
FPSAC 2011, Reykjavı́k, Iceland DMTCS proc. AO, 2011, 411–422

On the evaluation of the Tutte polynomial at
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Abstract. C. Merino [Electron. J. Combin. 15 (2008)] showed that the Tutte polynomial of a complete graph satisfies
t(Kn+2; 2,−1) = t(Kn; 1,−1). We first give a bijective proof of this identity based on the relationship between the
Tutte polynomial and the inversion polynomial for trees. Next we move to our main result, a sufficient condition for
a graph G to have two vertices u and v such that t(G; 2,−1) = t(G − {u, v}; 1,−1); the condition is satisfied in
particular by the class of threshold graphs. Finally, we give a formula for the evaluation of t(Kn,m; 2,−1) involving
up-down permutations.

Résumé. C. Merino [Electron. J. Combin. 15 (2008)] a montré que le polynôme de Tutte du graphe complet satisfait
t(Kn+2; 2,−1) = t(Kn; 1,−1). Le rapport entre le polynôme de Tutte et le polynôme d’inversions d’un arbre nous
permet de donner une preuve bijective de cette identité. Le résultat principal du travail est une condition suffisante
pour qu’un graphe ait deux sommets u et v tels que t(G; 2,−1) = t(G − {u, v}; 1,−1); en particulier, les graphes
“threshold” satisfont cette condition. Finalement, nous donnons une formule pour t(Kn,m; 2,−1) qui fait intervenir
les permutations alternées.
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1 Introduction
The Tutte polynomial is one of the most studied polynomial graph invariants. For a graph G = (V,E), it
is given by

t(G;x, y) =
∑
A⊆E

(x− 1)r(G)−r(A)(y − 1)|A|−r(A),

where r(A) is the rank ofA, defined as |V |−c(GA), where c(GA) is the number of connected components
of the spanning subgraph GA = (V,A) induced by A. (Although the definition of the Tutte polynomial
allows multiple edges and loops, all graphs in this paper are simple.)

We refer to (7) for details about the many combinatorial interpretations of evaluations of the Tutte
polynomial at various points of the plane and also along several algebraic curves. For example, t(G; 1, 1)
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is the number of spanning trees of G when G is connected and t(G; 2, 1) is the number of spanning
forests of G. A pair of interpretations especially relevant to the context of this paper are that t(G; 2, 0) is
the number of acyclic orientations ofG and that t(G; 1, 0) is the number of acyclic orientations ofGwith a
unique fixed source. With this in mind, it follows that t(Kn+1; 1, 0) = t(Kn; 2, 0) (in fact, the same is true
of any graphGwith a universal vertex). As for curves, the hyperbolaeHq = {(x, y) : (x−1)(y−1) = q}
play a significant role in the theory of the Tutte polynomial. In particular, for q ∈ N the Tutte polynomial
specializes on Hq to the partition function of the q-state Potts model.

In this paper we shall be concerned with evaluations of the Tutte polynomial at the points (1,−1) and
(2,−1). Merino (6) proved the following identity, which is the starting point for our work:

t(Kn+2; 1,−1) = t(Kn; 2,−1).

Non-trivial relationships between evaluations of the Tutte polynomial at points on different hyperbolae
are uncommon. Here, the point (2,−1) lies on the hyperbola H−2 and (1,−1) on the hyperbola H0.

We are interested in whether there are other graphs G with the property that t(G; 1,−1) = t(G −
{u, v}; 2,−1) for some pair of vertices u and v. Merino’s proof when G is a complete graph uses gener-
ating functions. It is not very difficult to adapt his proof to show the property holds for complete bipartite
graphs and for graphs that are the join of a clique and a coclique. (By a clique we mean a complete graph,
Kn, and by a coclique a graph with no edges, Kn; the join G + H of two graphs G and H is formed by
taking their disjoint union and adding an edge between each vertex of G and each vertex of H .) Our main
result (Theorem 1 below) generalizes these examples by giving sufficient conditions for a graph to have
this property; moreover, it describes graphs for which the property still holds when each vertex is replaced
by an arbitrary clique or coclique of twin vertices.

