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Cyclic sieving phenomenon in non-crossing
connected graphs

Alan Guo†

Department of Mathematics, Duke University, Durham, NC, USA

Abstract. A non-crossing connected graph is a connected graph on vertices arranged in a circle such that its edges do
not cross. The count for such graphs can be made naturally into a q-binomial generating function. We prove that this
generating function exhibits the cyclic sieving phenomenon, as conjectured by S.-P. Eu.

Résumé. Un graphe connexe dont les sommets sont disposés sur un cercle est sans croisement si ses arêtes ne
se croisent pas. Nous démontrons une conjecture de S.-P. Eu affirmant que la fonction génératrice q-binomiale
dénombrant de tels graphes exhibe le phénomène du crible cyclique.
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1 Introduction
A non-crossing graph on a finite set S is a graph with vertices indexed by S arranged in a circle such that
no edges cross. When we say a graph on n vertices, we will mean S = {1, . . . , n}. In [3], Flajolet and
Noy showed that the number cn,k of non-crossing connected graphs (see Figure 1) on n vertices with k
edges, n− 1 ≤ k ≤ 2n− 3, is

cn,k =
1

n− 1

(
3n− 3
n+ k

)(
k − 1
n− 2

)
. (1)

Define [
n

k

]
q

=
[n]!q

[k]!q[n− k]!q

where [n]!q = [n]q[n− 1]q · · · [1]q and [n]q = 1 + q + · · ·+ qn−1 = 1−qn

1−q . The formula in (1) admits a
natural q-analogue:

c(n, k; q) =
1

[n− 1]q

[
3n− 3
n+ k

]
q

[
k − 1
n− 2

]
q

. (2)

It is straightforward to verity fhat c(n, k; q) is a polynomial in q with nonnegative integer coefficients.
The main result of this paper is the following, which was conjectured by S.-P. Eu [1].
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Fig. 1: A non-crossing connected graph on 12 vertices with 14 edges

Theorem 1.1. Let n ≥ 1 and n−1 ≤ k ≤ 2n−3, and let X be the set of non-crossing connected graphs
on n vertices with k edges. If d ≥ 1 divides n and ω is a primitive d-th root of unity, then

c(n, k;ω) = sd(n, k)

where we define

sd(n, k) = #
{
x ∈ X : x is fixed under rotation by

2π
d

}
.

In [5], Reiner, Stanton, and White introduced the notion of the cyclic sieving phenomenon. A triple
(X,X(q), C) consisting of a finite set X , a polynomial X(q) ∈ N[q] satisfying X(1) = |X|, and a cyclic
group C acting on X exhibits the cyclic sieving phenomenon if, for every c ∈ C, if ω is a primitive root
of unity of the same multiplicative order as c, then

X(ω) = #{x ∈ X : c(x) = x}.

In (1), the two extreme cases, k = n− 1 and k = 2n− 3, correspond to non-crossing spanning trees and
n-gon triangulations respectively. In the former case, Eu and Fu showed in [2] that quadrangulations of a
polygon exhibit the cyclic sieving phenomenon, where the cyclic action is cyclic rotation of the polygon,
and they showed a bijection between quadrangulations of a 2n-gon with non-crossing spanning trees on n
vertices. The bijection mapping is as follows: given a non-crossing spanning tree on n vertices, for each
edge connecting i to j, draw a dotted line from 2i− 1 to 2j − 1 in a 2n-gon. Then the quadrangulation of
this 2n-gon is defined by quadrangles whose diagonals are the dotted lines; conversely, given a 2n-gon,
every quadrangle has a diagonal whose endpoints are odd numbers, so we may perform the reverse pro-
cedure to get an inverse mapping (see Figure 2). This bijection preserves the cyclic sieving phenomenon,
since rotation by 2π

n in the tree corresponds to rotation by π
n in the 2n-gon.

