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The pentagram map and Y -patterns

Max Glick†

Department of Mathematics, University of Michigan, Ann Arbor, MI, USA

Abstract. The pentagram map, introduced by R. Schwartz, is defined by the following construction: given a polygon
as input, draw all of its “shortest” diagonals, and output the smaller polygon which they cut out. We employ the
machinery of cluster algebras to obtain explicit formulas for the iterates of the pentagram map.

Résuḿe.L’application pentagramme de R. Schwartz est définie par laconstruction suivante: on trace les diagonales
“les plus courtes” d’un polygone donné en entrée et on retourne en sortie le plus petit polygone que ces diagonales
découpent. Nous employons la machinerie des algèbres “clusters” pour obtenir des formules explicites pour les
itérations de l’application pentagramme.

Keywords: pentagram map, cluster algebra,Y -pattern, alternating sign matrix

1 Introduction and main formula
The pentagram map, introduced by Richard Schwartz, is a geometric construction which produces one
polygon from another. Figure 1 gives an example of this operation. Schwartz [8] uses a collection of cross
ratio coordinates to study various properties of the pentagram map. In this paper, we work with a related
set of quantities, which we term they-parameters. A polygon can be reconstructed (up to a projective
transformation) from itsy-parameters together with one additional quantity. The other quantity transforms
in a very simple manner under the pentagram map, so we focus onthe y-parameters. Specifically, we
derive a formula for they-parameters of a polygon resulting from repeated applications of the pentagram
map.

We show that the transition equations of they-parameters under the pentagram map coincide with mu-
tations in theY -pattern associated to a certain cluster algebra. We exploit this connection to prove our
formulas for the iterates of the pentagram map. These formulas depend on theF -polynomials of the
corresponding cluster algebra, which in general are definedrecursively. In this instance, a non-recursive
description of these polynomials can be found. Specifically, theF -polynomials are generating func-
tions for the order ideals of a certain sequence of partiallyordered sets. These posets were originally
defined by N. Elkies, G. Kuperberg, M. Larsen, and J. Propp [1]. It is clear from this description of
theF -polynomials that they have positive coefficients, verifying that the Laurent positivity conjecture of
S. Fomin and A. Zelevinsky [2] holds in this case.
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Fig. 1: The pentagram map

This paper is organized as follows. In the remainder of this section we state our main result, the formula
for they-parameters of the iterated pentagram map. This formula is proven in the subsequent sections.
Section 2 gives the transition equations of they-parameters under a single application of the pentagram
map. In Section 3, we explain the connection toY -patterns. This connection is used in Section 4 to derive
our main formula in terms of theF -polynomials. Section 4 also provides an analogous formulaexpressed
in the original coordinate system used by Schwartz. Section5 contains the proof of the formula for the
F -polynomials in terms of order ideals. Lastly, Section 6 applies the results of this paper to axis-aligned
polygons, expanding on a result of Schwartz. Detailed proofs of all statements given in this paper can be
found in the full version [4].

Schwartz [8] studies the pentagram map on a class of objects called twisted polygons. Atwisted polygon
is a sequenceA = (Ai)i∈Z of points in the projective plane that is periodic modulo some projective trans-
formationφ, i.e.,Ai+n = φ(Ai) for all i ∈ Z. Two twisted polygonsA andB are said to beprojectively
equivalentif there exists a projective transformationψ such thatψ(Ai) = Bi for all i. LetPn denote the
space of twistedn-gons modulo projective equivalence.

The pentagram map, denotedT , inputs a twisted polygonA and constructs a new twisted polygon
T (A) given by the following sequence of points:

. . . ,
←−−−→
A−1A1 ∩

←−−→
A0A2,

←−−→
A0A2 ∩

←−−→
A1A3,

←−−→
A1A3 ∩

←−−→
A2A4, . . .

(we denote by
←→
AB the line passing throughA andB). Note that this operation is only defined for generic

twisted polygons. The pentagram map preserves projective equivalence, so it is well defined for generic
points ofPn.

