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The enumeration of fully commutative affine
permutations

Christopher R. H. Hanusa1†and Brant C. Jones2‡

1Department of Mathematics, Queens College (CUNY), NY, USA
2Department of Mathematics and Statistics, James Madison University, Harrisonburg, VA, USA

Abstract. We give a generating function for the fully commutative affine permutations enumerated by rank and
Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the
length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving
these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a
summary of the results; the full version appears elsewhere.

Résumé. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives
par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–
Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période
divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement com-
mutatives. L’article dessous est un aperçu des résultats; la version complète apparaı̂t ailleurs.
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1 Introduction
Let W be a Coxeter group. An element w of W is fully commutative if any reduced expression for w can
be obtained from any other using only commutation relations among the generators. For example, if W
is simply laced then the fully commutative elements of W are those with no sisjsi factor in any reduced
expression, where si and sj are any noncommuting generators.

The fully commutative elements form an interesting class of Coxeter group elements with many special
properties. Stembridge (1996) classified the Coxeter groups having finitely many fully commutative ele-
ments, and subsequently enumerated these elements in Stembridge (1998). The type A fully commutative
elements were enumerated by Coxeter length by Barcucci et al. (2001), obtaining a q-analogue of the
Catalan numbers. Our main result in Theorem 3.2 is an analogue of this result for the affine symmetric
group.

In Section 2, we introduce the necessary definitions and background information. In Section 3, we
enumerate the fully commutative affine permutations by decomposing them into several subsets. The
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formula that we obtain turns out to involve a ratio of q-Bessel functions as described in Barcucci et al.
(1998) arising as the solution obtained by Bousquet-Mélou (1996) of a certain recurrence relation on the
generating function. A similar phenomenon occurred in Barcucci et al. (2001), and our work can be
viewed as a description of how to lift this formula to the affine case. It turns out that the only additional
ingredients that we need for our formula are certain sums and products of q-binomial coefficients.

In Section 4, we prove that for fixed rank, the coefficients of the length generating functions are periodic
with period dividing the rank. This result gives another way to determine the generating functions by
computing the finite initial sequence of coefficients until the periodicity takes over. We mention some
further questions in Section 5.

We thank the anonymous referees whose comments have improved the readability of this manuscript.

2 Background
In this section, we introduce the affine symmetric group, abacus diagrams for minimal length coset repre-
sentatives, and q-binomial coefficients.

2.1 The affine symmetric group
We view the symmetric group Sn as the Coxeter group of type A with generating set S = {s1, . . . , sn−1}
and relations of the form sisi+1si = si+1sisi+1 together with sisj = sjsi for |i − j| ≥ 2 and si2 = 1.
We denote

⋃
n≥1 Sn by S∞ and call n(w) the minimal rank n of w ∈ Sn ⊂ S∞. The affine symmetric

group S̃n is also a Coxeter group; it is generated by S̃ = S ∪ {s0} with the same relations as in the
symmetric group together with s02 = 1, sn−1s0sn−1 = s0sn−1s0, s0s1s0 = s1s0s1, and s0sj = sjs0
for 2 ≤ j ≤ n− 2.

Recall that the products of generators from S or S̃ with a minimal number of factors are called reduced
expressions, and `(w) is the length of such an expression for an (affine) permutation w. Given an (affine)
permutation w, we represent reduced expressions for w in sans serif font, say w = w1w2 · · ·wp where
each wi ∈ S or S̃. We call any expression of the form sisi±1si a short braid, where the indices i, i ± 1
are taken mod n if we are working in S̃n. We say that si is a left descent for w ∈ S̃n if `(siw) < `(w)
and we say that si is a right descent for w ∈ S̃n if `(wsi) < `(w).

As in Stembridge (1996), we define an equivalence relation on the set of reduced expressions for an
(affine) permutation by saying that two reduced expressions are in the same commutativity class if one can
be obtained from the other by a sequence of commuting moves of the form sisj 7→ sjsi where |i− j| ≥ 2.
If the reduced expressions for a permutation w form a single commutativity class, then we say w is fully
commutative.

