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The pentagram map and Y -patterns

Max Glick!

Department of Mathematics, University of Michigan, AnnaxriMi, USA

Abstract. The pentagram map, introduced by R. Schwartz, is definedébfottowing construction: given a polygon
as input, draw all of its “shortest” diagonals, and outpw #maller polygon which they cut out. We employ the
machinery of cluster algebras to obtain explicit formulasthe iterates of the pentagram map.

Résure. L'application pentagramme de R. Schwartz est définie paofstruction suivante: on trace les diagonales

“les plus courtes” d’un polygone donné en entrée et onurei® en sortie le plus petit polygone que ces diagonales
découpent. Nous employons la machinerie des algébrestérk” pour obtenir des formules explicites pour les

itérations de I'application pentagramme.

Keywords: pentagram map, cluster algebk&pattern, alternating sign matrix

1 Introduction and main formula

The pentagram map, introduced by Richard Schwartz, is a gg@ntonstruction which produces one
polygon from another. Figure 1 gives an example of this apmmaSchwartz [8] uses a collection of cross
ratio coordinates to study various properties of the pematagnap. In this paper, we work with a related
set of quantities, which we term theparameters. A polygon can be reconstructed (up to a pregect
transformation) from itg-parameters together with one additional quantity. Theoguantity transforms
in a very simple manner under the pentagram map, so we foctiseaprparameters. Specifically, we
derive a formula for the-parameters of a polygon resulting from repeated appboatof the pentagram
map.

We show that the transition equations of fiparameters under the pentagram map coincide with mu-
tations in theY -pattern associated to a certain cluster algebra. We expigi connection to prove our
formulas for the iterates of the pentagram map. These famdépend on thé&-polynomials of the
corresponding cluster algebra, which in general are defieedrsively. In this instance, a non-recursive
description of these polynomials can be found. Specificéllg F-polynomials are generating func-
tions for the order ideals of a certain sequence of partiatered sets. These posets were originally
defined by N. Elkies, G. Kuperberg, M. Larsen, and J. Propp [fJs clear from this description of
the F-polynomials that they have positive coefficients, verifythat the Laurent positivity conjecture of
S. Fomin and A. Zelevinsky [2] holds in this case.
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1365-80500) 2011 Discrete Mathematics and Theoretical Computer Seié@MTCS), Nancy, France
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Fig. 1: The pentagram map

This paper is organized as follows. In the remainder of tatisn we state our main result, the formula
for the y-parameters of the iterated pentagram map. This formuladgem in the subsequent sections.
Section 2 gives the transition equations of aparameters under a single application of the pentagram
map. In Section 3, we explain the connectiortgpatterns. This connection is used in Section 4 to derive
our main formula in terms of th&'-polynomials. Section 4 also provides an analogous forrexgaessed
in the original coordinate system used by Schwartz. Se&ioaontains the proof of the formula for the
F-polynomials in terms of order ideals. Lastly, Section 6 lagathe results of this paper to axis-aligned
polygons, expanding on a result of Schwartz. Detailed gobhll statements given in this paper can be
found in the full version [4].

Schwartz [8] studies the pentagram map on a class of objeli¢si¢wisted polygons. Awisted polygon
is a sequencd = (4;);ez of points in the projective plane that is periodic modulo squmojective trans-
formationg, i.e., A, 1, = ¢(A4;) for all < € Z. Two twisted polygonsi and B are said to b@rojectively
equivalentf there exists a projective transformatignsuch that)(A;) = B; for all i. Let P,, denote the
space of twistea-gons modulo projective equivalence.

The pentagram mapdenoted!’, inputs a twisted polygonl and constructs a new twisted polygon
T(A) given by the following sequence of points:

o A AL N Ay Ay, Ag Ay N AL As, Ay Ay N AgAy, . ..

(we denote byTB the line passing through and B). Note that this operation is only defined for generic
twisted polygons. The pentagram map preserves projeagiu&a&ence, so it is well defined for generic
points ofP,,.