The rest of the paper is organized as follows. Section 2 is devoted to giving a bijective proof of Merino’s
theorem by using an interpretation of the Tutte polynomial given by Gessel and Sagan (2). After introduc-
ing the necessary notation, in Section 3 we state the main theorem and discuss its consequences. Section 4
is devoted to its proof, including some intermediate results. Finally, in Section 5 we give a formula for
t(G; 2,−1) when G is a complete bipartite graph, Kn,m, or a graph of the form Kn +Km.

2 Bijective proof
We start by giving a bijective proof of Merino’s identity

t(Kn+2; 1,−1) = t(Kn; 2,−1). (1)

To translate this identity into combinatorial terms, we use an interpretation of the Tutte polynomial
due to Gessel and Sagan (2). They express t(G; 1 + x, y) as a generating function of spanning forests
of G according to the number of connected components and an “external activity” ε(F ) (it is not the
usual external activity for trees as defined by Tutte). More concretely, let T (G) and F(G) be the set of
spanning trees and spanning forests of a graphG, respectively (assumeG is connected from now on). The
evaluations we are interested in are

t(G; 1, y) =
∑

T∈T (G)

yε(T ), t(G; 2, y) =
∑

F∈F(G)

yε(F ). (2)

Moreover, we want first to look at these expressions when G is a complete graph. We recall the facts
from (2) needed for this. Consider the usual order on [n] and root each tree in a forest in F(Kn) at its
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smallest vertex. We say that a vertex u precedes a vertex v if u and v are in the same component and u
lies on the unique path from the root to v. Then the external activity ε(F ) of a forest F is equal to the
number of inversions of F , where an inversion is a pair (u, v) such that u precedes v in F and v is smaller
than u. Therefore, t(Kn; 1, y) is the generating function for inversions in trees with n vertices (rooted at
1) and t(Kn; 2, y) is the generating function for inversions in forests with n vertices. Henceforth we use
the notation inv(F ) instead of ε(F ) for referring to the external activity of a spanning forest of Kn.

Remark. The fact that the Tutte polynomial of Kn at x = 1 is the inversion polynomial is well
known. Gessel and Wang (3) prove that the inversion polynomial is the generating function of connected
subgraphs of Kn counted by number of edges, and Beissinger (1) gives a bijection between trees counted
by numbers of inversions and by (Tutte’s) external activity. Kuznetsov, Pak and Postnikov (4) prove that
t(Kn; 1, y) is the inversion polynomial by showing they satisfy the same recurrence relation.

Let Tn denote the set of labelled trees on [n] rooted at 1, and similarly let Fn denote the set of labelled
forests on [n] where each component is rooted at its minimum vertex. Identity (1) can be then rephrased
as ∑

T∈Tn+2

(−1)inv(T ) =
∑
F∈Fn

(−1)inv(F ).

To prove this identity, we first cancel out some terms in the sums, so that all remaining terms are positive.
A forest F ∈ Fn is increasing if it has no inversions and it is even if all non-root vertices have an even
number of children.

Lemma 1 (i)
∑
T∈Tn

(−1)inv(T ) equals the number of even increasing trees in Tn.

(ii)
∑
F∈Fn

(−1)inv(F ) equals the number of even increasing forests of Fn.

Proof: The second statement follows directly from the first, which appears in (4). The proof given there
proceeds by showing that even increasing trees are counted by up-down (or alternating) permutations,
which in turn satisfy the same recurrence as the inversion polynomial evaluated at y = −1. Alternatively,
it is not very difficult to define an involution on trees that fixes even increasing trees and reverses the parity
of the number of inversions in the remaining trees (see the end of Section 3.3 of (4)). 2

To complete the proof of identity (1), we give a bijection between even increasing trees with n + 2
vertices and even increasing forests with n vertices. The core of the bijection is the following lemma,
whose easy proof is omitted.

Lemma 2 Let T be an even increasing tree and let u be any vertex of T . Then the forest F obtained from
T by removing all edges in the unique path from the root to u is even and increasing.

Now, given an even increasing tree T with n+ 2 vertices we construct an even increasing forest F with
n vertices. First, remove the edges of the path that goes from 1 to n + 2, resulting in an even increasing
forest with n+2 vertices. Now remove vertices 1 and n+2 (the latter being an isolated vertex), obtaining
an even increasing forest with n vertices labelled from 2 to n+ 1. Relabel them from 1 to n to obtain the
desired forest. See Figure 1 for an illustration of the process.