We also refer to elements in the symmetric group by the one-line notation w = [w1w2 · · ·wn], where
w is the bijection mapping i to wi. Then the generators si are the adjacent transpositions interchanging
the entries i and i + 1 in the one-line notation. Let w = [w1 · · ·wn], and suppose that p = [p1 · · · pk] is
another permutation in Sk for k ≤ n. We say w contains the permutation pattern p or w contains p as a
one-line pattern whenever there exists a subsequence 1 ≤ i1 < i2 < · · · < ik ≤ n such that

wia < wib if and only if pa < pb

for all 1 ≤ a < b ≤ k. We call (i1, i2, . . . , ik) the pattern instance. For example, [53241] contains the
pattern [321] in several ways, including the subsequence 541. If w does not contain the pattern p, we say
that w avoids p.
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The affine symmetric group S̃n is realized as the group of bijections w : Z→ Z satisfying w(i+ n) =
w(i) + n and

∑n
i=1 w(i) =

∑n
i=1 i =

(
n+1

2

)
. (See for example Chapter 8 of Björner and Brenti (2005))

We call the infinite sequence

(. . . , w(−1), w(0), w(1), w(2), . . . , w(n), w(n+ 1), . . .)

the complete notation for w and
[w(1), w(2), . . . , w(n)]

the base window for w. By definition, the entries of the base window determine w and its complete
notation. Moreover, the entries of the base window can be any set of integers that are normalized to sum
to
(
n+1

2

)
and such that the entries form a permutation of the residue classes in Z/(nZ) when reduced mod

n. That is, no two entries of the base window have the same residue mod n. With these considerations in
mind, we will represent an affine permutation using an abacus diagram together with a finite permutation.

To describe this, observe that Sn acts on the base window by permuting the entries, which induces an
action of Sn on Z. In this action, the Coxeter generator si simultaneously interchanges w(i + kn) with
w(i + 1 + kn) for all k ∈ Z. Moreover, the affine generator s0 interchanges all w(kn) with w(kn + 1).
Hence, Sn is a parabolic subgroup of S̃n. We form the parabolic quotient

S̃n/Sn = {w ∈ S̃n : `(wsi) > `(w) for all si where 1 ≤ i ≤ n− 1}.

By a standard result in the theory of Coxeter groups, this set gives a unique representative of minimal
length from each coset wSn of S̃n. For more on this construction, see (Björner and Brenti, 2005, Section
2.4). In our case, the base window of the minimal length coset representative of an element is obtained
by ordering the entries that appear in the base window increasingly. This construction implies that, as
sets, the affine symmetric group can be identified with the set (S̃n/Sn) × Sn. The minimal length coset
representative determines which entries appear in the base window, and the finite permutation orders these
entries in the base window.

We say that w has a descent at i whenever w(i) > w(i + 1). Note that if w has a descent at i, then
s(i mod n) is a right descent in the usual Coxeter theoretic sense that `(wsi) < `(w).

2.2 Abacus diagrams
The abacus diagrams of James and Kerber (1981) give a combinatorial model for the minimal length coset
representatives in S̃n/Sn. Other combinatorial models and references for these are given in Berg et al.
(2009).

An abacus diagram is a diagram containing n columns labeled 1, 2, . . . , n, called runners. The hor-
izontal rows are called levels and runner i contains entries labeled by rn + i on each level r where
−∞ < r < ∞. We draw the abacus so that each runner is vertical, oriented with −∞ at the top and
∞ at the bottom, with runner 1 in the leftmost position, increasing to runner n in the rightmost position.
Entries in the abacus diagram may be circled; such circled elements are called beads. Entries that are not
circled are called gaps. The linear ordering of the entries given by the labels rn+ i is called the reading
order of the abacus which corresponds to scanning left to right, top to bottom.

We associate an abacus to each minimal length coset representative w ∈ S̃n/Sn by drawing beads
down to level wi in runner i for each 1 ≤ i ≤ n where {w1, w2, . . . , wn} is the set of integers in the base
window of w, with no two having the same residue mod n. Since the entries wi sum to

(
n+1

2

)
, we call the
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abacus constructed in this way balanced. It follows from the construction that the Coxeter length of the
minimal length coset representative can be determined from the abacus.