If A € P, then the vertices oB = T'(A) naturally correspond to edges 4f To reflect this, we use
% +7Z=4{...,-0.5,0.5,1.5,2.5...} to label the vertices oB. Specifically, we let

Bi=A; sAi 1 NA_ 14,5

foralli € (1 +Z). This indexing scheme is illustrated in Figure 2. Similaifly3 is a sequence of points
indexed by% + Z thenT'(B) is defined in the same way and is indexedzy et P;; denote the space of
twistedn-gons indexed b)% -+ Z, modulo projective equivalence.

Thecross ratioof 4 real numbers, b, ¢, d is defined to be

(a —b)(c—d)

N O
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Fig. 2: The pentagorB = T'(A) is indexed bys + Z.

Ag+s
Akt y
k2
Apt1 i
k1
Ay A
Ag_2 Ak_1 °
Ap_2 Ap_1 B

Fig. 3: The cross ratios corresponding to tiiarameters. On the left; (21 (A)) ™! is the cross ratio of the 4 lines
throughAy. On the rightyak+1(A) = —x(B, Ak, Ak+1,C).

Define similarly the cross ratio of 4 collinear points in tHane, or dually, 4 lines which pass through a
common point.

Definition 1.1 Let A be a twisted polygon indexed either Byor % + Z. They-parametersf A are the
real numbersy; (A) for j € Z defined as follows. For each ind&of A let

-1

yor(A) = = (}(ArAr—z, ApAr—t, DA, ArAers) ) (1)
> — >

Yorr1(A) = —x(Ap—24k—1 N L, Ag, A1, Ap2Ap+3 N L) (1.2)

—>
wherel = ApAgy1.

Note that the 4 lines in (1.1) all pass through the paipt and the 4 points in (1.2) all lie on the lirle
Therefore the cross ratios are defined. These cross ragdlestrated in Figure 3.



402 Max Glick

As will be demonstrated, eaghparameter of'(A) can be expressed as a rational function ofghe
parameters ofi. It follows that each iterate ¢f corresponds to a rational map of thgarameters. Our
formulas for these maps involve thé-polynomials of a particular cluster algebra. These camin be
expressed in terms of certain posets which we define now.

The original definition of the posets, given by Elkies, Kupeng, Larsen, and Propp [1], involves height
functions of domino tilings. For our purposes, the follog/iself-contained definition will suffice. L&)y
be the set of triple$r, s, t) € Z* such that

2ls| —(k—2) <t <k—2-2|r
and
2ls|]—(k—=2)=t=k—2—-2|r|] (mod 4)

Let P, = Qk+1 U Q. The partial order orP; is defined by saying thdt’, s, ') covers(r, s, t) if and
onlyif ¢/ = ¢+ 1and|r’ —r|+|s’ — s| = 1. We denote by/(P;) the set oforder idealsin Py, i.e.,
subsetd C P, such thatr € I andy < z impliesy € I. The partial order orP; restricts to a partial
order on@). The Hasse diagram fd?, is given in Figure 7(a).

Theorem 1.2 Let A € P, and lety; = y;(A) forall j € Z. If k > 1 then they-parameters of *( A)

are given by
k
Fi_1 i F;
H Yj+3i M, j+ keven
k " FiskFjt3k
y; (T"(A)) = - (1.3)
- Fi_gp-1Fjysp-1
H Yiisi FJ Y P j + k odd
kg1 J-1k—1L541,k—1
where

Fir = Z H Y3r+s+j (1.4)

I€J(Py) (r,s,t)ET
A sample computation af} ;, using (1.4) is given at the end of Section 5.
Throughout this paper, we adopt the convention {4t z; = 1 and[]’_, z; = Hj:_blﬂ(l/zi) for
b < a—1. This will frequently allow a single formula to encompassavhtherwise would require several
cases. With this convention, the propeflly_, z; [T5_, ., 2 = [I;_, z: holds for alla, b, ¢ € Z.
Acknowledgments.| thank Sergey Fomin for suggesting this problem and prowjdialuable guidance
throughout.

2 The transition equations

Let A be a twistedr-gon. Since the cross ratio is invariant under projectie@sformations, it follows
thaty;2n(A) = y;(A) for all 5. In this section, we show that eaglparameter off’(A) is a rational
function ofy; (4), . . ., y2,(A). The proof of this fact makes use of the cross ratio coordmat, . . . , x2,
introduced by Schwartz [8].

