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Combinatorics of k-shapes and Genocchi
numbers

Florent Hivert†and Olivier Mallet‡

LITIS, Université de Rouen, Saint-Étienne-du-Rouvray, France

Abstract. In this paper we present a work in progress on a conjectural new combinatorial model for the Genocchi
numbers. This new model calledirreducible k-shapeshas a strong algebraic background in the theory of symmetric
functions and leads to seemingly new features on the theory of Genocchi numbers. In particular, the naturalq-analogue
coming from the degree of symmetric functions seems to be unknown so far.

Résumé.Dans cet article, nous présentons un travail en cours sur un nouveau modèle combinatoire conjectural pour
les nombres de Genocchi. Ce nouveau modèle est celui desk-formes irréductibles, qui repose sur de solides bases
algébriques en lien avec la théorie des fonctions symétriques et qui conduit à des aspects apparemment nouveaux de
la théorie des nombres de Genocchi. En particulier, leq-analogue naturel venant du degré des fonctions symétriques
semble inconnu jusqu’ici.
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1 Introduction
The goal of this paper is to present some purely combinatorial results on certain partitions; these results
are strongly motivated by the theory of symmetric functions. We define a still conjectural new model for
the Genocchi numbers and Gandhi polynomials. We begin by explaining the root of this work, namely the
k-Schur functions of Lapointe-Lascoux-Morse; however, thereader who is not familiar with the theory of
symmetric functions can skip the following paragraphs without harm.

The fundamental theorem of symmetric functions states thattheir ring Sym is freely generated by the
homogeneous symmetric functions(hi)i>0. It therefore makes sense to study the subringSym(k) generated
by the firstk homogeneous functionsSym(k) := Q[h1, h2, . . . hk]. Say that a partitionλ = (λ1, λ2, . . . , λl)
is k-bounded if it has no part exceedingk (i.e., k ≥ λ1 ≥ λ2 ≥ · · · ≥ λl > 0). Then, if we define
hλ := hλ1

hλ2
. . . hλl

, then(hλ)λ whereλ is k-bounded is a natural basis forSym(k). However, there
exists another basis which plays the role of Schur functions; this basis is called atoms in [LLM03] and, with
a different definition,k-Schur functions in [LM05, LM07]. It should be noted that those papers actually
deal with a more general setting where homogeneous symmetric functions are replaced with their natural
q-analogues (Hall-Littlewood functions) andq, t-analogues (Macdonald functions). From the combinatorial
point of view, it seems that indexingk-Schur functions byk-bounded partitions is not the right approach.
In [LM05], Lapointe and Morse showed thatk-bounded partitions are in bijection withk + 1-cores and that
there is a natural tableau-like definition ofk-Schur functions involving paths in the analogue of Young’s
lattice onk + 1-cores.

An important question is to find a combinatorial way to expandthe k-Schur functions(k)
λ in terms of

the usual Schur functionssλ. The strategy of [LLMS] is to inductively use a combinatorial way to expand
k-Schur functions onk + 1-Schur functions. In order to do that, they need to interpolate betweenk-cores
andk + 1-cores. They indeed define a certain partially ordered set ofpartitions they callk-shapes (see
Definition 2.1) such thatk+1-cores are the minimal elements andk-cores the maximal ones. The expansion
of s

(k)
λ is essentially described by counting paths fromk-cores tok + 1-cores in this poset up to some

equivalence relation. The combinatorial study of thesek-shapes is the main goal of our paper.

Our main result is the following theorem:

Theorem 1.1 For k ∈ N, the generating function fork-shapes is given by

fk(t) =
Pk(t)

∏

u,v(1 − tuv)
(1)

where the product is over the set of all couples(u, v) of positive integers such thatu + v ∈ {k, k + 1} and
Pk(t) ∈ N[t] is a polynomial with nonnegative integer coefficients.

