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Combinatorics of k-shapes and Genocchi
numbers

Florent Hivertand Olivier Mallet

LITIS, Université de Rouen, Saint-Etienne-du-RouvragnEe

Abstract. In this paper we present a work in progress on a conjectunal c@mbinatorial model for the Genocchi
numbers. This new model callédeducible k-shapeshas a strong algebraic background in the theory of symmetric
functions and leads to seemingly new features on the thddBenocchi numbers. In particular, the natugadnalogue
coming from the degree of symmetric functions seems to beawk so far.

Résumé.Dans cet article, nous présentons un travail en cours suouweau modele combinatoire conjectural pour
les nombres de Genocchi. Ce nouveau modéle est celuk-flmsnes irréductiblesqui repose sur de solides bases
algébriques en lien avec la théorie des fonctions symédsiaat qui conduit a des aspects apparemment nouveaux de
la théorie des nombres de Genocchi. En particulieg-#alogue naturel venant du degré des fonctions symésrique
semble inconnu jusqu'ici.
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1 Introduction

The goal of this paper is to present some purely combindtaglts on certain partitions; these results
are strongly motivated by the theory of symmetric functiod¢e define a still conjectural new model for
the Genocchi numbers and Gandhi polynomials. We begin blaimpg the root of this work, namely the
k-Schur functions of Lapointe-Lascoux-Morse; however, gmder who is not familiar with the theory of
symmetric functions can skip the following paragraphs withharm.

The fundamental theorem of symmetric functions statesttigit ring Sym is freely generated by the
homogeneous symmetric functiofis );~. It therefore makes sense to study the subﬁml("’) generated
by the firstt homogeneous functiorism ) := Q[h1, ha, ... hg]. Say that a partition = (A1, Aa, ..., A;)
is k-bounded if it has no part exceediftg(i.e, k > A1 > \o > --- > X > 0). Then, if we define
hx := hx,ha, ... Ry, then(hy)y where) is k-bounded is a natural basis fSym(k). However, there
exists another basis which plays the role of Schur functitimis basis is called atoms in [LLM03] and, with
a different definition k-Schur functions in [LM05, LMO7]. It should be noted that feopapers actually
deal with a more general setting where homogeneous synuiietrctions are replaced with their natural
g-analogues (Hall-Littlewood functions) agdt-analogues (Macdonald functions). From the combinatorial
point of view, it seems that indexingSchur functions by:-bounded partitions is not the right approach.
In [LMO5], Lapointe and Morse showed thiatbounded patrtitions are in bijection with+ 1-cores and that
there is a natural tableau-like definition BfSchur functions involving paths in the analogue of Young's
lattice onk + 1-cores.

An important question is to find a combinatorial way to exp#éme k-Schur functions(f) in terms of
the usual Schur functions,. The strategy of [LLMS] is to inductively use a combinatbriay to expand
k-Schur functions otk + 1-Schur functions. In order to do that, they need to interfgolsetweerk-cores
andk + 1-cores. They indeed define a certain partially ordered sqgactitions they callk-shapes (see
Definition 2.1) such thatt + 1-cores are the minimal elements andores the maximal ones. The expansion
of s&k) is essentially described by counting paths frércores tok + 1-cores in this poset up to some
equivalence relation. The combinatorial study of thesapes is the main goal of our paper.

Our main result is the following theorem:

Theorem 1.1 For k € N, the generating function fde-shapes is given by

Pi(t)
Hu,v (1 -t )

where the product is over the set of all couplasv) of positive integers such that+ v € {k,k + 1} and
P, (t) € N[t] is a polynomial with nonnegative integer coefficients.

fe(t) = (2)

Using computer, we evaluated the numerd®p(t) up tok = 9 (see Section 5). Setting= 1, one gets
the following table

F1
B | 1

2 3 4 5 6 7 8 9
1 3 17 155 2073 38227 929569 28820619

which seems to be the sequence of Genocchi numbers (sequ&h@g01 of [Slo]):

Conjecture 1.2 The polynomials appearing in Equatidfh) are a g-analogue of the Genocchi numbers:
Py(1) is thek™ Genocchi number.
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Outline. The paper is structured as follows: The first backgroundse¢Section 2) recalls the necessary
definitions on Genocchi numbers (Subsection 2.1), panstend skew partitions (Subsection 2.2), as well
ask-cores andc-shapes (Subsection 2.3). Then, Section 3 is devoted topetion of adding a rectan-
gle to ak-shape and the construction of the main object of this papmnely irreduciblek-shapes. We
finally conclude by stating our main conjecture (Subsectidl), as well as some algebraic perspectives
(Subsection 4.2).