Proposition 2.1 Let w ∈ S̃n/Sn and form the abacus for w as described above. Let mi denote the
number of gaps preceding the lowest bead of runner i in reading order, for each 1 ≤ i ≤ n. Then, the
Coxeter length `(w) is

∑n
i=1mi.

Proof: This result is part of the folklore of the subject. One proof can be obtained by combining Propo-
sitions 3.2.5 and 3.2.8 of Berg et al. (2009). 2

Example 2.2 The affine permutation w̃ = [−1,−4, 14, 1] is identified with the pair (w0, w) where w is
the finite permutation s1s3 = [2143] which sorts the elements of the minimal length coset representative
w0 = [−4,−1, 1, 14]. Note that the entries of w0 sum to

(
5
2

)
= 10. The abacus of w0 is shown below.

−707162534 −607162534 −507162534 −407162534
−307162534 −207162534 −107162534 0

107162534 207162534 3 4

5 607162534 7 8

9 1007162534 11 12

13 1407162534 15 16

17 18 19 20

From the abacus, we see that w0 has Coxeter length 1 + 10 + 0 + 0 = 11. For example, the ten
gaps preceding the lowest bead in runner 2 are 13, 12, 11, 9, 8, 7, 5, 4, 3, and 0. Hence, w̃ has length
`(w0) + `(w) = 13.

In this work, we are primarily concerned with the fully commutative affine permutations. Green (2002)
has given a criterion for these in terms of the complete notation for w. His result is a generalization of a
theorem from Billey et al. (1993) which states that w ∈ Sn is fully commutative if and only if w avoids
[321] as a permutation pattern.

Theorem 2.3 Green (2002) Let w ∈ S̃n. Then, w is fully commutative if and only if there do not exist
integers i < j < k such that w(i) > w(j) > w(k).

Observe that even though the entries in the base window of a minimal length coset representative are
sorted, the element may not be fully commutative by Theorem 2.3. For example, if we write the element
w0 = [−4,−1, 1, 14] in complete notation

w0 = (. . . ,−8,−5,−3,10,−4,−1,1, 14,0, 3, 5, 18, . . .)

we obtain a [321]-instance as indicated in boldface.
In order to more easily exploit this phenomenon, we slightly modify the construction of the abacus.

Observe that the length formula in Proposition 2.1 depends only on the relative positions of the beads
in the abacus, and is unchanged if we shift every bead in the abacus exactly k positions to the right in
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reading order. Moreover, each time we shift the beads one unit to the right, we change the sum of the
entries occurring on the lowest bead in each runner by exactly n. In fact, this shifting corresponds to
shifting the base window inside the complete notation. Therefore, we may define an abacus in which all
of the beads are shifted so that position n + 1 becomes the first gap in reading order. We call such abaci
normalized. Although the entries of the lowest beads in each runner will no longer sum to

(
n+1

2

)
, we can

reverse the shifting to recover the balanced abacus. Hence, this process is a bijection on abaci, and we
may assume from now on that our abaci are normalized.

Proposition 2.4 Let A be a normalized abacus for w0 ∈ S̃n/Sn, and suppose the last bead occurs at
entry i. Then, w0 is fully commutative if and only if the lowest beads on runners of A occur only in
positions that are a subset of {1, 2, . . . , n} ∪ {i− n+ 1, i− n+ 2, . . . , i}.

We distinguish between two types of fully commutative elements through the position of the last bead
in its normalized abacus A. If the last bead occurs in a position i > 2n, then we call the element a long
element. Otherwise, the last bead occurs in a position n ≤ i ≤ 2n, and we call the element a short
element. As evidenced in Section 3, the long fully commutative elements have a nice structure that allows
for an elegant enumeration; the short elements lack this structure.

2.3 q-analogs of binomial coefficients
Calculations involving q-analogs of combinatorial objects often involve q-analogs of counting functions.
Define (a, q)n = (1−a)(1−aq) · · · (1−aqn−1) and (q)n = (q, q)n. The q-binomial coefficient

[
n
k

]
q

(also
called the Gaussian polynomial) is a q-analog of the binomial coefficient

(
n
k

)
. To calculate a q-binomial

coefficient directly, we use the formula[
n

k

]
q

=
(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q1)
=

(q)n
(q)k(q)n−k

. (1)

Just as with ordinary binomial coefficients, q-binomial coefficients have multiple combinatorial interpre-
tations and satisfy many identities, a few of which are highlighted below.