If A ∈ Pn then the vertices ofB = T (A) naturally correspond to edges ofA. To reflect this, we use
1
2 + Z = {. . . ,−0.5, 0.5, 1.5, 2.5 . . .} to label the vertices ofB. Specifically, we let

Bi =
←−−−−−−→
Ai− 3

2
Ai+ 1

2
∩
←−−−−−−→
Ai− 1

2
Ai+ 3

2

for all i ∈ (1
2 + Z). This indexing scheme is illustrated in Figure 2. Similarly, if B is a sequence of points

indexed by1
2 + Z thenT (B) is defined in the same way and is indexed byZ. LetP∗

n denote the space of
twistedn-gons indexed by12 + Z, modulo projective equivalence.

Thecross ratioof 4 real numbersa, b, c, d is defined to be

χ(a, b, c, d) =
(a− b)(c− d)

(a− c)(b − d)
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Fig. 2: The pentagonB = T (A) is indexed by1
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Fig. 3: The cross ratios corresponding to they-parameters. On the left,−(y2k(A))−1 is the cross ratio of the 4 lines
throughAk. On the right,y2k+1(A) = −χ(B, Ak, Ak+1, C).

Define similarly the cross ratio of 4 collinear points in the plane, or dually, 4 lines which pass through a
common point.

Definition 1.1 LetA be a twisted polygon indexed either byZ or 1
2 + Z. They-parametersofA are the

real numbersyj(A) for j ∈ Z defined as follows. For each indexk ofA let

y2k(A) = −
(

χ(
←−−−−→
AkAk−2,

←−−−−→
AkAk−1,

←−−−−→
AkAk+1,

←−−−−→
AkAk+2)

)−1

(1.1)

y2k+1(A) = −χ(
←−−−−−→
Ak−2Ak−1 ∩ L,Ak, Ak+1,

←−−−−−→
Ak+2Ak+3 ∩ L) (1.2)

whereL =
←−−−−→
AkAk+1.

Note that the 4 lines in (1.1) all pass through the pointAk, and the 4 points in (1.2) all lie on the lineL.
Therefore the cross ratios are defined. These cross ratios are illustrated in Figure 3.
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As will be demonstrated, eachy-parameter ofT (A) can be expressed as a rational function of they-
parameters ofA. It follows that each iterate ofT corresponds to a rational map of they-parameters. Our
formulas for these maps involve theF -polynomials of a particular cluster algebra. These can in turn be
expressed in terms of certain posets which we define now.

The original definition of the posets, given by Elkies, Kuperberg, Larsen, and Propp [1], involves height
functions of domino tilings. For our purposes, the following self-contained definition will suffice. LetQk

be the set of triples(r, s, t) ∈ Z3 such that

2|s| − (k − 2) ≤ t ≤ k − 2− 2|r|

and
2|s| − (k − 2) ≡ t ≡ k − 2− 2|r| (mod 4)

Let Pk = Qk+1 ∪ Qk. The partial order onPk is defined by saying that(r′, s′, t′) covers(r, s, t) if and
only if t′ = t + 1 and|r′ − r| + |s′ − s| = 1. We denote byJ(Pk) the set oforder idealsin Pk, i.e.,
subsetsI ⊆ Pk such thatx ∈ I andy < x impliesy ∈ I. The partial order onPk restricts to a partial
order onQk. The Hasse diagram forP2 is given in Figure 7(a).

Theorem 1.2 LetA ∈ Pn and letyj = yj(A) for all j ∈ Z. If k ≥ 1 then they-parameters ofT k(A)
are given by

yj(T
k(A)) =























(

k
∏

i=−k

yj+3i

)

Fj−1,kFj+1,k

Fj−3,kFj+3,k

, j + k even

(

k−1
∏

i=−k+1

y−1
j+3i

)

Fj−3,k−1Fj+3,k−1

Fj−1,k−1Fj+1,k−1
, j + k odd

(1.3)

where
Fj,k =

∑

I∈J(Pk)

∏

(r,s,t)∈I

y3r+s+j (1.4)

A sample computation ofFj,k using (1.4) is given at the end of Section 5.
Throughout this paper, we adopt the convention that

∏a−1
i=a zi = 1 and

∏b
i=a zi =

∏a−1
i=b+1(1/zi) for

b < a−1. This will frequently allow a single formula to encompass what otherwise would require several
cases. With this convention, the property

∏b
i=a zi

∏c
i=b+1 zi =

∏c
i=a zi holds for alla, b, c ∈ Z.

