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Counting Shi regions with a fixed separating
wall
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Abstract. Athanasiadis introduced separating walls for a region in the extended Shi arrangement and used them to
generalize the Narayana numbers. In this paper, we fix a hyperplane in the extended Shi arrangement for type A and
calculate the number of dominant regions which have the fixed hyperplane as a separating wall; that is, regions where
the hyperplane supports a facet of the region and separates the region from the origin.

Résumé. Athanasiadis a introduit la notion d’hyperplan de séparation pour une région dans l’arrangement de Shi et
l’a utilisée pour généraliser les numéros de Narayana. Dans cet article, nous fixons un hyperplan dans l’arrangement
de Shi pour le type A et calculons le nombre de régions dominantes qui ont l’hyperplan fixe pour mur de séparation,
c’est-à-dire les régions où l’hyperplan soutient une facette de la région et sépare la région de l’origine.

Keywords: Shi arrangement, partitions

1 Introduction
A hyperplane arrangement dissects its ambient vector space into regions. The regions have walls – hy-
perplanes which support facets of the region – and the walls may or may not separate the region from the
origin. The regions in the extended Shi arrangement are enumerated by well-known sequences: all re-
gions by the extended parking functions numbers, the dominant regions by the extended Catalan numbers,
dominant regions with a given number of separating walls by the Narayana numbers. In this paper we
study the extended Shi arrangement by fixing a hyperplane in it and calculating the number of regions for
which that hyperplane is a separating wall. For example, suppose we are considering the mth extended
Shi arrangement in dimension n− 1, with highest root θ. Let Hθ,m be the mth translate of the hyperplane
through the orgin with θ as normal. Then we show there are mn−2 regions which abut Hθ,m and are
separated from the origin by it.

At the heart of this paper is a well-known bijection from certain integer partitions to dominant alcoves
(and regions). One particularly nice aspect of our work is that we are able to use the bijection to enumerate
regions. We characterize the partitions associated to the regions in question by certain interesting features
and easily count those partitions, whereas it would be difficult to count the regions directly.

We rely on work from several sources. Shi (1986) introduced what is now called the Shi arrangement
while studying the affine Weyl group of type A, and Stanley (1998) extended it. We also use the work
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on alcoves in Shi (1987). The work in Richards (1996) on decomposition numbers for Hecke algebras
has been very useful. The Catalan numbers have been extended and generalized; see Athanasiadis (2005)
for the history. Fuss-Catalan numbers is another name for the extended Catalan numbers. The Catalan
numbers can be written as a sum of Narayana numbers. Athanasiadis (2005) generalized the Narayana
numbers. He showed they enumerated several types of objects; one of them was the number of dominant
Shi regions with a fixed number of separating walls. This led us to investigate separating walls. All of our
work is for type A.

In Section 2, we introduce notation, define the Shi arrangement, certain partitions, and the bijection
between them which we use to count regions. In Section 3, we characterize the partitions assigned to the
regions which have Hθ,m as separating wall. Finally, we give a recursion for counting the regions which
have other separating walls Hα,m in Section 4, by using generating functions.

2 Preliminaries
Here we introduce notation and review some constructions.

2.1 Root system notation and extended Shi arrangements
Let {ε1, . . . , εn} be the standard basis of Rn and 〈 | 〉 be the bilinear form for which this is an orthonormal
basis. Let αi = εi − εi+1. Then Π = {α1, . . . , αn−1} is a basis of

V = {(a1, . . . , an) ∈ Rn |
n∑
i=1

ai = 0}.

We let αij = αi + . . .+ αj , the highest root α1,n−1 = θ, and note that αii = αi and αij = εi − εj+1.
The elements of ∆ = {εi − εj | i 6= j} are called roots and we say a root α is positive, written α > 0,

if α ∈ ∆+ = {εi − εj | i < j}.
A hyperplane arrangement is a set of hyperplanes, possibly affine hyperplanes, in V . We are interested

in certain sets of hyperplanes of the following form. For each α ∈ ∆+, we define its reflecting hyperplane

Hα,0 = {v ∈ V | 〈v | α〉 = 0} and for k ∈ Z, Hα,0’s kth translate, Hα,k = {v ∈ V | 〈v | α〉 = k}.

Note H−α,−k = Hα,k so we usually take k ∈ Z≥0. Then the extended Shi arrangement, here called the
m-Shi arrangement, is the collection of hyperplanes

Hm = {Hα,k | α ∈ ∆+,−m < k ≤ m}.

This arrangement is defined for crystallograhic root systems of all finite types.
Regions of the m-Shi arrangement are the connected components of the hyperplane arrangement com-

plement V \
⋃
H∈Hm H .

We denote the closed half-spaces {v ∈ V | 〈v | α〉 ≥ k} and {v ∈ V | 〈v | α〉 ≤ k} by Hα,k
+

and Hα,k
− respectively. The dominant chamber of V is V ∩

⋂n−1
i=1 Hαi,0

+ and is also referred to as the
fundamental chamber in the literature. This paper primarily concerns regions and alcoves in the dominant
chamber.