In the latter case, Reiner, Stanton, and White showed in [5] that polygon dissections of a polygon
exhibit the cyclic sieving phenomenon where the cyclic action is also rotation. In particular, triangulations
acted upon by rotations exhibit the cyclic sieving phenomenon. These results inspired Eu to conjecture
Theorem 1.1, which we prove in the following sections. The case d = 1 in Theorem 1.1 follows from (1).
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Fig. 2: Bijection between a spanning tree on a 5 vertices and a quadrangulation of a 10-gon.

We therefore consider the following three cases: d = 2 and k is odd, d = 2 and k is even, and d ≥ 3.
The majority of the work is done in the proofs of the case where d = 2, and we show that the case where
d ≥ 3 reduces to this case.

2 Lagrange Inversion Theorem
In the following sections, we will use the Lagrange Inversion Theorem to extract coefficients of certain
generating functions. If φ(z) ∈ Q[[z]], then we define [zn]φ(z) to be the coefficient of zn in φ(z).

Lagrange inversion. Let φ(u) ∈ Q[[u]] be a formal power series with φ(0) 6= 0, and let y(z) ∈ Q[[z]]
satisfy y = zφ(y). Then, for an arbitrary series ψ, the coefficient of zn in φ(y) is given by

[zn]ψ(y(z)) =
1
n

[un−1]φ(u)nψ′(u).

Lagrange inversion may be applied to bivariate generating functions by treating the second variable as
a parameter.

We begin by illustrating how Flajolet and Noy used Lagrange inversion to find (1). Let C(z, w) be the
generating function for cn,k, that is,

C(z, w) =
∑
n,k

cn,kz
nwk.

Then it can be shown using a combinatorial argument that C satisfies

wC3 + wC2 − z(1 + 2w)C + z2(1 + w) = 0.

Setting C = z + zy, this becomes
wz(1 + y)3 = y(1− wy)

which can be put in the Lagrange form

y = z
w(1 + y)3

1− wy
. (3)
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The result (1) then follows upon application of Lagrange inversion on y. We will in fact use this same
function y multiple times in our proofs.

3 The case where d = 2 and k is odd
In this section, we prove that Theorem 1.1 holds when d = 2 and k is odd. Recall that d divides n, so n
must be even in this case. The case where n = 2 is trivial since there is only 1 non-crossing connected
graph on 2 vertices, so we may assume that n > 2. For this section, define n′ = n

2 and k′ = k+1
2 . It is a

straightforward computation to verify that

c(n, k;−1) =
(

3n′ − 2
n′ + k′ − 1

)(
k′ − 1
n′ − 1

)
. (4)

The goal of this section is to show that s2(n, k) = c(n, k,−1), and we do this by showing that both sides
satisfy the same recurrence and initial conditions.

Recall that cn,k = |X|. Define dn,k to be the number of non-crossing graphs on {1, . . . , n} with k
edges and exactly two connected components such that 1 and n are in different components.

Lemma 3.1. With dn,k defined above, we have

dn,k =
2

n− 2

(
3n− 5
n+ k

)(
k − 1
n− 3

)
.

Proof. Let D(z, w) =
∑
dn,kz

nwk and let C(z, w) =
∑
cn,kz

nwk. Since dn,k counts graphs with two
connected components, which are each counted by cn,k, we therefore haveD = C2. To find the coefficient
of znwk, we use Lagrange inversion. Recall from (3) that y = zw(1+y)3

1−wy . ButD = C2 = z2+z2(y2+2y).
Therefore

[znwk]D = [zn−2wk]y2 + 2[zn−2wk]y.

Computing each of these separately, we have

[zn−2wk]y =
1

n− 2
[un−3wk]

wn−2(1 + u)3n−6

(1− uw)n−2

=
1

n− 2

(
3n− 6
n+ k − 1

)(
k − 1
n− 3

)
and

[zn−2wk]y2 =
2

n− 2
[un−4wk]

wn−2(1 + u)3n−6

(1− uw)n−2

=
2

n− 2

(
3n− 6
n+ k

)(
k − 1
n− 3

)
.