Using computer, we evaluated the numeratorPk(t) up tok = 9 (see Section 5). Settingt = 1, one gets
the following table

k 1 2 3 4 5 6 7 8 9
Pk(1) 1 1 3 17 155 2073 38227 929569 28820619

which seems to be the sequence of Genocchi numbers (sequenceA110501 of [Slo]):

Conjecture 1.2 The polynomials appearing in Equation(1) are a q-analogue of the Genocchi numbers:
Pk(1) is thekth Genocchi number.
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Outline. The paper is structured as follows: The first background section (Section 2) recalls the necessary
definitions on Genocchi numbers (Subsection 2.1), partitions and skew partitions (Subsection 2.2), as well
ask-cores andk-shapes (Subsection 2.3). Then, Section 3 is devoted to the operation of adding a rectan-
gle to ak-shape and the construction of the main object of this paper,namely irreduciblek-shapes. We
finally conclude by stating our main conjecture (Subsection4.1), as well as some algebraic perspectives
(Subsection 4.2).

2 Background
2.1 Genocchi numbers
The unsigned Genocchi numbersG2n can be defined using the Bernoulli numbersBn by

G2n = 2(22n − 1)|B2n|

or via the generating function
2t

1 + et
= t +

∑

n≥1

(−1)nG2n

t2n

(2n)!
.

These numbers were named, apparently by Lucas [Luc91], after the 19th century Italian mathematician
Angelo Genocchi; they appear in the latter’s papers on the Bernoulli numbers [Gen52, Gen86]. However,
Euler had already studied them in [Eul55].

The first combinatorial interpretation of the Genocchi numbers was given by Dumont in [Dum74]:G2n+2

is the number of permutationsσ ∈ S2n such thatσ2n is odd and, fori such that1 ≤ i ≤ 2n − 1, σi is
followed by a smaller number if it is even and by a greater number if it is odd. Such permutations are called
Dumont permutations of the first kind. In the same paper, Dumont defined another family of permutations
enumerated by the Genocchi numbers, which are now known asDumont permutations of the second kind.
Other families of Genocchi-enumerated permutations were subsequently introduced by Kitaev and Remmel
[KR07] and Burstein and Stromquist [BS07].

2.2 Integer partitions and skew partitions
A partition λ = (λ1, . . . , λm) is a nonincreasing sequence of positive integers which are called thepartsof
the partition. We will sometimes also use theexponential notationfor partitions: ifλ is a partition andfi is
the number of occurrences ofi in λ, then we writeλ = (1f12f2 . . .). The number of parts ofλ is denoted
by ℓ(λ). Theweightof λ is |λ| :=

∑m
i=1 λi. If the weight ofλ is n, we say thatλ is apartition of n. A

sequencec = (c1, . . . , cm) (not necessarily nonincreasing) of positive integers whose sum isn is called a
compositionof n. We denote byc · c′ the concatenation of the two compositionsc andc′.

A partition λ is classically represented by a Ferrers diagram, which we denote by[λ], where theith row
hasλi squares (also calledcells). We use the French notation for Ferrers diagrams: the rows are counted
from bottom to top. More precisely,[λ] is formed by the unit cells(x, y) with upper right corner at the point
(x, y), where1 ≤ y ≤ ℓ(λ) and1 ≤ x ≤ λy. An example is shown on Figure 1.

Theunionof two partitionsλ andµ, which we denote byλ∪µ, is a partition that is obtained by gathering
all the parts ofλ andµ and sorting them in nonincreasing order. For example, ifλ = (5, 4, 3, 3) and
µ = (7, 6, 5, 3, 2, 1), we haveλ ∪ µ = (7, 6, 5, 5, 4, 3, 3, 3, 2, 1).

The notion of skew partition will be needed throughout the paper. Given two partitionsλ andµ, we write
µ ⊆ λ if µi ≤ λi for all i. If λ andµ satisfyµ ⊆ λ, we identify theskew partitionλ/µ with its diagram,
which is the set-theoretic difference[λ] r [µ]. The weight of λ/µ is |λ/µ| := |λ| − |µ|. For example,
λ/µ = (4, 3, 2, 2, 1)/(2, 1, 1) has weight 8 and its diagram is shown on Figure 2.
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1 2 3 4 5

1
2
3
4

x

y

Figure 1: The Ferrers diagram of(5, 4, 3, 3).

Figure 2: The diagram of the skew partitionλ/µ = (4, 3, 2, 2, 1)/(2, 1, 1). The dotted lines indicate the cells of[µ].