For each indeX of A let

xop(A) = X(Ak—2, Ak—1, Ak App1 N Ap—2Ap—1, App1App2 N Ap_2A5_1)
Tor+1(A) = X(Akr2, Arr1, A Ak—1 N Apy2 A1, Ap—1Ak—2 N Apy2Ag11)
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This definition makes sense as all 4 points in the first cro$s lia on the lineA;_» A;_1 and those in
>
the second all lie on the lind; 2 Ay1. As with they;, we have that the; are periodic mo@n.

Proposition 2.1 ([8]) The functionsty, ..., z2, are (generically) a set of coordinates of the spage
and of the spac®;:.

As observed by V. Ovsienko, R. Schwartz, and S. Tabachnikg§]j the products:;z;,; are them-
selves cross ratios. In fact;x ;41 equals the cross ratios used in (1.1)—(1.2) to defineTherefore

yj = —(zjzi00) 7" (2.1)
if j/2is an index ofA and
Yy = —(zz41) (2.2)

otherwise. It follows thay; y2ys - - - y2,, = 1 for any twisted polygon, so thg-parameters do not give a
complete set of coordinates @,. However, thej-parameters of'(A) can be expressed in terms of the
y-parameters ofl as follows.

Proposition 2.2 Let(y1, . . ., y2,) be they-parameters ofd. If A is indexed by, +7 theny; (T'(4)) = Y;

where
/ {yj—3yjyj+3 (1+yj73)(1+yj+3)7 J even 23)

SR Py j odd

If Aisindexed byZ theny;(T'(A)) = y; where

—1 .
" vt j even
Yy, = 14y;_1)(14y; . (2-4)
’ {yj—3yjyj+3§1+Z§SEHZZS’ odd

Let o be the rational magyi, ..., y2,) — (¥1,--.,y5,) defined by (2.3). Similarly, let; be the ra-
tional map(y1, ..., yan) — (v, ..., y%,) defined by (2.4). Proposition 2.2 implies that thearameters
transform under the map” according to the rational map. o a; o a o a; o ap (the composition o
functions), assuming the initial polygon is indexed by g&es.

3 The associated Y -pattern

The equations (2.3)—(2.4) can be viewed as transition ensbf a certairt”-pattern.Y -patterns repre-
sent a part of cluster algebra dynamics; they were introdibge=omin and Zelevinsky [3]. A simplified
(but sufficient for our current purposes) version of thevatg definitions is given below.

Definition 3.1 AY-seed is a paiy, B) wherey = (y1, - .., yn) is ann-tuple of quantities and® is an
n x n skew-symmetric, integer matrix. The integds called therankof the seed. Given ¥-seed(y, B)
and somé: = 1, ..., n, theseed mutatiop, in directionk results in a new -seeduy(y, B) = (y', B’)
where

J = vt i=k
] T by i b, .
T g (), AR
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Fig. 4: Some quiver mutations

and B’ is the matrix with entries

;o bij, i=korj==k
Y bij + sgn(bir) [birbr;]+, otherwise

In these formulagz] ;- is shorthand fommax(x, 0).

The data of the exchange matiikcan alternately be represented bguaver. This is a directed graph
onvertex se{1,...,n}. Foreach andj, there ardb, ;| arcs connecting vertexand vertexj. Each such
arc is oriented fromi to j if b;; > 0 and fromj to 4 if b;; < 0. In terms of quivers, the mutatiom,
consists of the following three steps

1. For every length 2 path— k — 5, add an arc fromi to ;.
2. Reverse the orientation of all arcs incidenkto
3. Remove all oriented 2-cycles.

Figure 4 illustrates a sequence of quiver mutations. Noaé¢ iththis example the mutated quiver is
the same as the initial one except that all of the arrows haea beversed. The is an instance of a more
general phenomenon described by the following lemma.