The result then follows from Pascal’s identity.

We define some more notation. Define

fn,k = #{x ∈ X : x has an edge from 1 to n}.
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Lemma 3.2. With fn,k defined as above, we have

s2(n, k) = n′ · fn′+1,k′ .

Proof. Given a centrally symmetric graph with an odd number of edges, exactly one of the edges must be
a diameter. There are n′ choices for the diameter. Once a diameter has been fixed, the remaining k − 1
edges are determined by the k′−1 edges on either side of the diameter. Without loss of generality, assume

1

n

n′ + 1
n′

k′ edges

1

  

n′ + 1

k′ edges

Fig. 3: The bijection between centrally symmetric n-vertex, k-edge graph with fixed diameter and (n
2

+ 1)-vertex,
k+1
2

-edge graph with edge between 1 and n
2

+ 1.

the diameter has endpoints 1 and n′ + 1. Then we have a bijection (see Figure 3) between the graphs we
wish to count and graphs on {1, . . . , n′ + 1} with k′ edges including the edge from 1 to n′ + 1. This is
counted by fn′+1,k′ .

Lemma 3.3. The sequence fn,k satisfies the recurrence

fn,k + fn,k+1 = cn,k + dn,k

with the base case

fn,2n−3 = cn,2n−3 =
1

n− 1

(
2n− 4
n− 2

)
.

Proof. The base case follows from the fact that every triangulation must contain the edge from 1 to n.
Now consider a non-crossing connected graph with k + 1 edges on {1, . . . , n} with the edge 1 to n.
We have two cases. When we remove this edge, either the remaining graph is connected or not. If the
remaining graph is connected, then we have a non-crossing connected graph with k edges without the
edge from 1 to n. This is counted by cn,k − fn,k. If the remaining graph is not connected, then there
are exactly two connected components, and 1 and n lie in separate components. This is counted by dn,k.
Hence

fn,k+1 = cn,k + dn,k − fn,k.
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As a corollary to this lemma, it follows that one has the recurrence

s2(2n− 2, 2k − 1) + s2(2n− 2, 2k + 1) = (n− 1)cn,k + (n− 1)dn,k (5)

with base case

s2(2n− 2, 4n− 7) = (n− 1)cn,2n−3 =
(

2n− 4
n− 2

)
.

To show that c(n, k;−1) = s2(n, k) for even n and odd k or, equivalently, c(2n − 2, 2k − 1;−1) =
s2(2n − 2, 2k − 1) for any positive integers n > 2 and n − 1 ≤ k ≤ 2n − 3, it suffices to show that
c(2n−2, 2k−1;−1) satisfies the same recurrence (5) as s2(2n−2, 2k−1). The base case is immediate:

c(2n− 2, 4n− 7;−1) =
(

3n− 5
3n− 5

)(
2n− 4
n− 2

)
=
(

2n− 4
n− 2

)
.

We now show that c(2n − 2, 2k − 1;−1) satisfies the recurrence relation as well, which completes the
proof that the theorem holds for d = 2 and odd k.

Proposition 3.4. c(2n− 2, 2k − 1;−1) satisfies

c(2n− 2, 2k − 1;−1) + c(2n− 2, 2k + 1;−1) = (n− 1)cn,k + (n− 1)dn,k.

Proof. From (4), we see that all we need to verify is(
3n− 5
n+ k − 2

)(
k − 1
n− 2

)
+
(

3n− 5
n+ k − 1

)(
k

n− 2

)
=
(

3n− 3
n+ k

)(
k − 1
n− 2

)
+

2n− 2
n− 2

(
3n− 5
n+ k

)(
k − 1
n− 3

)
,

which we leave as a straightforward exercise for the reader.