Interpretation 1 (Stanley, 1997, Proposition 1.3.17) Let M be the multiset M = {1k, 2n−k}. For an
ordering π of the n elements of M , the number of inversions of π, denoted inv(π), is the number of
instances of two entries i and j such that i < j and π(i) > π(j). Then

[
n
k

]
q

=
∑
π q

inv(π).

Interpretation 2 Let
[
n
k

]
be the set of subsets of [n] = {1, 2, . . . , n} of size k. GivenR = {r1, . . . , rk} ∈[

n
k

]
, define |R| =

∑k
j=1(rj − j). Then

[
n
k

]
q

=
∑
R∈[nk] q

|R|.

Interpretation 1 is used most frequently in this article. Interpretation 2 is used in Section 3.1 when
counting long fully commutative elements.

3 Decomposition and enumeration of fully commutative elements
Let SFCn denote the set of fully commutative permutations in Sn. In the following result, Barcucci et al.
enumerate these elements by Coxeter length.
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Theorem 3.1 Barcucci et al. (2001) Let C(x, q) =
∑
n≥0

∑
w∈SF C

n
xnq`(w). Then,

C(x, q) =

∑
n≥0(−1)nxn+1q(n(n+3))/2/(x, q)n+1(q, q)n∑
n≥0(−1)nxnq(n(n+1))/2/(x, q)n(q, q)n

We enumerate the fully commutative elements w̃ ∈ S̃n by identifying each as the product of its minimal
length coset representative w0 ∈ S̃n/Sn and a finite permutation w ∈ Sn as described in Section 2.2.
Recall that we decompose the set of fully commutative elements into long and short elements. The
elements with a short abacus structure break down into those where certain entries intertwine and those in
which there is no intertwining. When we assemble these cases, we obtain our main theorem.

Theorem 3.2 Let S̃FCn denote the set of fully commutative affine permutations in S̃n, and let G(x, q) =∑
n≥0

∑
w∈eSF C

n
xnq`(w), where `(w) denotes the Coxeter length of w. Then,

G(x, q) =

(∑
n≥0

xnqn

1− qn
n−1∑
k=1

[
n

k

] 2

q

)
+ C(x, q) +

( ∑
R,L≥1

qR+L−1

[
L+R− 2
L− 1

]
q

S(x, q)

)
,

where C(x, q) is given by Theorem 3.1, and the component parts of S(x, q) = SI(x, q) + S0(x, q) +
S1(x, q) + S2(x, q) are given in Lemmas 3.8, 3.9, 3.10, and 3.11, respectively.

The first summand of G(x, q) counts the long elements, while the remaining summands count the short
elements. This theorem will be proved in Section 3.3 below.

3.1 Long elements
In this section, we enumerate the long elements. Recall that the last bead in the normalized abacus for
these elements occurs in position > 2n.

Lemma 3.3 For fixed n ≥ 0, we have

∑
w∈eSF C

n such that w is long

q`(w) =
qn

1− qn
n−1∑
k=1

[
n

k

] 2

q

.

Proof: Fix a long fully commutative element, and define the set of long runners R of its normalized
abacus A to be the set of runners {r1, . . . , rk} ⊂ [n] \ {1} in which there exists a bead in position n+ rj
for 1 ≤ j ≤ k. We will enumerate the long fully commutative elements by conditioning on k = |R|,
the size of the set of long runners of its normalized abacus. Note that by Proposition 2.4, all subsets
R ⊂ [n] \ {1} are indeed the set of long runners for some fully commutative element.

For a fixed R, there is an infinite family of abaci {ARi }i≥1, each having beads in positions n + rj for
rj ∈ R, together with i additional beads that are placed sequentially in the long runners in positions larger
than 2n.