A dominant region of the m-Shi arrangement is a region that is contained in the dominant chamber. We
call the collection of dominant regions in the m-Shi arrangement Sn,m.
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Each connected component of
V \

⋃
α∈∆+

k∈Z

Hα,k

is called an alcove and the fundamental alcove is A0, the interior of Hθ,1
− ∩

⋂n−1
i=1 Hαi,0

+, where θ =
α1 + · · · + αn−1 = ε1 − εn. A dominant alcove is one contained in the dominant chamber. Denote the
set of dominant alcoves by An.

A wall of a region is a hyperplane in Hm which supports a facet of that region or alcove. Two open
regions are separated by a hyperplaneH if they lie in different closed half-spaces relative toH . Please see
Athanasiadis (2005) for details. We study dominant regions with a fixed separating wall. A separating
wall for a region R is a wall of R which separates R from A0.

2.2 The affine symmetric group

Definition 2.1 The affine symmetric group, denoted Ŝn, is defined as

Ŝn = 〈s1, . . . , sn−1, s0 | s2i = 1, sisj = sjsi if i 6≡ j ± 1 mod n,

sisjsi = sjsisj if i ≡ j ± 1 mod n〉

for n > 2, but Ŝ2 = 〈s1, s0 | s2i = 1〉.

The affine symmetric group Ŝn acts freely and transitively on the set of alcoves. We thus identify each
alcove A with the unique w ∈ Ŝn such that A = w−1A0. Each simple generator si, i > 0, acts by
reflection with respect to the simple root αi. In other words, it acts by reflection over the hyperplane
Hαi,0. The element s0 acts as reflection with respect to the affine hyperplane Hθ,1.

2.3 Shi coordinates and Shi tableaux.
Every alcove A can be written as w−1A0 for a unique w ∈ Ŝn and additionally, for each α ∈ ∆+, there
is a unique integer kα such that kα < 〈α | x〉 < kα + 1 for all x ∈ A. Shi characterized the integers kα
which can arise in this way and the next lemma gives the conditions for type A.

Lemma 2.2 (Shi (1987)) Let {kαij}1≤i≤j≤n−1 be a set of
(
n
2

)
integers. There exists a w ∈ Ŝn such that

kαij < 〈αij | x〉 < kαij + 1

for all x ∈ w−1A0 if and only if

kαit + kαt+1,j ≤ kαij ≤ kαit + kαt+1,j + 1,

for all t such that i ≤ t < j.

From now on, we write kij for kαij . These {kij}1≤i≤n−1 are the Shi coordinates of the alcove. We
arrange the coordinates for an alcove A in the Young’s diagram (see Section 2.4) of a staircase partition
(n− 1, n− 2, . . . , 1) by putting kij in the box in row i, column n− j. See Krattenthaler et al. (2002) for
a similar arrangement of sets indexed by positive roots. For alcoves in An, the entries are nonincreasing
along rows and columns and are nonnegative.
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We can also assign coordinates to regions in the Shi arrangement. In each region of the m-Shi hyper-
plane arrangement, there is exactly one “representative,” or m-minimal, alcove closest to the fundamental
alcoveA0. See Shi (1986) form = 1 and Athanasiadis (2005) form ≥ 1. LetA be an alcove with Shi co-
ordinates {kij}1≤i≤n−1 and suppose it is the m-minimal alcove for the region R. We define coordinates
{eij}1≤i≤j≤n−1 for R by eij = min(kij ,m).

Again, we arrange the coordinates for a regionR in the Young’s diagram (see Section 2.4) of a staircase
partition (n− 1, n− 2, . . . , 1) by putting eij in the box in row i, column n− j. For dominant regions, the
entries are nonincreasing along rows and columns and are nonnegative.

Example 2.3 For n = 5, the coordinates are arranged
k14 k13 k12 k11

k24 k23 k22

k34 k33

k44

e14 e13 e12 e11

e24 e23 e22

e34 e33

e44

Example 2.4 The dominant chamber for the 2-Shi arrangement for n = 3 is illustrated in Figure 1 The
yellow region has coordinates e12 = 2, e11 = 1, and e22 = 2. Its 2-minimal alcove has coordinates
k12 = 3, k11 = 1, and k22 = 2.

Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hθ,1

Hα1,2

Hα2,2

Hθ,2 Hθ,3 Hθ,4

Fig. 1: S3,2 consists of 12 regions

Denote the Shi tableau for the alcove A by TA and for the region R by TR .
Both Richards (1996) and Athanasiadis (2005) characterized the Shi tableaux for dominant m-Shi

regions.