2.3 k-cores and k-shapes
Thehookof a cellc in the Ferrers diagram of a partition is the set formed byc and the cells that are located
to its right in the same row or above it in the same column. Thehook lengthof a cell is the number of cells
in its hook. An example is shown on Figure 3, where we have encircled the hook of the dotted cell(2, 2);
the hook length of this cell is 7.

b

Figure 3: The hook of the cell(2, 2) in the diagram ofλ = (7, 6, 4, 3).

A partition is ak-core if its diagram contains no cells with hook lengthk [JK81]. See Figure 4 for an
example.

It is not difficult to see that in every Ferrers diagram, the hook lengths decrease from left to right and from
bottom to top. Consequently, the cells of a diagram[λ] whose hook length is (strictly) larger thank form the
diagram of a partition. Following [LLMS], we call this partition thek-interior of λ and denote it byIntk(λ).
As for the cells whose hook length does not exceedk, they form the diagram of a skew partition, which we
call thek-boundaryof λ and denote by∂k(λ). We also define thek-rim of λ as the line that starts at the
upper left corner of the diagram, goes down vertically untilreaching thek-interior, follows the limit between
thek-interior and thek-boundary and then goes horizontally to the lower right corner of the diagram. See
Figure 5 for an example.

We callrow shapeof a skew partitionλ/µ and denote byrs(λ/µ) the sequence of the lengths of the rows
(from bottom to top) ofλ/µ. Likewise, we callcolumn shapeof λ/µ and denote bycs(λ/µ) the heights of
the columns (from left to right) ofλ/µ. Bothrs(λ/µ) andcs(λ/µ) are compositions of|λ/µ|. For example,
if we call λ/µ the 6-interior of the partition represented on Figure 5, we havers(λ/µ) = (5, 4, 2, 1) and
cs(λ/µ) = (2, 2, 1, 1, 2, 1, 1, 1, 1). We also definersk(λ) := rs(∂k(λ)) andcsk(λ) := cs(∂k(λ)).

Definition 2.1 (Lam et al. [LLMS]) A partitionλ is ak-shapeif rsk(λ) andcsk(λ) are both partitions.



Combinatorics ofk-shapes and Genocchi numbers 497

9 6 5 2 1

6 3 2

5 2 1

2

1

Figure 4: The diagram of the 4-core(5, 3, 3, 1, 1) with its hook lengths.

12 10 8 7 6 4 3 2 1

7 5 3 2 1

3 1

1

Figure 5: The diagram ofλ = (9, 5, 2, 1) with its hook lengths. The bold line is the 6-rim. The cells below that line
form the 6-interior ofλ and those above it form the 6-boundary.

See Figure 6 for an example. Note thatk-cores andk + 1-cores arek-shapes [LLMS, Proposition 10].

12 10 8 7 6 4 3 2 1

7 5 3 2 1

3 1

1

2 1 1 1 1 1 1 1 1

4

3

2

1

cs4(λ)

rs4(λ)

Figure 6: λ = (9, 5, 2, 1) is a 4-shape.

For legibility reasons, we will sometimes omit thek-interior when representingk-shapes graphically,
since ak-shape is uniquely determined by itsk-boundary.

3 Irreducible k-shapes
3.1 Addition of rectangles
This section deals with an operation that builds ak-shape from anotherk-shape and ak- or k − 1-rectangle.
The definition of irreduciblek-shapes and the proof of Theorem 1.1 rest on this operation. Note that it
is a generalization of the construction presented in Theorem 10 of [LM04], which is equivalent, in our
framework, to adding ak-rectangle to ak + 1-core.

Definition 3.1 ([LLM03]) A k-rectangleis a partition of the form(ℓk+1−ℓ), whereℓ satisfies1 ≤ ℓ ≤ k.

Evidently,k-rectangles are the partitions whose Ferrers diagram is a rectangle and whose largest hook length
is k.

Lemma 3.2 Let r = (r1, . . . , rm) andc = (c1, . . . , cp) be two compositions of the same integern. Then
there exists at most one skew partitionλ/µ of weightn such thatrs(λ/µ) = r andcs(λ/µ) = c.
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Proof: We build the skew partition row by row, from top to bottom. At the ith step (1 ≤ i ≤ m), we try
to insert a row of lengthrm+1−i. The firstc1 rows must be left-justified so that the first column contains
c1 cells, as desired. The subsequentc1 − c2 rows must be shifted by one so that the first column does not
contain more thanc1 cells and the second column containsc2 cells, and so on. Therefore, the resulting skew
partition is unique. 2

It must be noted that a solution does not always exist. For example, if r = (3) andc = (2, 1), the two
conditions are incompatible, because the row condition implies that the skew partition has three columns
whereas the column condition implies that it has two columns.