Acknowledgments.I thank Sergey Fomin for suggesting this problem and providing valuable guidance
throughout.

2 The transition equations
Let A be a twistedn-gon. Since the cross ratio is invariant under projective transformations, it follows
thatyj+2n(A) = yj(A) for all j. In this section, we show that eachy-parameter ofT (A) is a rational
function ofy1(A), . . . , y2n(A). The proof of this fact makes use of the cross ratio coordinatesx1, . . . , x2n

introduced by Schwartz [8].
For each indexk of A let

x2k(A) = χ(Ak−2, Ak−1,
←−−−−→
AkAk+1 ∩

←−−−−−→
Ak−2Ak−1,

←−−−−−→
Ak+1Ak+2 ∩

←−−−−−→
Ak−2Ak−1)

x2k+1(A) = χ(Ak+2, Ak+1,
←−−−−→
AkAk−1 ∩

←−−−−−→
Ak+2Ak+1,

←−−−−−→
Ak−1Ak−2 ∩

←−−−−−→
Ak+2Ak+1)
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This definition makes sense as all 4 points in the first cross ratio lie on the line
←−−−−−→
Ak−2Ak−1 and those in

the second all lie on the line
←−−−−−→
Ak+2Ak+1. As with theyj, we have that thexj are periodic mod2n.

Proposition 2.1 ([8]) The functionsx1, . . . , x2n are (generically) a set of coordinates of the spacePn

and of the spaceP∗

n.

As observed by V. Ovsienko, R. Schwartz, and S. Tabachnikov in [5], the productsxjxj+1 are them-
selves cross ratios. In fact,xjxj+1 equals the cross ratios used in (1.1)–(1.2) to defineyj. Therefore

yj = −(xjxj+1)
−1 (2.1)

if j/2 is an index ofA and
yj = −(xjxj+1) (2.2)

otherwise. It follows thaty1y2y3 · · · y2n = 1 for any twisted polygon, so they-parameters do not give a
complete set of coordinates onPn. However, they-parameters ofT (A) can be expressed in terms of the
y-parameters ofA as follows.

Proposition 2.2 Let(y1, . . . , y2n) be they-parameters ofA. If A is indexed by12 +Z thenyj(T (A)) = y′j
where

y′j =

{

yj−3yjyj+3
(1+yj−1)(1+yj+1)
(1+yj−3)(1+yj+3) , j even

y−1
j , j odd

(2.3)

If A is indexed byZ thenyj(T (A)) = y′′j where

y′′j =

{

y−1
j , j even

yj−3yjyj+3
(1+yj−1)(1+yj+1)
(1+yj−3)(1+yj+3) , j odd

(2.4)

Let α1 be the rational map(y1, . . . , y2n) 7→ (y′1, . . . , y
′

2n) defined by (2.3). Similarly, letα2 be the ra-
tional map(y1, . . . , y2n) 7→ (y′′1 , . . . , y

′′

2n) defined by (2.4). Proposition 2.2 implies that they-parameters
transform under the mapT k according to the rational map. . . ◦ α1 ◦ α2 ◦ α1 ◦ α2 (the composition ofk
functions), assuming the initial polygon is indexed by integers.

3 The associated Y -pattern
The equations (2.3)–(2.4) can be viewed as transition equations of a certainY -pattern.Y -patterns repre-
sent a part of cluster algebra dynamics; they were introduced by Fomin and Zelevinsky [3]. A simplified
(but sufficient for our current purposes) version of the relevant definitions is given below.