By Proposition 2.1, the Coxeter length of the minimal length coset representative w0 ∈ S̃n/Sn having
ARi as its abacus is i(n−k)+

∑k
j=1(rj−j). In addition, w0 has base window [aa · · · abb · · · b], where the
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(n− k) numbers a are all at most n, and the k numbers b are all at least n+ 2. The finite permutations w
that can be applied to this standard window may not invert any of the larger numbers (b’s) without creating
a [321]-pattern with n+1 in the window following the standard window. Similarly, none of the a’s can be
inverted. All that remains is to intersperse the a’s and the b’s, keeping track of how many transpositions
are used. This contributes exactly

[
n
k

]
q

to the Coxeter length, by Interpretation 1 of
[
n
k

]
q
.

Algebraic simplification and application of Interpretation 2 gives the result. 2

3.2 Short elements
The normalized abacus of every short fully commutative element has a particular structure. There must
be a gap in position n + 1, and for runners 2 ≤ i ≤ n, the lowest bead is either in position i or n + i. In
the following arguments, we will assign a status to each runner, depending on the position of the lowest
bead in that runner.

Definition 3.4 An R-entry is a bead lying in some position > n. Let n + j be the position of the last
R-entry, or set j = n if there are no R-entries; an M-entry is a lowest bead lying in position i where
j + 1 ≤ i ≤ n. Note that it is possible that there do not exist any M-entries. The L-entries are the
remaining lowest beads in position i for i ≤ j. This assigns a status left, middle, or right to each entry of
the base window, depending on the position of the lowest bead in the corresponding runner. We will call
an abacus containing L L-entries, M M-entries, and R R-entries an (L)(M)(R) abacus.

107162534 207162534 307162534 407162534 507162534 607162534
7 807162534 9 10 1107162534 12

`([1, 3, 4, 6, 8, 11]) = 4

107162534 207162534 307162534 407162534 507162534 607162534
7 8 907162534 10 1107162534 12

`([1, 2, 4, 6, 9, 11]) = 5

107162534 207162534 307162534 407162534 507162534 607162534
7 8 9 1007162534 1107162534 12

`([1, 2, 3, 6, 10, 11]) = 6

Fig. 1: The three (3)(1)(2) abaci and Coxeter length of their corresponding minimal length coset representatives.

Example 3.5 Figure 1 shows the three (3)(1)(2) abaci. In each case, 6 is the unique M-entry and 11 is
an R-entry. In the first abacus, the L-entries are {1, 3, 4} and the R-entries are {8, 11}.

The rationale for this assignment is that in the base window of a fully commutative element, not of type
(n)(0)(0), neither the L-entries nor the R-entries can have a descent amongst themselves, respectively. To
see this, consider the contrary where two R-entries have a descent. These two entries, along with the n+1
entry in the window following the standard window, form a [321]-instance. Similarly, the last R-entry
in the window previous to the standard window together with two L-entries that have a descent in the
standard window would form a [321]-instance.

When the normalized abacus of a short fully commutative element has no R-entries (and therefore no
M-entries), the base window for its minimal length coset representative is [12 · · ·n]. That is, the fully
commutative elements of S̃n having this abacus are in one-to-one correspondence with fully commutative
elements of finite Sn. These elements have been enumerated in Theorem 3.1.

From now on, we only concern ourselves with (L)(M)(R) abaci where R > 0. Proposition 3.6 proves
that it is solely the parameters L, M , and R that determine the set of finite permutations that we can apply
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to the minimal length coset representative, and not the exact abacus. In Proposition 3.7 we determine
the cumulative contribution to the Coxeter length of the minimal length coset representative from all
(L)(M)(R) abaci for fixed L, M , and R.

Proposition 3.6 Let w0
1, w

0
2 ∈ S̃n/Sn, each corresponding to an (L)(M)(R) abacus for the same L, M ,

and R with R > 0. For any finite permutation w ∈ Sn, w0
1w is fully commutative in S̃n if and only if w0

2w

is fully commutative in S̃n.

Proposition 3.7 Let L, M and R > 0 be fixed. Then, we have∑
w

q`(w) = qL+R−1

[
L+R− 2
L− 1

]
q

.

where the sum on the left is over all minimal length coset representativesw having an (L)(M)(R) abacus.