Conversely, we show how to recover T if F is given. First, increase all the labels by 1, so that they run
from 2 to n+ 1. Of the components of F , let T1, . . . , Tk be those where the root has even degree and let
U1, . . . , Ul be those with odd root-degree; let the roots of these components be r1, . . . , rk and s1, . . . , sl,
respectively, and assume also that s1 < s2 < · · · < sl. Construct T by adding vertices 1 and n + 2 and
edges {1, r1}, . . . , {1, rk}, {1, s1}, {s1, s2}, . . . , {sl, n+ 2}. It is clear that this procedure recovers T .
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Fig. 1: Obtaining an even increasing forest from an even increasing tree.

3 Statement of the main result
As mentioned before, it is not difficult to adapt Merino’s generating function proof to show that complete
bipartite graphs Kn,m and the graphs Kn + Km satisfy an identity analogous to (1). Since both these
graphs can be seen as a graphK2 where each vertex has been substituted by a clique or a coclique, it seems
natural to consider graphs constructed from a fixed graph by replacing vertices by cliques or cocliques.

Let N denote the set of non-negative integers. Given a connected graph G = (V,E), n ∈ NV and
c ∈ {0, 1}V , define G(c; n) to be the graph obtained from G by replacing each vertex k ∈ V by Knk

if ck = 1 or by Knk
if ck = 0; then, for each edge kl ∈ E join the (co)clique on nk vertices to the

(co)clique on nl vertices by adding an edge for each of the nknl pairs of vertices. For example,K1(1;n) =
Kn, K1(0;n) = Kn and K2((0, 0); (m,n)) = Km,n. Note that Kr((1, 1, . . . , 1); (n1, . . . , nr)) =
K1(1;n1 + · · ·+ nr) = Kn1+n2+···+nr

.
We are looking for parameters G, c with the property that for all n ∈ NV there exist vertices u, v of

G(c; n) such that t(G(c; n); 1,−1) = t(G(c,n)− {u, v}; 2,−1), where ni, nj ≥ 1 if u, v belong to the
(co)cliques at vertices i, j of G. In fact, we shall find i, j ∈ V such that for all n ∈ NV with ni, nj ≥ 1
we have

t(G(c; n); 1,−1) = t(G(c; n′); 2,−1) (3)

where n′ is obtained from n by subtracting 1 from the ith and jth components. In other words, the vertices
u, v of G(c; n) are taken from the fixed (co)cliques that replace the vertices i and j of G in making the
graph G(c; n).

Theorem 2 in Section 4 characterizes pairs (G, c) for which this holds. The following theorem rewrites
this characterization in terms of induced subgraphs. (See Figure 2 for an illustration of the statement.) For
a subset of vertices U ⊆ V , G[U ] denotes the subgraph of G induced by the vertices in U .

Theorem 1 Let G = (V,E) be a simple graph and i and j distinct vertices of G such that {i, j} is a
vertex cover of G. Let A = {v ∈ V \ {i, j} : vi ∈ E, vj 6∈ E}, B = {v ∈ V \ {i, j} : vi 6∈ E, vj ∈ E}
and C = {v ∈ V \ {i, j} : vi ∈ E, vj ∈ E}.

Then t(G; 1,−1) = t(G− {i, j}; 2,−1) if the following conditions hold:

(i) G[A] and G[B] are cocliques, and G[C ∪ {i, j}] is a clique (in particular, ij ∈ E);

(ii) there is no induced pair of disjoint edges 2P2 with endpoints in A ∪ B, nor an induced path of
length three P4 with both endpoints in A or both endpoints in B;
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Fig. 2: On the left, structure of the graph described in Theorem 1; A and B induce cocliques, and C ∪ {i, j} induces
a clique. On the right, the five forbidden induced subgraphs.

(iii) there is no induced path of length two P3 with one endpoint in A and the other in B, nor the
complement of such a path.

Furthermore, if G satisfies these conditions then so does any graph obtained from G by replacing a vertex
of A ∪B ∪ {i, j} by a coclique of twin vertices, or a vertex of C ∪ {i, j} by a clique of twin vertices.

Since K2 satisfies the conditions of the theorem (it is the simplest case A = B = C = ∅), we recover
complete graphs, complete bipartite graphs, and the join of a clique and a coclique. If we take G = K3,
we have A = B = ∅ and |C| = 1. This means that we cannot replace the three vertices of a K3 by
cocliques, but all the other possibilities are fine.