Definition 3.1 A Y -seed is a pair(y, B) wherey = (y1, . . . , yn) is ann-tuple of quantities andB is an
n×n skew-symmetric, integer matrix. The integern is called therankof the seed. Given aY -seed(y, B)
and somek = 1, . . . , n, theseed mutationµk in directionk results in a newY -seedµk(y, B) = (y′, B′)
where

y′j =

{

y−1
j , j = k

yjy
[bkj ]+
k (1 + yk)−bkj , j 6= k
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Fig. 4: Some quiver mutations

andB′ is the matrix with entries

b′ij =

{

−bij , i = k or j = k

bij + sgn(bik)[bikbkj ]+, otherwise

In these formulas,[x]+ is shorthand formax(x, 0).

The data of the exchange matrixB can alternately be represented by aquiver. This is a directed graph
on vertex set{1, . . . , n}. For eachi andj, there are|bij | arcs connecting vertexi and vertexj. Each such
arc is oriented fromi to j if bij > 0 and fromj to i if bij < 0. In terms of quivers, the mutationµk

consists of the following three steps

1. For every length 2 pathi→ k → j, add an arc fromi to j.

2. Reverse the orientation of all arcs incident tok.

3. Remove all oriented 2-cycles.

Figure 4 illustrates a sequence of quiver mutations. Note that in this example the mutated quiver is
the same as the initial one except that all of the arrows have been reversed. The is an instance of a more
general phenomenon described by the following lemma.

Lemma 3.2 Suppose that(y, B) is aY -seed of rank2n such thatbij = 0 wheneveri, j have the same
parity. Assume also that for alli andj the number of length 2 paths in the quiver fromi to j equals the
number of length 2 paths fromj to i. Then theµi for i odd pairwise commute as do theµi for i even.
Moreover,µ2n−1 ◦ · · · ◦ µ3 ◦ µ1(y, B) = (y′,−B) andµ2n ◦ · · · ◦ µ4 ◦ µ2(y, B) = (y′′,−B) where

y′j =

{

yj

∏

k y
[bkj ]+
k (1 + yk)−bkj , j even

y−1
j , j odd

(3.1)

y′′j =

{

y−1
j , j even

yj

∏

k y
[bkj ]+
k (1 + yk)−bkj , j odd

(3.2)
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Fig. 5: The quiver associated with the exchange matrixB0 for n = 8

Let µevenbe the compound mutationµeven = µ2n ◦ . . . ◦ µ4 ◦ µ2 and letµodd = µ2n−1 ◦ . . . ◦ µ3 ◦ µ1.
Equations (2.3)–(2.4) and (3.1)–(3.2) suggest thatα1 andα2 are instances ofµodd andµeven, respectively.
Indeed, letB0 be the matrix with entries

b0ij =











(−1)j , i− j ≡ ±1 (mod 2n)

(−1)j+1, i− j ≡ ±3 (mod 2n)

0, otherwise

The corresponding quiver in the casen = 8 is shown in Figure 5.

Proposition 3.3 µeven(y, B0) = (α2(y),−B0) andµodd(y,−B0) = (α1(y), B0).

4 The formula for an iterate of the pentagram map
Let A be a twistedn-gon indexed byZ, and lety = (y1, . . . , y2n) be itsy-parameters. Fork ≥ 0 let
yk = (y1,k, . . . , y2n,k) be they-parameters ofT k(A). In other words,y0 = y, y2m+1 = α2(y2m), and
y2m = α1(y2m−1). The results of the previous section show that theyk are related by seed mutations:

(y0, B0)
µeven
−−→ (y1,−B0)

µodd
−−→ (y2, B0)

µeven
−−→ (y3,−B0)

µodd
−−→ · · ·

Note that eachyj,k is a rational function ofy1, . . . , y2n. In the language of cluster algebras, this rational
function is denotedYj,k ∈ Q(y1, . . . , y2n). By (3.1) and (3.2) we have thatYj,k = 1/Yj,k−1 for j + k
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odd, so it suffices to compute theYj,k for j + k even. Proposition 3.13 of [3], specialized to the present
context, says that ifj + k is even thenYj,k can be written in the form

Yj,k = Mj,k

Fj−1,kFj+1,k

Fj−3,kFj+3,k

(4.1)

Here,Mj,k is a Laurent monomial iny1, . . . , y2n and theFi,k are certain polynomials overy1, . . . , y2n.
A description of these component pieces follows.