4 The case where d = 2 and k is even
In this section, we prove that Theorem 1.1 holds when d = 2 and k is even. As in the previous case, it is
again a straightforward computation to verify that

c(n, k;−1) =
( 3n−4

2
n+k

2

)( k−2
2

n−2
2

)
.

Let a2n,k denote the number of non-crossing connected graphs with 2n vertices and k pairs of antipodal
edges, where a diameter counts as one pair. When counting a2n,k, we have two cases. In one case, there
is a diameter, and in the second case, there is not. This gives us the sum

a2n,k = s2(2n, 2k − 1) + s2(2n, 2k) = c(2n, 2k − 1;−1) + s2(2n, 2k).

where the second equality follows from our results in the previous section. Our goal in this section is to
show that s2(2n, 2k) = c(2n, 2k;−1), so it suffices to show that

a2n,k = c(2n, 2k − 1;−1) + c(2n, 2k;−1) =
(

3n− 1
n+ k

)(
k − 1
n− 1

)
. (6)

Let F be the generating function for fn,k, i.e. F (z, w) =
∑
fn,kz

nwk. Similarly, let A(z, w) =∑
a2n,kz

nwk. Our strategy in this section is to use the Lagrange Inversion Theorem on A(z, w) to
obtain (6).
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Lemma 4.1.

a2n,k =
n∑

m=1

∑
k1+···+km=k

∑
1≤v1<···<vm≤n

m∏
i=1

fvi+1−vi+1,ki

where vm+1 = v1 + n.

Proof. Consider a non-crossing connected graph with 2n vertices and k pairs of antipodal edges. There
exists a unique positive integerm such that the center of the 2n-gon lies inside a 2m-gon formed by edges
of the graph and such that no other edges lie inside the 2m-gon. This m is at most n. Now, exactly m
of the vertices of this 2m-gon, call them v1 < · · · < vm, lie in the set {1, . . . , n} due to the antipodal
condition on the edges. All edges not used in the 2m-gon lie outside of it (see Figure 4). The (m+ 1)-th

12n v1

v2

vm
n

Fig. 4: A graph with an inner 2m-gon, where m = 4.

vertex is antipodal to v1, hence vm+1 = v1 + n. For each i, there is an edge from vi to vi+1 and ki − 1
other edges on the vertices {vi, vi + 1, . . . , vi+1}, such that k1 + · · ·+ km = k. Such a graph is counted
by fvi+1−vi+1,ki . Thus we get the corresponding sum.

Lemma 4.2. With A and F as defined above, we have

A

z
=
∂(F/z)/∂z
1− F/z

.

Proof. We show that

a2n,k =
n∑

m=1

∑
k1+···km=k

∑
n1+···+nm=n+m

(nm − 1)fnm,km

m−1∏
i=1

fni,ki
.

In the sum in the previous lemma, the term
∏m
i=1 fvi+1−vi+1,ki is counted multiple times with the product

written in this order. We show that it is counted exactly n + v1 − vm times. Consider any m-element
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subset {v1, . . . , vm} ⊆ {1, . . . , n} with v1 < · · · < vm. For j = 1, . . . , v1 − 1, this subset yields
the same summand as {v1 − j, . . . , vm − j}. Therefore, we can identify any subset {v1, . . . , vm} with
{1, . . . , vm− v1 + 1}. There are exactly n+ v1− vm subsets corresponding to this one, each with largest
element vm − v1 + 1, vm − v1 + 2, . . . , n. This proves the sum identity above.

For the equality of generating functions, we insert variables into the above identity:

a2n,kz
nwk =

1
zm−2

n∑
m=1

∑
k1+···km=k

∑
n1+···+nm=n+m

(nm − 1)fnm,km
znm−2wkm

m−1∏
i=1

fni,ki
zniwki .