Lemma 3.2 Suppose thaty, B) is aY -seed of rankn such thath;; = 0 whenevet, j have the same
parity. Assume also that for alland j the number of length 2 paths in the quiver fréito j equals the
number of length 2 paths frornto i. Then theu; for i odd pairwise commute as do theg for i even.

Moreover, g, 1 0+ o ugo ui(y, B) = (y',—B) anduay, o - - - o g o us(y, B) = (y”, —B) where

biej] T
/ Yj Hk y[ M (14 yg) bk, jeven a1
Yi = . (3.1)

y_] 9 ] Odd

—1 .
" Y; J even

Yi = . (3.2)

! {y; T o™ (1 4+ ye) =", odd
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Fig. 5: The quiver associated with the exchange maBixfor n = 8

Let pevenbe the compound mutatiQruyen = fi2n © - - . 0 fig © po @nd letuegg = fton—1 0 ... 0 f13 © Li7.
Equations (2.3)—(2.4) and (3.1)—(3.2) suggest thaandas are instances Qioqq andjieven respectively.
Indeed, letBy be the matrix with entries

(-1), i—j=41 (mod 2n)
by =14 (—1)7*, i—j==£3 (mod 2n)
0, otherwise

The corresponding quiver in the case= 8 is shown in Figure 5.

Proposition 3.3 pievedy, Bo) = (a2(y), —Bo) and peqd(y, —Bo) = (a1 (y), Bo)-

4 The formula for an iterate of the pentagram map

Let A be a twistedr-gon indexed byZ, and lety = (y1,...,y2,) be itsy-parameters. Fok > 0 let
Vi = (Y1.k, - - -, Y2n.k) b€ they-parameters ol (A). In other wordsy =y, y2m+1 = az2(y2m), and
Yom = a1(y2m—1). The results of the previous section show thatyheare related by seed mutations:

Heven Hodd Heven

(YOyBO) — (Y1, *Bo) —_— (YQaBO) even, (YQ,, 7BO) Hodd

Note that eacly; ;, is a rational function oy, . . ., y2,,. In the language of cluster algebras, this rational
function is denoted’; ,, € Q(y1,...,¥y2,). By (3.1) and (3.2) we have that , = 1/Y; ,_1 forj + &
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odd, so it suffices to compute thé ;. for j + k even. Proposition 3.13 of [3], specialized to the present
context, says that if + k is even ther; ;. can be written in the form

Fi 161k

Yin = M;,
Js 7y
Fi_siljisk

(4.1)
Here, M ; is a Laurent monomial iy, . . ., y2, and theF; . are certain polynomials over, . . ., yon.
A description of these component pieces follows.

The monomiall/; ;, is given by the evaluation of the rational expressidhs in the tropical semifield
P =Trop(yi,...,y2n). Thisis carried out as follows. First of alt; ;, is expressed in such a manner that
no minus signs appear (that this is possible is clear fronsitimn equations of th¥-pattern.) Next, each

plus sign is replaced by the auxiliary additiersymbol. This is a binary operation on Laurent monomials
defined by[ [, v & [[, v;* = iy;nm(“““i). Finally, this operation together with multiplication and

division of monomials is used to compute a result. As an exanyy (2.4) we know

(A +y2)(d +y4)

=
33,1 y0y3y6(1+yo)(1+y6)
SO
(T+y2)(1 +ya) (1@ y2)(1®ya)
M3, = A TIRAC T I UWY)\ LWy
3,1 909396(1+y0)(1+y6) ) y0y3y6(1@y0)(1@y6) YoY3¥Ye

Proposition 4.1

k
Mk =[] vissi (4.2)
—

for j + k even.

The F; i, for j 4 k odd are defined recursively as follows. H4t_; = 1 for j even,F; , = 1 for j odd,

and
Fi_swFiys e + MjnFj—1 6 Fj1k

(1® Mj k) Fjr—1

for j + k even andc > 0. Recall,M; ;, = Hf}k y;+3:; SO the formula simplifies to

Fipy1 =

k
Fis i Fjysn + (TL=_p vj+si) Fj—1 6 Fjt1,k

7. _ 4.3
- e 43
For exampleF} 1 = 1+ y; and

Fio=(1+yj-3)1+yj+3) + yj-3y;¥j+3(1 + yj-1)(1 + yj+1) (4.4)

Although it is not clear from this definition, the} ;, are indeed polynomials. This is a consequence of
general cluster algebra theory.