The monomialMj,k is given by the evaluation of the rational expressionsYj,k in the tropical semifield
P = Trop(y1, . . . , y2n). This is carried out as follows. First of all,Yj,k is expressed in such a manner that
no minus signs appear (that this is possible is clear from transition equations of theY -pattern.) Next, each
plus sign is replaced by the auxiliary addition⊕ symbol. This is a binary operation on Laurent monomials

defined by
∏

i y
ai

i ⊕
∏

i y
a′

i

i =
∏

i y
min(ai,a

′

i)
i . Finally, this operation together with multiplication and

division of monomials is used to compute a result. As an example, by (2.4) we know

Y3,1 = y0y3y6
(1 + y2)(1 + y4)

(1 + y0)(1 + y6)

so

M3,1 = y0y3y6
(1 + y2)(1 + y4)

(1 + y0)(1 + y6)

∣

∣

∣

∣

P

= y0y3y6
(1⊕ y2)(1⊕ y4)

(1⊕ y0)(1⊕ y6)
= y0y3y6

Proposition 4.1

Mj,k =

k
∏

i=−k

yj+3i (4.2)

for j + k even.

TheFj,k for j+ k odd are defined recursively as follows. PutFj,−1 = 1 for j even,Fj,0 = 1 for j odd,
and

Fj,k+1 =
Fj−3,kFj+3,k +Mj,kFj−1,kFj+1,k

(1 ⊕Mj,k)Fj,k−1

for j + k even andk ≥ 0. Recall,Mj,k =
∏k

i=−k yj+3i so the formula simplifies to

Fj,k+1 =
Fj−3,kFj+3,k + (

∏k
i=−k yj+3i)Fj−1,kFj+1,k

Fj,k−1
(4.3)

For example,Fj,1 = 1 + yj and

Fj,2 = (1 + yj−3)(1 + yj+3) + yj−3yjyj+3(1 + yj−1)(1 + yj+1) (4.4)

Although it is not clear from this definition, theFj,k are indeed polynomials. This is a consequence of
general cluster algebra theory.

Equations (4.1)–(4.2) and the fact thatYj,k = 1/Yj,k−1 for j + k odd combine to prove that the
formula given in Theorem 1.2 is of the right form. What remains is to prove (1.4), which expresses the
F -polynomials in terms of order ideals. This proof will be outlined in the next section. Before moving
on, we point out that Theorem 1.2 can be used to prove an analogous formula for thex-coordinates of
T k(A).
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Theorem 4.2 LetA ∈ Pn, xj = xj(A), andyj = yj(A). Thenxj,k = xj(T
k(A)) is given by

xj,k =























xj−3k

(

k−1
∏

i=−k

yj+1+3i

)

Fj+2,k−1Fj−3,k

Fj−2,k−1Fj+1,k

, j + k even

xj+3k

(

k−1
∏

i=−k

yj+1+3i

)

Fj−3,k−1Fj+2,k

Fj+1,k−1Fj−2,k

, j + k odd

(4.5)

It will be convenient in the following section to defineMj,k andFj,k for all j, k (as opposed to just for
j + k even or, respectively, odd). This is done by asserting that (4.2) and (4.3) hold for allj, k.

5 Computation of the F -polynomials
This section proves the formula for theF -polynomials given in (1.4).

Define Laurent monomialsmi,j,k for k ≥ −1 recursively as follows. Let

mi,j,0 =

j−1
∏

l=0

l
∏

m=0

y3i+j−4l+6m−1 (5.1)

andmi,j,−1 = 1/mi,j,0 for all i, j ∈ Z. Fork ≥ 1, put

mi,j,k =
mi−1,j,k−1mi+1,j,k−1

mi,j,k−2
(5.2)

Note that in (5.1), ifj ≤ 0 the conventions for products mentioned in the introductionare needed.
Applying these conventions and simplifying yieldsmi,−1,0 = mi,0,0 = 1 and

mi,j,0 =
−2
∏

l=j

−1
∏

m=l+1

y3i+j−4l+6m−1

for j ≤ −2. A portion of the arraymi,j,0 is given in Figure 6.