2 Background
2.1 Genocchi numbers

The unsigned Genocchi numbérs,, can be defined using the Bernoulli numbé&s by
G2n = 2(22n - 1)|B2n|

or via the generating function
ﬁ277,

—1+et_t+z G2n )|

These numbers were named, apparently by Lucas [Luc91]; thige19" century Italian mathematician
Angelo Genocchi; they appear in the latter’s papers on tlraddli numbers [Gen52, Gen86]. However,
Euler had already studied them in [Eul55].

The first combinatorial interpretation of the Genocchi nemswas given by Dumont in [Dum74(72;, 42
is the number of permutations € &,,, such thatrs,, is odd and, fori such thatl < i < 2n —1, o; is
followed by a smaller number if it is even and by a greater nenifit is odd. Such permutations are called
Dumont permutations of the first kinth the same paper, Dumont defined another family of pernauist
enumerated by the Genocchi numbers, which are now knoviduasont permutations of the second kind
Other families of Genocchi-enumerated permutations waisequently introduced by Kitaev and Remmel
[KRO7] and Burstein and Stromquist [BS07].

2.2 Integer partitions and skew partitions

A partition A = (A1,..., Ayp,) IS @ nonincreasing sequence of positive integers whichaltedctheparts of
the partition. We will sometimes also use #gonential notatiofior partitions: if A is a partition andf; is
the number of occurrences ofn ), then we write = (1/1272...). The number of parts of is denoted
by £(X). Theweightof X is [A| := > | A;. If the weight of \ is n, we say that\ is apartition of n. A
sequence = (cq,...,cn) (NOt Nnecessarily nonincreasing) of positive integers vehsam isn is called a
compositiorof n. We denote by - ¢’ the concatenation of the two compositiarsndc’.

A partition )\ is classically represented by a Ferrers diagram, which weigeby[)\], where thei™ row
has)\; squares (also callecklls. We use the French notation for Ferrers diagrams: the roes@unted
from bottom to top. More preciselj)] is formed by the unit celléz, y) with upper right corner at the point
(z,y), wherel < y < () andl <z < A,. An example is shown on Figure 1.

Theunionof two partitions\ andy, which we denote by U p, is a patrtition that is obtained by gathering
all the parts ofA and p and sorting them in nonincreasing order. For exampley i (5,4,3,3) and
w=(7,6,5,3,2,1), we havexU u = (7,6,5,5,4,3,3,3,2,1).

The notion of skew partition will be needed throughout thpgraGiven two partitions andy, we write
w C Mif p; < A foralli. If A andp satisfy C A, we identify theskew partition) /. with its diagram,
which is the set-theoretic differendg] . [u]. Theweightof A\/u is |A\/u| := |A\| — |u|. For example,
Mp=(4,3,2,2,1)/(2,1,1) has weight 8 and its diagram is shown on Figure 2.
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Figure 1: The Ferrers diagram db, 4, 3, 3).

Figure 2: The diagram of the skew partitiox/n. = (4, 3,2,2,1)/(2,1,1). The dotted lines indicate the cells [pf.

2.3 k-cores and k-shapes

Thehookof a cellc in the Ferrers diagram of a partition is the set formeda:layd the cells that are located
to its right in the same row or above it in the same column. Aidek lengthof a cell is the number of cells
in its hook. An example is shown on Figure 3, where we havereleci the hook of the dotted cel2, 2);
the hook length of this cell is 7.

Figure 3: The hook of the cel(2, 2) in the diagram of\ = (7,6, 4, 3).

A patrtition is ak-coreif its diagram contains no cells with hook lengtHJK81]. See Figure 4 for an
example.

It is not difficult to see that in every Ferrers diagram, thektengths decrease from left to right and from
bottom to top. Consequently, the cells of a diagfalrwhose hook length is (strictly) larger tharform the
diagram of a partition. Following [LLMS], we call this patitin thek-interior of A and denote it bynt” ().

As for the cells whose hook length does not excegtihey form the diagram of a skew partition, which we
call the k-boundaryof A and denote by*(\). We also define thé-rim of ) as the line that starts at the
upper left corner of the diagram, goes down vertically ug#iching thé:-interior, follows the limit between
the k-interior and thek-boundary and then goes horizontally to the lower right eowf the diagram. See
Figure 5 for an example.

We callrow shapeof a skew partition\/ ;. and denote bys(\/u) the sequence of the lengths of the rows
(from bottom to top) of\/u. Likewise, we calicolumn shapef \/u and denote bys(\/u) the heights of
the columns (from left to right) ok/ .. Bothrs(A/u) andes(A/p) are compositions df\/u|. For example,
if we call \/p the 6-interior of the partition represented on Figure 5, wedrs(\/p) = (5,4,2,1) and
es(\/p) = (2,2,1,1,2,1,1,1,1). We also defines®()\) := rs(9¥()\)) andcs*(\) := cs(9%(N)).