Definition 3.3 Letλ be ak-shape,r = rsk(λ) andc = csk(λ). For all i ∈ N∗, let

Hi = [max{j | rj > i}, min{j | rj < i} − 1] (2)

Vi = [max{j | cj > i}, min{j | cj < i} − 1] (3)

We use the convention that ifπ is a partition, we haveπ0 = ∞ andπj = 0 if j > ℓ(π).
The horizontal stripHi is the set{(x, y) ∈ R2 | y ∈ Hi}. Similarly, the vertical stripVi is the set

{(x, y) ∈ R2 | x ∈ Vi}.

Note that the intervalHi (resp. Vi) is reduced to a singleton if there is no integerj such thatrj = i
(resp.cj = i). In this case, the corresponding strip is a single line. An example is the vertical stripV2 in the
k-shape shown on Figure 7.

H1

H2

H3

V4 V3 V1

V2

Figure 7: Horizontal and vertical strips in the diagram of the 4-shape(10, 7, 4, 2, 2, 2, 1, 1, 1, 1). Note thatV2 is reduced
to a single line.

Proposition 3.4 Letλ be ak-shape and(uv) be ak-rectangle ork − 1-rectangle. Then there exists a point
of thek-rim of λ that belongs toHu ∩ Vv.

Proof (sketch): Using hook length considerations, we show that the upper right corner of the intersection
Hu ∩Vv belongs to thek-boundary while the lower left corner does not (see Figure 8). Consequently, a path
between these two points must cross thek-rim. 2
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b

b

Hu

Vv

a

b

Figure 8: a is in thek-boundary andb in thek-interior; thek-rim therefore passes between these two points.

Proposition 3.5 Letλ be ak-shape and(uv) be ak-rectangle ork−1-rectangle. Then there exists a unique
k-shape, which we denote byλ + (uv), such that

rsk(λ + (uv)) = rsk(λ) ∪ (uv) (4)

csk(λ + (uv)) = csk(λ) ∪ (vu) (5)

Proof: We describe an algorithm that constructs∂k (λ + (uv)) from ∂k(λ) by “inserting” the rectangle into
thek-shape. Proposition 3.4 implies that we can decompose∂k(λ) into three parts: the cells located to the
right of p and above it, which we call thefoot (regionF in Figure 9), the cells to the left of the foot (region
A) and the cells below the foot (regionB).

b

F
A

B
p

u

v

Figure 9: The decomposition of thek-boundary of ak-shape used for inserting a rectangle. Here,p is a point satisfying
the conditions of Proposition 3.4.

The insertion process then consists in transforming thisk-boundary into the skew partition shown on
Figure 10, from which the partitionλ + (uv) is easily reconstructed, as said before.

F
A

F̄
F2

B

u

u
v

v

Figure 10: Result of the insertion process.F2 is a copy ofF andF̄ is the complement ofF in (uv).
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We call this skew partitioñλ/µ̃. First, we must prove that it satisfies (4) and (5). IfR1 andR2 are two
regions of the diagram, letR1 ∨ R2 denote their set-theoretic union. We have that

rs(λ̃/µ̃) = rs(B) · rs(F̄ ∨ F2) · rs(A ∨ F )

= rs(B) · (uv) · rs(A ∨ F )

= rs(λ/µ) ∪ (uv)

becausers(B) is a partition into parts≥ u andrs(A ∨ F ) is a partition into parts≤ u, sinceλ is ak-shape.
Therefore,̃λ/µ̃ satisfies (4); the proof that it satisfies (5) is similar.

We now need to check thatµ̃ is indeed thek-interior of λ̃, i.e. that the hook lengths of̃λ/µ̃ do not exceed
k and those of̃µ are greater thank. To this end, we decompose[λ̃] as shown on Figure 11.

F
A

F̄
F2

B

A′

B′

C

Figure 11: Decomposition of[λ̃] to check the hook length conditions. The regionsA′, C andB′ belong to thek-interior,
the other regions belong to thek-boundary.

