0| times. Equation (14) implies that

(ξ1 ∗ ζn)(Km) =
∑

W⊆[m]

ζn(KW ) =
m∑
j=0

(
m

j

)
(# of n-colorings of Km) =

m∑
j=0

m!
j!(m− j)!

n!
(n− j)!

.

This expression is symmetric in n and m, which yields a surprising (to us, at least) reciprocity relation:

(ξ1 ∗ ζn)(Km) = (ξ1 ∗ ζm)(Kn). (15)

If we apply the bar involution to both sides of (15) (or, equivalently, redo the calculation with ξ−1 instead
of ξ1), we obtain

(ξ̄1 ∗ ζn)(Km) = (−1)n+m(ξ̄1 ∗ ζm)(Kn). (16)
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Experimental evidence indicates that

(ξ1 ∗ ζ−1)(Kn) = (−1)nDn, (ξ−1 ∗ ζ−1)(Kn) = (−1)nAn,

where Dn is the number of derangements of [n] [Slo10, sequence A000166] and Bn is the number of
arrangements [Slo10, sequence A000522]. More generally, we conjecture that for all scalars k and c, the
exponential generating function for ξk ∗ ζc is∑

n≥0

(ξk ∗ ζc)(Kn)
xn

n!
= e−kx(1− x)−c

(see [Sta99, Example 5.1.2]).
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