Proof: Every (L)(M)(R) abacus contains beads in all positions through n and in position 2n −M as
well as gaps in position n+ 1 and all positions starting with 2n−M + 1. Depending on the positions of
the L − 1 remaining gaps (and R − 1 remaining beads), the Coxeter length of the minimal length coset
representative changes as illustrated by example in Figure 1.

The minimal length coset representative corresponding to an (L)(M)(R) abacus having beads in po-
sitions i for n + 2 ≤ i ≤ n + R together with a bead at position 2n −M , and gaps in positions i for
n+R+1 ≤ i ≤ 2n−M −1 has Coxeter length L+R−1. Notice that every time we move a bead from
one of the positions between n+2 and 2n−M −1 into a gap in the position directly to its right, the Cox-
eter length increases by exactly one. In essence, we are intertwining one sequence of length L−1 and one
sequence of lengthR−1 and keeping track of the number of inversions we apply. By q-binomial Interpre-
tation 1, the contribution to the Coxeter length of the minimal length coset representatives corresponding
to the (L)(M)(R) abaci is qL+R−1

[
L+R−2
L−1

]
q
. 2

For the remaining arguments, we ignore the exact entries in the base window and simply fix both
some positive number L of L-entries and some positive number R of R-entries, and then enumerate the
permutations w ∈ Sn that we can apply to a minimal length coset representative w0 with base window of
the form [L · · · LM · · ·MR · · · R]. In Theorem 3.2, we sum the contributions over all possible values of L
and R.

3.2.1 Short elements with intertwining
One possibility is that after w ∈ Sn is applied to our minimal length coset representative w0 with base
window of the form [L · · · LM · · ·MR · · · R], an R-entry lies to the left of an L-entry. In this case, we say
that w is intertwining, the L-entries are intertwining with the R-entries, and that the interval between the
leftmost R and the rightmost L inclusive is the intertwining zone.

Lemma 3.8 Fix L and R > 0. Then, we have SI(x, q) =
∑
w x

n(w)q`(w) =∑
M≥0

xL+M+R
R−1∑
ρ=0

L−1∑
λ=0

M∑
µ=0

qQ
[
M

µ

]
q

[
L− λ− 1 + µ

µ

]
q

[
λ+ ρ

λ

]
q

[
M − µ+R− ρ− 1

M − µ

]
q

,

where the sum on the left is over all w ∈ S∞ that are intertwining and apply to a short (L)(M)(R)
abacus for some M , and Q = (λ+ 1)(µ+ 1) + (ρ+ 1)(M − µ+ 1)− 1.
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3.2.2 Short elements without intertwining
If the L-entries and R-entries are not intertwined, there may be M-entries lying between the rightmost L
and the leftmost R. There can be no descents in the M-entries to the left of the rightmost L nor to the right
of the leftmost R by the same reasoning as above. However, multiple descents may now occur among
the M-entries. We enumerate these short elements without intertwining by conditioning on the number of
descents that occur among the M-entries. Lemmas 3.9, 3.10, and 3.11 enumerate the short elements in
which there are zero, one, or two or more descents among the M-entries, respectively.

Lemma 3.9 Fix L and R > 0. Then, we have

S0(x, q) =
∑
w

xn(w)q`(w) =
∑
M≥0

xL+M+R
M∑
µ=0

qµ
[
L− 1 + µ

µ

]
q

[
R+M − µ
M − µ

]
q

,

where the sum on the left is over all w ∈ S∞ that are not intertwining, have no descents among the
M-entries, and apply to a short (L)(M)(R) abacus for some M .

Proof: Let µ be the number of M-entries lying to the left of the rightmost L. Then, the µ M-entries can be
intertwined with the remaining (L−1) L-entries, and the remaining (M−µ) M-entries can be intertwined
with the R R-entries.

We compute the Coxeter length offset by counting the inversions among the entries in the base window
in the minimal length configuration of this type. In this case, there are simply µ M-entries that are inverted
with the rightmost L. Summing over all valid values of µ gives the formula. 2

A similar method of proof applies to the following Lemma.