Definition 2.1 (Lam et al. [LLMS]) A partition ) is a k-shapéf rs*(\) andcs®(\) are both partitions.
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Figure 4: The diagram of the 4-corg, 3, 3, 1, 1) with its hook lengths.

1
5/3][2]1
10 8| 7]|6] 4] 3] 2] 1]

'—\
Sl ~[w|-|

Figure 5: The diagram ofA = (9, 5,2, 1) with its hook lengths. The bold line is the 6-rim. The cellddwethat line
form the 6-interior ofA and those above it form the 6-boundary.

See Figure 6 for an example. Note tfatores and: 4+ 1-cores aré:-shapes [LLMS, Proposition 10].

1[1]

2131

3[7[s]3]2]1

4(12]1q 8] 7[6] 4] 3] 2| 1]
') — 211111111

Figure 6: A = (9,5, 2,1) is a 4-shape.

For legibility reasons, we will sometimes omit tleinterior when representing-shapes graphically,
since ak-shape is uniquely determined by ksboundary.

3 Irreducible k-shapes

3.1 Addition of rectangles

This section deals with an operation that buildsshape from anothér-shape and &- or k — 1-rectangle.

The definition of irreducible:-shapes and the proof of Theorem 1.1 rest on this operatiarte Mhat it

is a generalization of the construction presented in Thract® of [LMO04], which is equivalent, in our
framework, to adding &-rectangle to & + 1-core.

Definition 3.1 ([LLMO3]) A k-rectanglés a partition of the forn(¢¢+1=%), where/ satisfiesl < ¢ < k.

Evidently,k-rectangles are the partitions whose Ferrers diagram istangle and whose largest hook length
is k.

Lemma 3.2 Letr = (r1,...,7ry) @andc = (c1,...,c,) be two compositions of the same integerThen
there exists at most one skew partitibfy. of weightn such thats(A/p) = r andes(A/p) = c.
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Proof: We build the skew partition row by row, from top to bottom. Akt step ( < i < m), we try

to insert a row of lengthr,,,1_;. The firstc; rows must be left-justified so that the first column contains
¢ cells, as desired. The subsequent- ¢, rows must be shifted by one so that the first column does not
contain more than; cells and the second column contaigsells, and so on. Therefore, the resulting skew
partition is unique. ]

It must be noted that a solution does not always exist. Fomele if » = (3) andc = (2,1), the two
conditions are incompatible, because the row conditionligsghat the skew partition has three columns
whereas the column condition implies that it has two columns

Definition 3.3 Let\ be ak-shapey = rs*()\) andc = cs*()\). For all i € N*, let

H; = [max{j | r; > i}, min{j | r; < i} —1] 2
Vi = [max{j|¢; >i},min{j|¢; < i} —1] 3)

We use the convention thatifis a partition, we havers = oo andn; = 0if j > £(m).
The horizontal stripH; is the set{(z,y) € R?|y € H;}. Similarly, the vertical stripV; is the set
{(z.y) e R? |w € Vi}.

Note that the intervall; (resp. V;) is reduced to a singleton if there is no integesuch that; =
(resp.c; = ). In this case, the corresponding strip is a single line. Raneple is the vertical strifps in the
k-shape shown on Figure 7.

H,

H, [
Hs [ |
ValVs Vi

Vs

Figure 7: Horizontal and vertical strips in the diagram of the 4-sh@yie 7, 4, 2,2,2,1,1,1, 1). Note thatl; is reduced
to a single line.

Proposition 3.4 Let A be ak-shape andu”) be ak-rectangle ork — 1-rectangle. Then there exists a point
of thek-rim of \ that belongs taH,, N V.

Proof (sketch): Using hook length considerations, we show that the uppét dgrner of the intersection
H, NV, belongs to thé&-boundary while the lower left corner does not (see Figures®nsequently, a path
between these two points must cross theém. ]
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v,

Figure 8: a is in thek-boundary and in the k-interior; thek-rim therefore passes between these two points.

Proposition 3.5 Let A be ak-shape andu”) be ak-rectangle ork — 1-rectangle. Then there exists a unique
k-shape, which we denote bBy+ (u?), such that

rsF (A + (u?)) = rs*(\) U (u?) 4
es" (A + (u")) = s" (A U () (5)

Proof: We describe an algorithm that construdts(\ + (uv)) from 9% (\) by “inserting” the rectangle into
the k-shape. Proposition 3.4 implies that we can decompb$g) into three parts: the cells located to the
right of p and above it, which we call thfeot (region F’ in Figure 9), the cells to the left of the foot (region
A) and the cells below the foot (regids).