Equations (4.1)—(4.2) and the fact thgt, = 1/Y; 1 for j + k£ odd combine to prove that the
formula given in Theorem 1.2 is of the right form. What rensais to prove (1.4), which expresses the
F-polynomials in terms of order ideals. This proof will be lgd in the next section. Before moving
on, we point out that Theorem 1.2 can be used to prove an amaddgrmula for ther-coordinates of
Tk(A).
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Theorem 4.2 LetA € P,,, z; = z;(A), andy; = y;(A). Thenz; , = z;(T*(A)) is given by

k—1 r r

j+2,k—1L5-3k .

Tj—3k Yjriesi | =——————>—, J+keven
(Zl__[k ) Fj_ok-1Fj11’

Tjk = E—1 (4.5)
Tjt3k H Yj+1+3i Fimsko1byran j + k odd
J+ L J+1+3% Fj+1_’k71Fj727k,

It will be convenientin the following section to defidd; , andF} ;, for all j, k (as opposed to just for
j + k even or, respectively, odd). This is done by asserting th&) @nd (4.3) hold for alf, k.

5 Computation of the F'-polynomials

This section proves the formula for thi&polynomials given in (1.4).
Define Laurent monomials:; ; . for k > —1 recursively as follows. Let

J—1 1
mi,j,0 = H H Y3itj—al+6m—1 (5.1)

=0 m=0
andm, ; 1 = 1/m; ;o foralli,j € Z. Fork > 1, put

MG—1,5,k—1Mi41,5,k—1
miyj_,k = (52)

ms 5,k—2

Note that in (5.1), ifj < 0 the conventions for products mentioned in the introductom needed.
Applying these conventions and simplifying yields _ o = m, 0,0 = 1 and

-2 —1
M4 j,0 = H H Y3itj—al+6m—1
l=j m=l+1

for j < —2. A portion of the arrayn; ;¢ is given in Figure 6.

Proposition 5.1 Let fi,j,k = mi,j7kF3i+j7k for all 1,7, kwithk > —1. Then

fi,j,kflfi,j,k+1 = fifl,j,kfi+1,j,k + fi,jfl,kfi,jJrl,k (53)
for all 4, j, k with k£ > 0.

The difference equation (5.3) is known as the octahedrouarrence. Applied recursively, it can be
used to expresg o = Fo , as a rational function of the; ; o = m; ;o and thef, ; _1 = 1/m; ;0.
D. Robbins and H. Rumsey proved [6] that this rational furtis in fact a Laurent polynomial whose
terms are indexed by pairs of alternating sign matriceserAféviewing the necessary terminology, we
will apply this result to write a formula fofy .

An alternating sign matrixs a square matrix of 1's, 0's, and -1's such that

o the non-zero entries of each row and column alternate inasigh
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(j=2) Y-6Y—2Y0  Y-3Y1¥s  YoYa¥e

(=1 Yy-3 Yo Y3

(j=0) 1 1 1
(j=-1) 1 1 1
(j=-2) Y—a Y-1 Y2
(j=-3)

Y-1Yy-sY-1 Y-aYy-2y2 Y-1Y1Ys

Fig. 6: The monomialsn; ;o

e the sum of the entries of each row and columnis 1.

Let ASM (k) denote the set of by k alternating sign matrices.

A bijection is given by Elkies, Kuperberg, Larsen, and Prapfil] betweenASM (k) and the set of
order ideals of), whereQ)y, is the poset defined in Section 1. Call order ideals Qy+1, J C Qg
compatible iff U.J is an orderideal 0P, = Q111 UQy. Call alternating sign matrice$ € ASM (k+1)
andB € ASM (k) compatible if they correspond under the bijection to coniy@brder ideals.