Lemma 3.10 Fix L and R > 0. Then, we have

S1(x, q) =
∑
w

xn(w)q`(w) =
∑
M≥0

xL+M+R
M−1∑
µ=1

([
M

µ

]
q

− 1
)[
L+ µ

µ

]
q

[
R+M − µ
M − µ

]
q

,

where the sum on the left is over all w ∈ S∞ that are not intertwining, have exactly one descent among
the M-entries, and apply to a short (L)(M)(R) abacus for some M .

The proof of our next result, relies on Lemma 2.3 of Bousquet-Mélou (1996) which solves certain
functional recurrences.

Lemma 3.11 Fix L and R > 0. Then, we have

S2(x, q) =
∑
w

xn(w)q`(w) = xL+R
∑
i,j≥1

[
L+ i

L

]
q

[
R+ j

R

]
q

di,j(x, q),

where the sum on the left is over all w ∈ S∞ that are not intertwining, have at least two descents among
the M-entries, and apply to a short (L)(M)(R) abacus for some M . Here, di,j(x, q) is the coefficient of
zisj in the generating function that satisfies the functional equation

D(x, q, z, s) =

∑
n≥0 x

n+1
∑n−1
i=1

([
n
i

]
q
− 1
)
zi
(
(qs)− (qs)n−i

)
(1− qs)(1− xs)

+
xqs
(
D(x, q, z, 1)−D(x, q, z, qs)

)
(1− qs)(1− xs)

A nonrecursive form for D(x, q, z, 1) is obtained in the proof of Lemma 3.11.
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3.3 Proof of the main theorem

Proof of Theorem 3.2: Partition the set of fully commutative elements w̃ into long elements and short
elements. The long elements in S̃n are enumerated by Lemma 3.3; we must sum over all n.

Each short element w̃ has a normalized abacus of type (L)(M)(R) for some L, M , and R. When
this abacus is of type (n)(0)(0) for some n, the base window for the corresponding minimal length coset
representative is [1 2 . . . n]. These elements w̃ ∈ S̃FCn are therefore in one-to-one correspondence with
elements of SFCn . Therefore, the generating function C(x, q) enumerates these elements for all n.

The elements that remain to be enumerated are short elements with normalized abacus of type (L)(M)(R)
for R > 0. We enumerate these elements by grouping these elements into families based on the values of
L, M , and R. Decompose each element w̃ into the product of its minimal length coset representative w0

and a finite permutation w. Proposition 3.6 proves that for two minimal length coset representatives w0
1

and w0
2 of the same abacus type, the set of finite permutations w that multiply to form a fully commutative

element is the same. Proposition 3.7 proves that in an (L)(M)(R)-family of fully commutative elements,
the contribution to the length from the minimal length coset representatives is qL+R−1

[
L+R−2
L−1

]
q
. What

remains to be determined is the generating function for the contributions of the finite permutations w.
In an (L)(M)(R)-family of fully commutative elements, the finite permutations w might intermingle

the L entries and the R entries of the base window in which case there is at most one descent among the
M entries at a prescribed position; the contribution of such w is given by SI in Lemma 3.8. Otherwise,
there is no intermingling and the finite permutations w may induce zero, one, or two or more descents
among the M entries; these cases are enumerated by generating functions S0, S1, and S2 in Lemmas 3.9,
3.10, and 3.11, respectively. In each of these lemmas, the values for L and R are held constant as M
varies. Summing the product of the contributions of the minimal length coset representatives and the
finite permutations over all possible values of L and R completes the enumeration. 2

4 Numerical Conclusions
Theorem 3.2 allows us to determine the length generating function fn(q) for the fully commutative ele-
ments of S̃n as n varies. The first few series fn(q) are presented below.

f3(q) = 1 + 3q + 6q2 + 6q3 + 6q4 + · · ·
f4(q) = 1 + 4q + 10q2 + 16q3 + 18q4 + 16q5 + 18q6 + · · ·
f5(q) = 1 + 5q + 15q2 + 30q3 + 45q4 + 50q5 + 50q6 + 50q7 + 50q8 + 50q9 + · · ·
f6(q) = 1 + 6q + 21q2 + 50q3 + 90q4 + 126q5 + 146q6 + 150q7 + 156q8 + 152q9+