The case B = ∅ gives a much richer class of graphs, threshold graphs. These are the graphs for which
the vertices can be ordered so that each one is adjacent to either all or none of the previous ones. They are
also the graphs with no induced P4, C4 or 2P2. (See (5) for a wealth of characterizations and applications.)

Corollary 1 Let G be a threshold graph and let u and v be the first and the last vertex in an ordering as
above. Then t(G; 1,−1) = t(G− {u, v}; 2,−1).

It is by no means the case that all graphs G for which there exist two vertices {u, v} such that
t(G; 1,−1) = t(G − {u, v}; 2,−1) arise from Theorem 1. For instance, taking G to be a cycle of
length 6 and u, v two vertices at distance two in the cycle yields such a graph.

4 Proof of the main result
This section is devoted to proving Theorem 1. We begin by finding the generating function for the Tutte
polynomials of the familyG(c,n) and then we express the relationship between the evaluations at (1,−1)
and (2,−1) as a differential equation. The statement of Theorem 2 is read from the solutions of this
equation, and finally Theorem 1 is deduced.

Let us fix a connected graphGwith two distinguished vertices i, j and a {0, 1}-labelling of the vertices,
that is, c ∈ {0, 1}V . We look for conditions so that G(c; n) satisfies (3) for all n ∈ NV with ni, nj ≥ 1.

The following are well-known facts: t(K2;x, y) = x, t(K3;x, y) = x2 + x+ y, t(Kn;x, y) = 1, and
if G has blocks G1, . . . , Gk, then t(G;x, y) = t(G1;x, y) · · · t(Gk;x, y). From this it follows that every
vertex k ∈ V \{i, j} is adjacent to either i or j. Indeed, suppose k is not adjacent to either i or j, and
choose a neighbour l of k. Then it is easy to check that equation (3) does not hold if we take n to be zero
everywhere except ni = nj = nk = nl = 1. So from now on we assume that i and j together cover V .
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The proof relies on the use of generating functions. Let u = (uk : k ∈ V ) and define

T (x, y; u) =
∑

n∈NV

t(G(c; n);x, y)
un

n!
, un =

∏
k

unk

k , n! =
∏
k

nk!,

taking t(G(c,0);x, y) = t(∅;x, y) = 1. Equation (3) holds if and only if

∂2T (1,−1; u)
∂ui∂uj

= T (2,−1; u). (4)

The next lemma follows by a change of variables.

Lemma 3 Let G = (V,E) be a connected graph containing vertices i and j such that ki ∈ E or kj ∈ E
for every k ∈ V \ {i, j}. Define

S(z, w; u) =
∑

n∈NV

un

n!

∑
A⊆E(G(c;n))

z|A|wc(A).

Then
∂2T (x, y; u)
∂ui∂uj

=
1

x− 1

∂2S(y−1, (x−1)(y−1); u
y−1 )

∂ui∂uj
(5)

and
T (2, y; u) = S(y−1, y−1;

u
y−1

). (6)

As an induced subgraph of G(c; n) is of the form G(c; m) for some m, we deduce that S(z, w; u) =
eC(z;u)w, where C(z; u) is the exponential generating function (EGF) for connected spanning subgraphs
of {G(c; n) : n ∈ NV } (counted by number of edges). The term F (z; u) = eC(z;u) is the EGF for
spanning subgraphs of {G(c; n) : n ∈ NV } and it is given by

F (z; u) =
∑

n∈NV

(1 + z)q(n) u
n

n!
, with q(n) =

∑
kl∈E

nknl +
∑
k∈V

ck

(
nk
2

)
. (7)

Let f(u) = F (−2; u). By combining Lemma 3 and Equation (7), Equation (4) becomes

∂f(u)
∂ui

∂f(u)
∂uj

− f(u)
∂2f(u)
∂ui∂uj

= 2. (8)

Solving the differential equation (8) will put conditions on the quadratic form q(n) that translate to
structural conditions on the graph G and the clique/coclique parameter c that together specify the graph
G(c; n). This is Theorem 2 below.

We use I(P ) to denote the indicator function, equal to 1 when the statement P is true and 0 otherwise.