(7)
We note that

∂(F/z)
∂z

=
∑
n,k

(n− 1)fn,kzn−2wk

so, summing over all n and k in (7), we get

A =
∂(F/z)
∂z

(
z + F +

F 2

z
+
F 3

z2
+ · · ·

)
= z

∂(F/z)
∂z

(
1

1− F/z

)
.

Proposition 4.3.

a2n,k =
(

3n− 1
n+ k

)(
k − 1
n− 1

)
.

Proof. Let H = F/z and let C be the generating function for cn,k as in the previous section and let
C = z + zy. From the recurrence fn,k + fn,k+1 = dn,k + cn,k, n ≥ 2, and f1,k = 0, we have(

1 +
1
w

)
F = D + C − z = z2(1 + y)2 + zy.

Therefore, after some substitution and simplification, applying the identity in (3), we get

1−H =
1

1 + y
.

From
A

z
=
∂H/∂z

1−H
we get ∫

A

z
dz =

∫
dH

1−H
or equivalently ∑

n,k

1
n
a2n,kz

nwk = − log(1−H) = log(1 + y).
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By the Lagrange inversion formula,

1
n
a2n,k = [znwk]

∫
A

z
dz

= [znwk] log(1 + y)

=
1
n

[un−1wk]
wn(1 + u)3n

(1− uw)n
1

1 + u

=
1
n

(
3n− 1
n+ k

)(
k − 1
n− 1

)
whence our desired result.

Comparing with (6) shows that Theorem 1.1 holds when d = 2 and k is even.

5 The case where d ≥ 3

Finally, in this section, we prove that Theorem 1.1 holds when d ≥ 3. For this section, define n′′ = n
d and

k′′ = k
d . Again, it is a straightforward computation to verify that if d|k, then

c(n, k;ω) =
(

3n′′ − 1
n′′ + k′′

)(
k′′ − 1
n′′ − 1

)
.

Lemma 5.1. If d ≥ 3 does not divide k, then c(n, k;ω) = 0, where ω is a primitive d-th root of unity.

If d does not divide k, then in fact there are no graphs with k edges that are fixed under rotation by 2π
d ,

since each edge lies in a free orbit under the action of rotation. We henceforth assume that d|k.

Lemma 5.2.
sd(n, k) = n′′ · fn′′+1,k′′ + s2(2n′′, 2k′′).

Proof. For a non-crossing connected graph on {1, . . . , n} fixed under rotation by 2π
d , then there are two

cases: either the edges form a central d-gon or not. In the former case, every edge is purely determined
by the edges on the first n′′ + 1 vertices. In fact, there is bijection between such graphs and non-crossing
connected graphs on n′′ + 1 vertices with the edge from 1 to n′′ + 1. There are fn′′+1,k′′ such graphs,
and there are n′′ possible d-gons. In the latter case, the edges are determined by edges on the first 2n′′

vertices. We construct a bijection between such graphs and centrally symmetric non-crossing connected
graphs on 2n′′ vertices with 2k′′ edges as follows (see Figure 5): Going around clockwise in the graph,
label the first m vertices 11, 21, . . . , n

′′
1 , label the next set of vertices 12, 22, . . . , n

′′
2 , and so on. Construct

a non-crossing graph with 2n′′ vertices labeled 11, 21, . . . , n
′′
1 , 12, 22, . . . , n

′′
2 . For each edge from i to j

in the original graph, we put an edge with the same endpoints in the new graph. Finally, if there is an edge
from some i2 to some j3, we put an edge from i2 to j1 in the new graph. This new graph therefore has
2k′′ edges. It is straightforward to check that this is a bijection.

Proposition 5.3. For d ≥ 3 and ω a primitive dth root of unity,

c(n, k;ω) = sd(n, k).
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Fig. 5: The bijective construction when (n, k, d) = (12, 12, 3)

Proof. This follows by the previous lemma and our results from the case where d = 2, after applying
Pascal’s rule.

This completes the proof of Theorem 1.1.
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