The hook lengths of the cells that were abovep before the insertion (regionsA, A′, andF on Figure 11)
have not been modified since no cells have been added or removed above those cells or to their right. The
hook lengths of the cells that were to the right ofp (regionsB, B′, andF2) have not been modified either,
for the same reason. A cell in the region̄F has at mostu − 1 cells to its right in the same row and at most
v−1 cells above it in the same column: its hook length thus does not exceedu+ v−1 ≤ k. Likewise, a cell
in the regionC has at leastu cells to its right in the same row andv cells above it in he same column, and
therefore has hook length at leastu + v + 1 ≥ k + 1. All the hook lengths conditions are therefore satisfied.

The uniqueness is proved by Lemma 3.2. In particular, the result does not depend on the choice ofp. 2

See Figure 12 for an example of the insertion process.

Proposition 3.6 Letλ be ak-shape and let(uv1

1 ) and(uv2

2 ) be twok- or k − 1-rectangles. Then

(λ + (uv1

1 )) + (uv2

2 ) = (λ + (uv2

2 )) + (uv1

1 ).

Proof: We havers ((λ + (uv1

1 )) + (uv2

2 )) = rs(λ)∪ (uv1

1 )∪ (uv2

2 ) = rs ((λ + (uv2

2 )) + (uv1

1 )) and likewise
cs ((λ + (uv1

1 )) + (uv2

2 )) = cs ((λ + (uv2

2 )) + (uv1

1 )). The proof is completed by using Lemma 3.2. 2

3.2 Main theorem
Definition 3.7 We say that ak-shape isirreducibleif it cannot be obtained from anotherk-shape by insert-
ing ak- or k − 1-rectangle as described in the proof of Proposition 3.5.

We first need to have a better characterization of the irreducible k-shapes.
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b b

b

H3

H2

H1

V3 V1

(a) The initial 4-shape
λ = (5, 2, 1, 1)
with the possible
insertion points for the
4-rectangle(23).

b

A
F

B

(b) Decomposition of
∂4(λ) with respect to
the insertion pointp =
(1, 1).

A
F

F̄

F2

B

(c) The skew partition re-
sulting from the insertion
process.

(d) The final 4-shape
(7, 4, 3, 3, 2, 1, 1).

Figure 12: The insertion of the 4-rectangle(23) into the 4-shape(5, 2, 1, 1) produces the 4-shape(7, 4, 3, 3, 2, 1, 1).

Proposition 3.8 Letλ be ak-shape and(uv) be ak- or k − 1-rectangle. The following are equivalent:

(i) there exists ak-shapeµ such thatλ = µ + (uv),

(ii) there exist two points(x1, y1) and(x2, y2) of thek-rim of λ lying in Hu ∩ Vv such thatx2 − x1 ≥ u,

(iii) there exist two points(x1, y1) and(x2, y2) of thek-rim of λ lying in Hu ∩ Vv such thaty2 − y1 ≥ v.

By Proposition 3.8, in an irreduciblek-shape the length of thek-rim is bounded, so that there are only
finitely many of them. Therefore the generating function forirreduciblek-shapes is a polynomial.

Thanks to the same proposition, we can also prove the following converse of Proposition 3.5:

Corollary 3.9 Suppose thatλ, λ1, λ2 arek-shapes and that there exist two differentk- or k − 1-rectangles
(uv1

1 ) and(uv2

2 ) such thatλ = λ1 + (uv1

1 ) = λ2 + (uv2

2 ). Then there exists a uniquek-shapeµ such that
λ = µ + (uv1

1 ) + (uv2

2 ).

It has the following important consequence:

Corollary 3.10 For eachk-shapeλ, there is a unique irreduciblek-shapeµ and a unique family of non-
negative integers(C(uv)) indexed byk- andk − 1-rectangles(uv) such that

λ = µ +
∑

(uv)

C(uv)(u
v) . (6)

Using this corollary, we can prove that the generating function for k-shapes is of the form shown in (1):
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Corollary 3.11 For k ∈ N, the generating function fork-shapes is given by

fk(t) =
Pk(t)

∏

(1 − tuv)
(7)

where the product is over the set of allk- or k − 1-rectangles(uv) and Pk(t) ∈ N[t] is the polynomial
generating function for irreduciblek-shapes.