Theorem 2 A pair G and c satisfies equation (3) for all n if and only if the following conditions hold:

(i) ij ∈ E;
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(ii) for each k ∈ V \ {i, j}, I(ki ∈ E) + I(kj ∈ E) = ck + 1;

(iii) for all U ⊆ V \ {j}, either j has odd degree in G[U ∪{j}] or there is a vertex k ∈ U whose degree
in the induced subgraph G[U ] has the same parity as ck.

Proof: We have already observed that each k ∈ V \ {i, j} must be adjacent to at least one of i and j. We
now wish to find all f that solve equation (8). We differentiate the expression for f(u) in terms of q(n),
obtaining

∂f(u)
∂ui

=
∑

n∈NV

(−1)q(n)+∆iq(n) u
n

n!
,

∂2f(u)
∂ui∂uj

=
∑

n∈NV

(−1)q(n)+∆i,jq(n) u
n

n!
,

where ∆iq(n) = q(. . . , ni+1, . . .) − q(. . . , ni, . . .) and ∆i,jq(n) = q(. . . , ni+1, . . . , nj +1, . . .) −
q(. . . , ni, . . . , nj , . . .).

Multiplying power series we find that

∂f(u)
∂ui

∂f(u)
∂uj

− f(u)
∂2f(u)
∂ui∂uj

=

∑
n∈NV

un

n!

∑
m≤n

(−1)q(m)+q(n−m)
(

(−1)∆iq(m)+∆jq(n−m) − (−1)∆i,jq(m)
)∏

k

(
nk
mk

)
. (9)

(Here we write m ≤ n to mean mk ≤ nk for each k ∈ V .)
After some manipulation, we find that the relative parity of ∆iq(m) + ∆jq(n −m) and ∆i,jq(m) is

given by
∆iq(m) + ∆jq(n−m) + ∆i,jq(m) ≡

∑
k∼j

nk + I(i ∼ j) (mod 2), (10)

where two vertices a, b satisfy a ∼ b either if ab ∈ E or if a = b and ca = 1. If the right-hand side of
equation (10) is zero then the coefficient of un in equation (9) is equal to zero. Since the constant term
(n = 0) should be equal to 2 we must have i ∼ j. Therefore, we need to focus only on the coefficients of
un where

∑
k∼j nk ≡ 0 (mod 2), which are the ones we still do not know are equal to zero. For them

we find the expression

1
n!

[un]
(
∂f(u)
∂ui

∂f(u)
∂uj

− f(u)
∂2f(u)
∂ui∂uj

)
= 2

∑
m≤n

(−1)q(m)+q(n−m)+∆i,jq(m)
∏
k

(
nk
mk

)
.

So we wish to find necessary and sufficient conditions for this coefficient of 1
n!u

n to equal zero for all
n 6= 0 subject to

∑
k∼j nj ≡ 0 (mod 2) and i ∼ j. After some easy manipulation, we find that the

coefficient we are interested in can be rewritten as:

0 =
∑
m≤n

(−1)
P

k mk

P
l∼k[nl+I(l=i)+I(l=j)+I(l=k)]

∏
k

(
nk
mk

)

=
∏
k

∑
mk≤nk

(−1)[
P

l∼k nl+I(i∼k)+I(j∼k)+I(k∼k)]mk

(
nk
mk

)
=

∏
k

[
1 + (−1)

P
l∼k nl+I(i∼k)+I(j∼k)+I(k∼k)

]nk

. (11)
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By taking each nk to be even, for the expression (11) to be zero it is necessary that, for each k ∈ V ,

I(i ∼ k) + I(j ∼ k) + I(k ∼ k) ≡ 1 (mod 2). (12)

Thus if ck = 1 in G(c; n) (a clique) the vertex k must be adjacent to both i and j, whereas if ck = 0
(a coclique) then the vertex k must be adjacent to exactly one of i, j. Since by assumption i ∼ j and∑
l∼j nl ≡ 0 (mod 2) we can assume nj = 0, otherwise we have a zero factor and we are done.
Since expression (11) depends only on the parity of each nk, it is enough to look at nk ∈ {0, 1}. In

terms of the graph G, this is to say we may assume each vertex k is either deleted or is present as a single
vertex; if this graph satisfies the required conditions then so does G(c; n) for all n ∈ NV .