The initial data of the recurrence (5.3) can be gatheredrtrices of the form

m—k+1,00 M—k4+2,1,0 - MM0k—-1,0

m_g+2,-1,0 M—_g4300 - T1k-20
X = .

mo,—k+1,0 mi,—k4+2,0 - MEk-1,0,0

In the following, the notatiodk 4, with X and A matrices of the same dimensions, represents the product
JIRIEE
i

Proposition 5.2

For =Y (Xip1)*(X5)? (5.4)
A,B

where the sum is over all compatible paitsc ASM (k + 1), B € ASM (k).

Alternatively, Fy ;, can be expressed as a sum over compatible pairs of ordesidb@l;;, and(Qy.
Such pairs are in turn in bijection with order idealsi@f. The following proposition indicates how to
translate the individual terms of (5.4) to the language dkoideals.

Proposition 5.3 If A € ASM (k) andI C @y is the associated order ideal then

XI?: H Y3r+s
(rys,t)er
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(0,-1,1) (0,1,1) Y1 v
N/
(0,0,0) Yo
N
(-1,0-1) 1,0,-1) y-3 Y3

@ (b)

Flg 7. (a) The poseP2 = Q3 ) QQ' HereQ3 = {(71707 71)7 (17 07 71)7 (07 717 1)7 (07 17 1)}1 Q2 = {(07 07 0)}
(b) The posef, with each elementr, s, t) labeled byys, 4.

Theorem 5.4

Fip= Z H Y3r+s+j

I€J(Py) (r,s,t)el
whereJ (P ) denotes the set of order ideals Bf.

As an example, lef = 0 andk = 2. The poset’; (see Figure 7(b)) has eight order ideals. The four
which do not includgy, have weights which sum t@l + y_3)(1 + y3). The other four have weights
summing toy_syoys(1 + y—1)(1 + y1). Adding these yields a formula fdf, » which agrees with (4.4).

6 Axis-aligned polygons

The remainder of this paper is devoted to axis-aligned pmiggi.e. polygons whose sides are alternately
parallel to ther andy axes.

Lemma 6.1 Let A be a twisted polygon indexed either Byor % -+ Z. Suppose that no 3 consecutive
points ofA are collinear. Then for each indexof A:

1. Aj_o, A;, A;1o are collinear if and only ify2;(A) = —1.

2. Aj2A;_1,A; A1, A2 A 13 are concurrent if and only if2;11(A) = —1.

Let A € P,,, be an axis-aligned polygon. Suppose in addition thé closed, i.e 4,12, = A, for all
i € Z. Letsy;41 denote the signed length of the side joinidAgand A, 1, where the sign is taken to be
positive if and only ifA;, is to the right of or abovel;. An example of an axis-aligned octagon is given
in Figure 8. It follows from the second statement in LemmatBéty,;,1(A) = —1forall j € Z. On
the other hand, the evegnparameters can be expressed directly in terms of the sidgHs.

Lemma6.2 Forall j € Z

525—1525+1
ygj(A) = B ikt b (61)
525—-3525+3
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As As
s S11
AS A7 13 .
S15 9
S 57
1
85 A3 A4
S3
Ay A

Fig. 8: An axis-aligned octagon. The side lengthsss, s7, andsg are positive and the others are negative.

Theorem 6.3 (Schwartz) Let A be a closed, axis-alignezh-gon. Then the odd vertices 6f~2(A) are
collinear, as are its even vertices.

Theorem 6.3 is stated for atl in [7] and proven fom even (i.e. the number of sides df divisible
by 4) in [8]. The results of this paper lead to a new proof whigirks for alln. By the above lemmas,
y2j+1(A) = —1 and they,;(A) are given by (6.1). A calculation using Theorem 1.2 showsliaH of the
y;(T"~2(A)) also equat-1 in this case. The first statement of Lemma 6.1 then showshbatgrtices of
T"~2(A) lie alternately on 2 lines, as claimed.

As an extension of this theorem, suppose thad not closed but twisted with; ; 2,, = ¢(A4;). Amaz-
ingly, under certain assumptions oéra result similar to Theorem 6.3 still holds.

Theorem 6.4 Let A be a twisted, axis-aligne#n-gon with 4,2, = ¢(4;) and suppose thap fixes
every point at infinity. Then the odd verticesIsf—1(A) are collinear, as are its even vertices.
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