Figure 9: The decomposition of the-boundary of &-shape used for inserting a rectangle. Heris, a point satisfying
the conditions of Proposition 3.4.

The insertion process then consists in transforming Ahimundary into the skew partition shown on
Figure 10, from which the partition + (u") is easily reconstructed, as said before.

Figure 10: Result of the insertion procesg is a copy ofF and F' is the complement of in (u").



500 Florent Hivert and Olivier Mallet

We call this skew partitiorf\/ﬂ. First, we must prove that it satisfies (4) and (5).Rlf and R, are two
regions of the diagram, lg?; v R, denote their set-theoretic union. We have that

rs(\/fi) = 18(B) - 1s(F V Fy) - 1s(A V F)
=r1s(B) - (u’)-1s(AV F)
= 15(A\/p1) U (u”)
becauses(B) is a partition into parts> v andrs(A v F') is a partition into parts< u, sincel is ak-shape.
Therefore \/[i satisfies (4); the proof that it satisfies (5) is similar.

We now need to check thatis indeed the:-interior of ), i.e. that the hook lengths df/ﬂ do not exceed
k and those ofi are greater thah. To this end, we decompog§k| as shown on Figure 11.

N
A
\| F
A

F
\F2

c

BN

Figure 11: Decomposition ofS\] to check the hook length conditions. The regiotisC andB’ belong to thek-interior,
the other regions belong to ttieboundary.

The hook lengths of the cells that were abgveefore the insertion (regions, A’, andF on Figure 11)
have not been modified since no cells have been added or renabese those cells or to their right. The
hook lengths of the cells that were to the rightpofregionsB, B’, and F») have not been modified either,
for the same reason. A cell in the regidhhas at most, — 1 cells to its right in the same row and at most
v — 1 cells above it in the same column: its hook length thus doeexaeed: + v — 1 < k. Likewise, a cell
in the regionC' has at least: cells to its right in the same row andcells above it in he same column, and
therefore has hook length at least- v + 1 > k£ + 1. All the hook lengths conditions are therefore satisfied.

The uniqueness is proved by Lemma 3.2. In particular, thaltrdses not depend on the choicepof O

See Figure 12 for an example of the insertion process.

Proposition 3.6 Let A be ak-shape and lefu]") and(u5?) be twok- or k¥ — 1-rectangles. Then

A+ (u") + (ug?) = (A + (ug?)) + (u1")-

Proof: We havers (A + (u3")) 4+ (u5?)) = rs(A) U (u]*) U (u5?) = rs (A + (u5?)) + (u3*)) and likewise
es (A4 (uih)) + (uh?)) = es (A + (us?)) + (ui')). The proof is completed by using Lemma 3.2. O
3.2 Main theorem

Definition 3.7 We say that &-shape idrreducibleif it cannot be obtained from anothé&rshape by insert-
ing ak- or k — 1-rectangle as described in the proof of Proposition 3.5.

We first need to have a better characterization of the irrsdieié-shapes.



Combinatorics of-shapes and Genocchi numbers 501

Hi

H,

Hj3 [ ] :B:

Vs Vi

(a) The initial 4-shape (b) Decomposition of
A = (5,2,1,1) 9% () with respect to
with  the possible the insertion poinp =
insertion points for the (1,1).

4-rectangle(22).

(c) The skew partition re- (d) The final 4-shape
sulting from the insertion (7,4,3,3,2,1,1).
process.

Figure 12: The insertion of the 4-rectangl@®) into the 4-shapés, 2, 1, 1) produces the 4-shag&, 4, 3,3, 2,1, 1).

Proposition 3.8 Let A be ak-shape andu”) be ak- or k — 1-rectangle. The following are equivalent:
(i) there exists &-shapeu such that\ = u + (u?),
(i) there exist two point$xz,y1) and(xz, y2) of thek-rim of A lying in H,, NV, such thates — 21 > u,
(iii) there exist two point$§zy,y1) and (a2, y2) of thek-rim of A lying in H,, NV, such thatys — y1 > v.

By Proposition 3.8, in an irreducible-shape the length of thie-rim is bounded, so that there are only
finitely many of them. Therefore the generating functionifagduciblek-shapes is a polynomial.
Thanks to the same proposition, we can also prove the fatigwonverse of Proposition 3.5:

Corollary 3.9 Suppose thak, A\, A\, are k-shapes and that there exist two differénr £ — 1-rectangles
(ui') and (us?) such thath = A1 + (u7') = A2 + (u5?). Then there exists a uniqueshapey such that
A= p () + (ug?).