Define U ⊆ V \ {j} by U = {k ∈ V : nk 6= 0}. Since we assume
∑
k∼j nk ≡ 0 (mod 2) we restrict

attention to U such that the induced subgraph G[U ] of G has the property that the number of vertices
k ∈ U such that kj ∈ E is even. A necessary and sufficient condition that expression (11) is zero (under
the assumption that i ∼ j, nj = 0 and

∑
k∼j nk ≡ 0 (mod 2)) is that for any such choice of U there is a

vertex k of G[U ] of odd degree if k ∼ k or of even degree if k 6∼ k (i.e., there is a vertex k of degree the
same parity as ck in the induced subgraph on U ). 2

From this theorem we wish now to deduce the induced subgraph characterization of Theorem 1. First
we need to give some properties of the pairs (G, c) that satisfy the conditions of Theorem 2. Condition
(ii) implies that the following sets partition V \ {i, j} (recall Figure 2):

A = {k ∈ V \ {i, j} : ki ∈ E, ck = 0},
B = {k ∈ V \ {i, j} : kj ∈ E, ck = 0},
C = {k ∈ V \ {i, j} : ki, kj ∈ E, ck = 1}.

The next lemma is equivalent to saying that the values of ci and cj can be chosen freely.

Lemma 4 If G = (V,E), i, j ∈ V and c ∈ {0, 1}V satisfy the conditions of Theorem 2, then so do G
and c′ where c′ is c with ci replaced by 1− ci or with cj replaced by 1− cj (or both).

Proof: The conditions of Theorem 2 are clearly independent of the value of cj . To see they do not
depend on the value of ci either, suppose on the contrary that there is an induced subgraph G[U ] with
i ∈ U ⊆ V \ {j} such that j has even degree in G[U ∪ {j}] and where vertex i is the only one in G[U ]
with degree congruent to ci (mod 2), as required by condition (iii) of Theorem 2.

Suppose first that ci = 0 and set A′ = A∩U , B′ = B∩U and C ′ = C ∩U . The degree of i in G[U ] is
|A′|+ |C ′| and the degree of j in G[U ∪{j}] is 1 + |B′|+ |C ′|; since both degrees are even, we conclude
that |A′| + |B′| is odd. Since the vertices in A′ ∪ B′ are by assumption the ones that have odd degree in
G[U ], we reach a contradiction because no graph has an odd number of vertices of odd degree.

The case ci = 1 is treated by an analogous parity argument. 2

Corollary 2 The induced subgraphs G[A] and G[B] are cocliques and the induced subgraph G[C ∪
{i, j}] is a clique.

Lemma 4 and Corollary 2 imply that condition (iii) of Theorem 2 is satisfied if and only if:

(?) for all U ⊆ V \ {i, j} such that |U ∩ (B ∪ C)| is even, the induced subgraph G[U ]
contains either a vertex in A ∪B of even degree or a vertex in C of odd degree.
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Proof of Theorem 1. We prove that if G contains none of the five induced subgraphs described in the
statement of Theorem 1 (and depicted in Figure 2), then condition (?) holds.

Suppose for a contradiction that there is U ⊆ V \{i, j} that contains none of the five induced subgraphs
and for which condition (?) fails, that is, |U∩(B∪C)| is even, all vertices in U∩(A∪B) have odd degree
and all vertices in U ∩C have even degree. We lose no generality by assuming that U ∩A = A,U ∩B =
B,U ∩ C = C. For any vertex x ∈ U , let Ax (respectively, Bx, Cx) be its set of neighbours in A (resp.,
in B, C). The following two claims hold because otherwise we could find one of the forbidden induced
subgraphs.

Claim 1. Let D be one of A,B, or C and let E be one of {A,B,C} \ {D}. If x, y ∈ D, then Ex and
Ey are comparable sets.

Claim 2. If x is a vertex in C, then Ax ∪Bx induces a complete bipartite graph.

Claim 1 with D = C and E = A implies that there is a vertex a0 ∈ A adjacent to all vertices of C that
have at least one neighbour in A.

Now letB′ ⊆ B be the set of those vertices that are not adjacent to any vertex of C. IfB′ is non-empty,
each of its vertices must be adjacent to at least one vertex in A, because vertices in B have odd degree.
Suppose b ∈ B′ is adjacent to a ∈ A. If a is not adjacent to every vertex in C, then we find the fifth
graph in Figure 2 as an induced subgraph, therefore a must be adjacent to all vertices in C. Now, since
the neighbourhoods of vertices of B in A are nested (Claim 1), we conclude that there is some vertex in
A adjacent to all vertices in B and hence to all vertices in C. But that makes this vertex have degree equal
to |B ∪ C|, which is even and hence contradicts our assumption. Therefore, B′ must be empty.