156q10 + 150q11 + 158q12 + 150q13 + 156q14 + 152q15 + · · ·
f7(q) = 1 + 7q + 28q2 + 77q3 + 161q4 + 266q5 + 364q6 + 427q7 + 462q8 + 483q9 + 490q10+

490q11 + 490q12 + 490q13 + 490q14 + 490q15 + · · ·
f8(q) = 1 + 8q + 36q2 + 112q3 + 266q4 + 504q5 + 792q6 + 1064q7 + 1274q8 + 1416q9+

1520q10 + 1568q11 + 1602q12 + 1600q13 + 1616q14 + 1600q15 + 1618q16+
1600q17 + 1616q18 + 1600q19 + 1618q20 + · · ·

f9(q) = 1 + 9q + 45q2 + 156q3 + 414q4 + 882q5 + 1563q6 + 2367q7 + 3159q8 + 3831q9+
4365q10 + 4770q11 + 5046q12 + 5220q13 + 5319q14 + 5370q15 + 5391q16 + 5400q17+
5406q18 + 5400q19 + 5400q20 + 5406q21 + 5400q22 + 5400q23 + · · ·
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One remarkable quality of these series is their periodicity, given by the bold-faced terms. This behavior
is explained by the following corollary to Lemma 3.3.

Corollary 4.1 The coefficients ai of fn(q) =
∑
w∈eSF C

n
q`(w) =

∑
i≥0 aiq

i are periodic with period m|n
for sufficiently large i. When n = p is prime, the period m is 1 and in this case there are precisely

1
p

((
2p
p

)
− 2

)

fully commutative elements of length i in S̃p, when i is sufficiently large.

Proof: For a given n, the number of short fully commutative elements is finite. The formula for long
elements in Lemma 3.3 is a polynomial divided by 1 − qn. Hence, the coefficients of this generating
function satisfy ai+n = ai, by a fundamental result on rational generating functions.

When n is prime, the formula in Lemma 3.3 can be shown to be a polynomial divided by 1− q. 2

The distinction between long and short elements allows us to enumerate the fully-commutative elements
efficiently. In some respects, this division is not the most natural in that the periodicity of the above series
begins before there exist no more short elements. Experimentally, it appears that the periodicity begins at
1+
⌊
(n−1)/2

⌋⌈
(n−1)/2

⌉
; whereas, we can prove that the longest short element has length 2

⌊
n/2

⌋⌈
n/2

⌉
.

We can bound the Coxeter length of finite fully commutative permutations.

Proposition 4.2 Let w ∈ S̃FCn be a short element. Then `(w) ≤ 2
⌊
n/2

⌋⌈
n/2

⌉
. In addition, there exists

a w ∈ S̃FCn with length 2
⌊
n/2

⌋⌈
n/2

⌉
.

Corollary 4.1 and Proposition 4.2 give another way to compute the series fn(q), without invoking
Theorem 3.2. Using a computer program, one needs simply to count the fully-commutative elements of
S̃n of length up to n+ 2

⌊
n/2

⌋⌈
n/2

⌉
.

5 Further questions
In this work, we have studied the length generating function for the fully commutative affine permuta-
tions. It would be interesting to explore the ramifications of the periodic structure of these elements in
terms of the affine Temperley–Lieb algebra. Also, all of our work should have natural extensions to the
other Coxeter groups. In fact, we know of no analogue of Barcucci et al. (2001) enumerating the fully
commutative elements by length for finite types beyond type A. It is a natural open problem to establish
the periodicity of the length generating functions for the other affine types. It would also be interesting to
determine the analogues for other types of the q-binomial coefficients and q-Bessel functions that played
prominent roles in our enumerative formulas.

Finally, it remains an open problem to prove that the periodicity of the length generating function
coefficients for fixed rank begins at length 1 +

⌊
(n − 1)/2

⌋⌈
(n − 1)/2

⌉
, as indicated by the data. By

examining the structure of the heap diagrams associated to the fully commutative affine permutations, we
have discovered some plausible reasoning indicating this tighter bound, but a proof remains elusive.
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