It has the following important consequence:

Corollary 3.10 For eachk-shape), there is a unique irreduciblé-shapen, and a unique family of non-
negative integersC|,»)) indexed byk- andk — 1-rectanglegu") such that

A=+ Crmy(u). (6)
(u®)

Using this corollary, we can prove that the generating fiomctor k-shapes is of the form shown in (1):
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Corollary 3.11 For k € N, the generating function fot-shapes is given by

Py (t)
fult) = /s (7)
R (T
where the product is over the set of &l or £ — 1-rectangles(u”) and Py (t) € N[t] is the polynomial
generating function for irreduciblé-shapes.

4 Work in progress

4.1 Main conjecture

In this section we discuss some approaches we are currempiigrang around the following conjecture:
Conjecture 4.1 Irreducible k-shapes are counted by the Genocchi numbers.

This conjecture has been extensively tested fok aip t09.

We are considering two approaches: a direct bijection betmiereduciblek-shapes and some family
of objects known to be counted by the Genocchi numbers (ssdbuanont permutations of some kind,
surjective pistols, certain tableaux. . .) and a recursie@finvolving the Gandhi polynomials.

Indeed the following conjectural connection with Gandhiymoemials provides more evidence from the
conjecture as well as what we believe is a good angle of attapkove it. Let us recall the definition of
those polynomials:

Definition 4.2 For k > 1, theGandhi polynomiald>, (x) are defined by the following recurrence:

Py(z) = 2?
8
{P2k+2($)=$2 (Par(z +1) — Pax(z)) ®

Gandhi [Gan70] conjectured th&b (1) = Gar+2, Which was later proved by Carlitz [Car71] and Riordan
and Stein [RS73].
We need a small definition before stating a conjecture reddtishapes and Gandhi polynomials.

Definition 4.3 Let A be ak-shape and be an integer such that< ¢ < k. We say that/,k+ 1 —¢)isa
free k-sitein X if there is no cell with¢ — 1 cells to its right in the same row and— £ cells above it in the
same column (note that such a cell would have hook lekgth

For example, the reader can check, looking at Figure 12, ttieatl-shap€5, 2,1, 1) has 3 free 4-sites:
(1,4), (3,2) and(4, 1).
Conjecture 4.4 Let S(k, j) be the number of irreduciblé-shapes withj free k-sites. LetSy(z) =
Zj S(k,j)mj ThenSzk(:{:) = ng(l').

We aim to prove this conjecture by showing that #3¢ satisfy (8).

4.2 Algebraic perspectives

As we said in the introduction, the work presented here h&®agalgebraic background. In particular, Lam
et al [LLMS, Equation (11)] defined a symmetric functiq(ﬁ) associated to eadishapeu. By definition,
58“) reduces to th&-Schur functionsff) if p is ak-core and to theﬂ““) if 1 is ak + 1-core. Therefore,
those functions are not linearly independent. Nevertisetbe operation of addingfarectangle to &-core
reflects an algebraic relation on symmetric functions [LMOReorem 40]: for anyk-core\ andk-rectangle
(u?), if s¢,v) is the usual Schur function associatedd), then we have(uu)s(f) = s It seems that

= 5/\+(uv)'
the k-shape functions enjoy a similar property [Lap08]:
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Conjecture 4.5 Let A be ak-shape andu”) be ak-rectangle ork — 1-rectangle. Then

k k
S(uﬂ)ﬂ& )= 5§+)(uv> 9)

It seems moreover that this property passesdnalogues replacing the Schur function by a vertex operato
and thek-Schur functions by their graded version (see [LLMS, Ecuafil 8)]).
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5 Table
Generating series for irreducibleshapes:
1
fit) = ¢
fa(t) = —
T a-na -2
L+t+13

t) =
fs(®) (1—12)2(1 — 13)2(1 — %)’
Lt 20 83 30 205 + 200 4+ 307 47 410

t) =
B0 (PP — P o /
14t + 2t 4 3t 4 3¢* + 7t5 + 6t° + 97 + 9¢% + 13¢ + 1310 + 10t + 1312+
9 13t"% + 13" + 6'° + 10810 + 8'7 + 561 + 319 4 320 4 202! 4 122 4 ¢
0= (1= t1)2(1 = 2)2(1 = #9)2(1 = %)2(1 = %)

Irreducible3-shapes: O E|:|

Irreducible4-shapes: O [M H E|:| H:I EIIl EEI:I BEI BEI:I Bﬂ: EE:D
b, B, B By
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