4 Work in progress
4.1 Main conjecture
In this section we discuss some approaches we are currently exploring around the following conjecture:

Conjecture 4.1 Irreduciblek-shapes are counted by the Genocchi numbers.

This conjecture has been extensively tested for allk up to9.
We are considering two approaches: a direct bijection between irreduciblek-shapes and some family

of objects known to be counted by the Genocchi numbers (such as Dumont permutations of some kind,
surjective pistols, certain tableaux. . . ) and a recursive proof involving the Gandhi polynomials.

Indeed the following conjectural connection with Gandhi polynomials provides more evidence from the
conjecture as well as what we believe is a good angle of attackto prove it. Let us recall the definition of
those polynomials:

Definition 4.2 For k ≥ 1, theGandhi polynomialsP2k(x) are defined by the following recurrence:
{

P2(x) = x2

P2k+2(x) = x2 (P2k(x + 1) − P2k(x))
(8)

Gandhi [Gan70] conjectured thatP2k(1) = G2k+2, which was later proved by Carlitz [Car71] and Riordan
and Stein [RS73].

We need a small definition before stating a conjecture relatingk-shapes and Gandhi polynomials.

Definition 4.3 Letλ be ak-shape andℓ be an integer such that1 ≤ ℓ ≤ k. We say that(ℓ, k + 1 − ℓ) is a
freek-site in λ if there is no cell withℓ − 1 cells to its right in the same row andk − ℓ cells above it in the
same column (note that such a cell would have hook lengthk).

For example, the reader can check, looking at Figure 12, thatthe 4-shape(5, 2, 1, 1) has 3 free 4-sites:
(1, 4), (3, 2) and(4, 1).

Conjecture 4.4 Let S(k, j) be the number of irreduciblek-shapes withj free k-sites. LetS2k(x) =
∑

j S(k, j)xj . ThenS2k(x) = P2k(x).

We aim to prove this conjecture by showing that theS2k satisfy (8).

4.2 Algebraic perspectives
As we said in the introduction, the work presented here has a strong algebraic background. In particular, Lam
et al [LLMS, Equation (11)] defined a symmetric functions

(k)
µ associated to eachk-shapeµ. By definition,

s
(k)
µ reduces to thek-Schur functions(k)

µ if µ is ak-core and to thes(k+1)
µ if µ is ak + 1-core. Therefore,

those functions are not linearly independent. Nevertheless, the operation of adding ak-rectangle to ak-core
reflects an algebraic relation on symmetric functions [LM07, Theorem 40]: for anyk-coreλ andk-rectangle
(uv), if s(uv) is the usual Schur function associated to(uv), then we haves(uv)s

(k)
λ = s

(k)
λ+(uv). It seems that

thek-shape functions enjoy a similar property [Lap08]:
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Conjecture 4.5 Letλ be ak-shape and(uv) be ak-rectangle ork − 1-rectangle. Then

s(uv)s
(k)
λ = s

(k)
λ+(uv) (9)

It seems moreover that this property passes tot-analogues replacing the Schur function by a vertex operator
and thek-Schur functions by their graded version (see [LLMS, Equation (18)]).
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5 Table
Generating series for irreduciblek-shapes:

f1(t) =
1

1 − t
,

f2(t) =
1

(1 − t)(1 − t2)2
,

f3(t) =
1 + t + t3

(1 − t2)2(1 − t3)2(1 − t4)
,

f4(t) =
1 + t + 2t2 + t3 + 3t4 + 2t5 + 2t6 + 3t7 + t9 + t10

(1 − t3)2(1 − t4)3(1 − t6)2
,

f5(t) =

1 + t + 2t2 + 3t3 + 3t4 + 7t5 + 6t6 + 9t7 + 9t8 + 13t9 + 13t10 + 10t11 + 13t12+
13t13 + 13t14 + 6t15 + 10t16 + 8t17 + 5t18 + 3t19 + 3t20 + 2t21 + t22 + t23

(1 − t4)2(1 − t5)2(1 − t6)2(1 − t8)2(1 − t9)
.

Irreducible3-shapes:∅

Irreducible4-shapes:∅
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