Proposition 5.1 Letfi,j,k = mi,j,kF3i+j,k for all i, j, k with k ≥ −1. Then

fi,j,k−1fi,j,k+1 = fi−1,j,kfi+1,j,k + fi,j−1,kfi,j+1,k (5.3)

for all i, j, k with k ≥ 0.

The difference equation (5.3) is known as the octahedron recurrence. Applied recursively, it can be
used to expressf0,0,k = F0,k as a rational function of thefi,j,0 = mi,j,0 and thefi,j,−1 = 1/mi,j,0.
D. Robbins and H. Rumsey proved [6] that this rational function is in fact a Laurent polynomial whose
terms are indexed by pairs of alternating sign matrices. After reviewing the necessary terminology, we
will apply this result to write a formula forF0,k.

An alternating sign matrixis a square matrix of 1’s, 0’s, and -1’s such that

• the non-zero entries of each row and column alternate in signand
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...
...

...
(j = 2) · · · y−6y−2y0 y−3y1y3 y0y4y6 · · ·
(j = 1) · · · y−3 y0 y3 · · ·
(j = 0) · · · 1 1 1 · · ·

(j = −1) · · · 1 1 1 · · ·
(j = −2) · · · y−4 y−1 y2 · · ·
(j = −3) · · · y−7y−5y−1 y−4y−2y2 y−1y1y5 · · ·

...
...

...
(i = −1) (i = 0) (i = 1)

Fig. 6: The monomialsmi,j,0

• the sum of the entries of each row and column is 1.

LetASM(k) denote the set ofk by k alternating sign matrices.
A bijection is given by Elkies, Kuperberg, Larsen, and Proppin [1] betweenASM(k) and the set of

order ideals ofQk, whereQk is the poset defined in Section 1. Call order idealsI ⊆ Qk+1, J ⊆ Qk

compatible ifI∪J is an order ideal ofPk = Qk+1∪Qk. Call alternating sign matricesA ∈ ASM(k+1)
andB ∈ ASM(k) compatible if they correspond under the bijection to compatible order ideals.

The initial data of the recurrence (5.3) can be gathered intomatrices of the form

Xk =











m−k+1,0,0 m−k+2,1,0 · · · m0,k−1,0

m−k+2,−1,0 m−k+3,0,0 · · · m1,k−2,0

...
...

...
m0,−k+1,0 m1,−k+2,0 · · · mk−1,0,0











In the following, the notationXA, withX andA matrices of the same dimensions, represents the product
∏

i

∏

j

x
aij

ij .

Proposition 5.2
F0,k =

∑

A,B

(Xk+1)
A(Xk)B (5.4)

where the sum is over all compatible pairsA ∈ ASM(k + 1),B ∈ ASM(k).

Alternatively,F0,k can be expressed as a sum over compatible pairs of order ideals ofQk+1 andQk.
Such pairs are in turn in bijection with order ideals ofPk. The following proposition indicates how to
translate the individual terms of (5.4) to the language of order ideals.

Proposition 5.3 If A ∈ ASM(k) andI ⊆ Qk is the associated order ideal then

XA
k =

∏

(r,s,t)∈I

y3r+s
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(0,-1,1) (0,1,1)

(0,0,0)

(-1,0,-1) (1,0,-1)

(a)

y−1 y1

y0

y−3 y3

(b)

Fig. 7: (a) The posetP2 = Q3 ∪ Q2. HereQ3 = {(−1, 0,−1), (1, 0,−1), (0,−1, 1), (0, 1, 1)}, Q2 = {(0, 0, 0)}.
(b) The posetP2 with each element(r, s, t) labeled byy3r+s.

Theorem 5.4
Fj,k =

∑

I∈J(Pk)

∏

(r,s,t)∈I

y3r+s+j

whereJ(Pk) denotes the set of order ideals ofPk.