Hence, every vertex in B (if any) must be adjacent to at least one vertex in C. By Claim 1 again, there
is a vertex in C adjacent to all vertices in B. Any vertex with this property must be adjacent to some
vertex in A, and hence to a0 as well (otherwise it would have degree |B|+ |C| − 1, which is odd). Also,
a0 is adjacent to all vertices of B by Claim 2. Now, let C ′ be the vertices in C that are not adjacent to a0.
Since a0 has odd degree and |B∪C| is even, |C ′| is odd. Now, any c′ ∈ C ′ cannot be adjacent to all of B,
because we just showed that in this case it would be adjacent to a0 as well. But then, if c′ is not adjacent
to, say, b′ ∈ B, then the edge a0b

′ and vertex c′ form one of the forbidden induced subgraphs.

Therefore, we are forced to haveB = ∅. Then either there is a vertex in C not adjacent to a0, and hence
to no vertex in A, or a0 is adjacent to every vertex in C. But in the former case there is a vertex in C of
odd degree and in the latter case a0 has even degree. 2

5 Evaluating t(Kn,m; 2,−1) and t(Kn + Km; 2,−1)

As mentioned in the proof of Lemma 1, it is known that t(Kn; 2,−1) is the number of up-down permu-
tations of [n + 1]. The corresponding exponential generating function is sec(t)(tan(t) + sec(t)) (recall
that the EGF for up-down permutations is tan(t) + sec(t)). In this section we focus on the evaluations
t(Kn,m; 2,−1) and t(Kn +Km; 2,−1).

Let B(u, v) be the bivariate EGF for t(Km,n; 2,−1). Here are the first few values of t(Km,n; 2,−1)
for 1 ≤ m ≤ n. (That the first column is given by 2n and the second by (3n+1 − 1)/2 is easy to prove
from the definition and properties of the Tutte polynomial.)
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n\m 1 2 3 4 5 6
1 2
2 4 13
3 8 40 176
4 16 121 736 4081
5 32 364 3008 21616 144512
6 64 1093 12160 111721 927424 7256173

By Lemma 3 and Equations (6) and (7)

B(u, v) = F (−2;−u/2,−v/2)−2 =

 ∑
m,n≥0

(−1)mn
um

(−2)mm!
vn

(−2)nn!

−2

.

Since the EGF for (−1)nm is eu cosh(v) + e−u sinh(v), using some hyperbolic function identities, we
obtain B(u, v) = (cosh(u) cosh(v)− sinh(u)− sinh(v))−1.

We would like to extract from B(u, v) the coefficient of umvn. Let Dm denote the operation of taking
the derivative m times with respect to u. Then

Dm(B(u, v))
∣∣
u=0

=
∑
n≥0

t(Km,n; 2,−1)
vn

n!
.

Let g = cosh(u) cosh(v) − sinh(u) − sinh(v). Applying the rule for the derivative of a product to the
equality Dm(g · g−1) = 0 we obtain the following recursion

gDm(g−1) = −
m−1∑
k=0

(
m

k

)
Dm−k(g)Dk(g−1).

It is easy to show by induction that, for i ≥ 1, D2i(g) = cosh(u) cosh(v) − sinh(u) and D2i−1(g) =
sinh(u) cosh(v)− cosh(u). Evaluating at u = 0 and using the above recurrence, we arrive at

Dm(g−1)
∣∣
u=0

= −ev
(
m−1∑
k=0

(
m

k

)
Dk(g−1)

∣∣
u=0

(
δ0
k,m cosh(v)− δ1

k,m

))
,

where δ0
k,m (respectively, δ1

k,m) is equal to 1 if m and k have the same parity (resp., different parity), and
zero otherwise.

Writing bm for Dm(g−1)
∣∣
u=0

, we have

bm =
m−1∑
k=0

(
m

k

)
bk

(
evδ1

k,m −
1
2

(1 + e2v)δ0
k,m

)
.

Since b0 = ev , it follows that bk is a linear combination of exponentials elv, the first ones being

ev, e2v,
1
2

(3e3v − ev), 1
2

(6e4v − 4e2v),
1
2

(2ev − 15e3v + 15e5v).
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Let bm,j be the coefficient of ejv in bm, so that t(Km,n; 2,−1) =
∑m+1
j=1 bm,jj

n. The bm,j satisfy the
recurrence

bm,j =
m−1∑
k=0

(
m

k

)(
bk,j−1δ

1
k,m −

1
2

(bk,j + bk,j−2)δ0
k,m

)
. (13)

The first values of bm,j are given in the table below. From them one guesses the Pascal-like recurrence
stated in Theorem 3, which can be proved by induction.

m\j 1 2 3 4 5 6 7 8
0 1
1 0 1
2 - 1

2 0 3
2

3 0 -2 0 3
4 1 0 - 15

2 0 15
2

5 0 17
2 0 -30 0 45

2
6 - 17

4 0 231
4 0 - 525

4 0 315
4

7 0 -62 0 378 0 -630 0 315

Theorem 3 For m ≥ 0, t(Km,n; 2,−1) =
∑m+1
j=1 bm,jj

n, where bm,j is given by

b0,1 = 1, bm,0 = 0, bm,m+1 = 0, bm,j =
j

2
(bm−1,j−1 − bm−1,j+1) for 1 ≤ j ≤ m.

In particular, bm,j = 0 if m and j are of the same parity.

The generating function for the numbers bm,j is related to that of up-down permutations, as we now
explain. Let Bj(u) =

∑
m≥0 bm,j

um

m! . From the expression we have for B(u, v), we obtain

B1(u) =
2

1 + cosh(u)
.

The recurrence for the bm,j in Theorem 3 gives

Bj+1(u) = Bj−1(u)− 2
j
B′j(u).

Finally, solving this equation yields

Bj(u) = 2(tanhj(
u

2
))′.

Recall that tan(x) is the EGF of up-down permutations of [n] for odd n (odd up-down permutations).
Then tanh(x) is the EGF for signed odd up-down permutations, where the sign depends only on n and is
given by (−1)(n−1)/2. So tanh(x)j is, up to signs, the EGF for permutations that can be decomposed as
a sequence of j odd up-down permutations.

For instance, consider b3,2. There is one odd up-down permutation of [1] and two odd up-down permu-
tations of [3]. There are thus 16 permutations of [4] that can be split as a sequence of two odd up-down
permutations. Then the coefficient of u3 in 2(tanh2(u/2))′ is 2 · 16/(3! · 24) = 2/3!, which agrees with
|b3,2| = 2.
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We can take similar steps to evaluate t(Km+Kn; 2,−1) and obtain the following unexpected relation-
ship.

Theorem 4 For m ≥ 0, t(Km +Kn; 2,−1) =
∑m+1
j=1 cm,jj

n, where cm,j = bm,j(−1)(m−j−1)/2.

The EGF for the sequence {cm,j}m follows immediately from the one for {bm,j}m:∑
m≥0

cm,j
um

m!
= (tan(u)j)′.

Let us conclude with the open problem of proving the identity t(Kn+1,m+1; 1,−1) = t(Kn,m; 2,−1)
bijectively. The interpretation of Gessel and Sagan (2) of the Tutte polynomial allows us again to recast
this identity into combinatorial terms. We take [n] ∪ [m]′ = [n] ∪ {1′, 2′, . . . ,m′} as the vertex set of
Kn,m. We call the vertices in [n] black and the ones in [m]′ white. Black vertices among themselves are
ordered by the usual order; the same applies to white vertices. A black vertex is smaller than a white one.
A white inversion (respectively, black inversion) is an inversion where the two vertices involved are white
(resp., black). Their union is the set of monochromatic inversions of F and its cardinality is binv(F ).

Let Tn,m be the set of spanning trees of Kn,m and let Fn,m be the set of spanning forests of Kn,m,
with all trees rooted at its smallest element. A forest in Fn,m is χ-increasing if it has no monochromatic
inversions, and it is bi-even if each non-root vertex has an even number of grandchildren (descendants at
distance two). Then the identity t(Kn+1,m+1; 1,−1) = t(Kn,m; 2,−1) is equivalent to the equality of
the numbers of bi-even χ-increasing trees of Tn+1,m+1 and of bi-even χ-increasing forests of Fn,m.

Problem 1 Find a bijection between bi-even χ-increasing trees of Tn+1,m+1 and bi-even χ-increasing
forests of Fn,m.
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