As an example, letj = 0 andk = 2. The posetP2 (see Figure 7(b)) has eight order ideals. The four
which do not includey0 have weights which sum to(1 + y−3)(1 + y3). The other four have weights
summing toy−3y0y3(1 + y−1)(1 + y1). Adding these yields a formula forF0,2 which agrees with (4.4).

6 Axis-aligned polygons
The remainder of this paper is devoted to axis-aligned polygons, i.e. polygons whose sides are alternately
parallel to thex andy axes.

Lemma 6.1 LetA be a twisted polygon indexed either byZ or 1
2 + Z. Suppose that no 3 consecutive

points ofA are collinear. Then for each indexi ofA:

1. Ai−2, Ai, Ai+2 are collinear if and only ify2i(A) = −1.

2.
←−−−−−→
Ai−2Ai−1,

←−−−→
AiAi+1,

←−−−−−→
Ai+2Ai+3 are concurrent if and only ify2i+1(A) = −1.

LetA ∈ P2n be an axis-aligned polygon. Suppose in addition thatA is closed, i.e.Ai+2n = Ai for all
i ∈ Z. Let s2j+1 denote the signed length of the side joiningAj andAj+1, where the sign is taken to be
positive if and only ifAj+1 is to the right of or aboveAj . An example of an axis-aligned octagon is given
in Figure 8. It follows from the second statement in Lemma 6.1thaty2j+1(A) = −1 for all j ∈ Z. On
the other hand, the eveny-parameters can be expressed directly in terms of the side lengths.

Lemma 6.2 For all j ∈ Z

y2j(A) = −
s2j−1s2j+1

s2j−3s2j+3
(6.1)
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A3 A4

A5A6

A7A8
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s3
s5

s7

s9

s11
s13

s15

Fig. 8: An axis-aligned octagon. The side lengthss3, s5, s7, ands9 are positive and the others are negative.

Theorem 6.3 (Schwartz)LetA be a closed, axis-aligned2n-gon. Then the odd vertices ofT n−2(A) are
collinear, as are its even vertices.

Theorem 6.3 is stated for alln in [7] and proven forn even (i.e. the number of sides ofA divisible
by 4) in [8]. The results of this paper lead to a new proof whichworks for alln. By the above lemmas,
y2j+1(A) = −1 and they2j(A) are given by (6.1). A calculation using Theorem 1.2 shows that half of the
yj(T

n−2(A)) also equal−1 in this case. The first statement of Lemma 6.1 then shows that the vertices of
T n−2(A) lie alternately on 2 lines, as claimed.

As an extension of this theorem, suppose thatA is not closed but twisted withAi+2n = φ(Ai). Amaz-
ingly, under certain assumptions onφ a result similar to Theorem 6.3 still holds.

Theorem 6.4 Let A be a twisted, axis-aligned2n-gon withAi+2n = φ(Ai) and suppose thatφ fixes
every point at infinity. Then the odd vertices ofT n−1(A) are collinear, as are its even vertices.

References
[1] N. Elkies, G. Kuperberg, M. Larsen, and J. Propp, Alternating-sign matrices and domino tilings,J.

Algebraic Combin.1 (1992), 111–132.

[2] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations,J. Amer. Math. Soc.15(2002), 497–529.

[3] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients,Compos. Math.143(2007), 112–164.

[4] M. Glick, The pentagram map andY -patterns, arXiv:1005.0598v2.

[5] V. Ovsienko, R. Schwartz, and S. Tabachnikov, The pentagram map: a discrete integrable system,
Comm. Math. Phys.299(2010), 409-446.

[6] D. Robbins and H. Rumsey, Determinants and alternating sign matrices,Adv. in Math. 62 (1986),
169–184.

[7] R. Schwartz, Desargues theorem, dynamics, and hyperplane arrangements,Geom. Dedicata87
(2001), 261–283.

[8] R. Schwartz, Discrete monodromy, pentagrams, and the method of condensation,J. Fixed Point The-
ory Appl. 3 (2008), 379–409.