Lemma 2.5 Let T = {eij}1≤i≤j≤n−1 be a collection of integers such that 0 ≤ eij ≤ m. Then T is the
Shi tableau for a region R ∈ Sn,m if and only if

eij =

{
eit + et+1,j or eit + et+1,j + 1 if m− 1 ≥ eit + et+1,j for t = i, . . . , j − 1
m otherwise

(2.1)
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Proof: Proof omitted in abstract. 2

Lemma 3.9 from Athanasiadis (2005) is crucial to our work here. He characterizes the co-filtered chains
of ideals for whichHα,m is a separating wall. We translate that into our set-up in Lemma 2.6, using entries
from the Shi Tableau.

Lemma 2.6 (Athanasiadis (2005)) A region R ∈ Sn,m has Hαuv,m as a separating wall if and only if
euv = m and for all t such that u ≤ t < v, eut + et+1,v = m− 1.

2.4 Partitions
A partition is a non-increasing sequence λ = (λ1, λ2, . . . , λn) of nonnegative integers. λ1, λ2, . . . are
called the parts of λ. We identify a partition λ = (λ1, λ2, . . . , λn) with its Young diagram, that is the
array of boxes with coordinates {(i, j) : 1 ≤ j ≤ λi for all λi}. The conjugate of λ is the partition λ′

whose diagram is obtained by reflecting λ’s diagram about the diagonal. The length of a partition λ, `(λ),
is the number of positive parts of λ.

2.4.1 Core partitions
The (k, l)-hook of any partition λ consists of the (k, l)-box of λ, all the boxes to the right of it in row k
together with all the nodes below it and in column l. The hook length hλkl of the box (k, l) is the number
of boxes in the (k, l)-hook. Let n be a positive integer. An n-core is a partition λ such that n - hλ(k,l) for
all (k, l) ∈ λ. We let Cn denote the set of partitions which are n-cores.

2.5 Abacus diagrams
In Section 3, we use a bijection, called Φ, to describe certain regions. We will need abacus diagrams to
define Φ. We associate to each partition λ its abacus diagram. When λ is an n-core, its abacus has a
particularly nice form.

The β-numbers for a partition λ = (λ1, . . . , λr) are the hook lengths from the boxes in its first column:

βk = hλ(k,1).

Each partition is determined by its β-numbers and β1 > β2 > · · · > β`(λ) > 0.
An abacus diagram is a diagram, with integer entries arranged in n columns labeled 0, 1, . . . , n − 1,

called runners. The horizontal cross-sections or rows will be called levels and runner k contains the
integer entry qn+ r on level q where −∞ < q <∞. We draw the abacus so that each runner is vertical,
oriented with −∞ at the top and∞ at the bottom, and we always put runner 0 in the leftmost position,
increasing to runner n − 1 in the rightmost position. Entries in the abacus diagram may be circled; such
circled elements are called beads. The level of a bead labelled by qn + r is q and its runner is r. Entries
which are not circled will be called gaps. Two abacus diagrams are equivalent if one can be obtained by
adding a constant to each entry of the other.

See Example 2.8 below.
Given a partition λ its abacus is any abacus diagram equivalent to the one with beads at entries βk =

hλ(k,1) and all entries j ∈ Z<0.
Given the abacus for the partition λ with beads at {βk}1≤k≤`(λ), let bi be one more than the largest

level number of a bead on runner i; that is, the level of the first gap. Then (b0, . . . , bn−1) is the vector of
level numbers for λ.
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Remark 2.7 It is well-known that λ is an n-core if and only if its abacus is flush, that is to say whenever
there is a bead at entry j there is also a bead at j − n. Additionally, if (b0, . . . , bn−1) is the vector of
level numbers for λ, then b0 = 0,

∑n−1
i=0 bi = `(λ), and since there are no gaps, (b0 . . . , bn−1) describes

λ completely.

Example 2.8 The abacus below in Figure 2 represents the 4-core λ = (5, 2, 1, 1, 1). The levels are
indicated to the left of the abacus and below each runner is the largest level number of a bead in that
runner. The boxes of the Young diagram of λ have been filled with their hooklengths. The vector of level
numbers for λ is (0, 3, 1, 1).

-1 2 0 0

2
1
0
-1
-2

9
5
1
-3
-7

10
6
2
-2
-6

11
7
3
-1
-5

8
4
0
-4
-8

λ =

9 5 3 2 1
5 1
3
2
1

Fig. 2: The abacus represents the 4-core λ.

2.6 Bijection
We describe here a bijection Φ from the set of n-cores to dominant alcoves. It is a slightly modified
version of the bijection given in Richards (1996). Given an n-core λ, let (b0 = 0, b1, . . . , bn−1) be the
level numbers for its abacus. Now let p̃i = bi−1n+ i− 1, which is the entry of the first gap on runner i,
for i from 1 to n, and then let p1 = 0 < p2 < · · · < pn be the {p̃i} written in ascending order. Finally we
define Φ(λ) to be the alcove whose Shi coordinates are given by

kij = bpj+1 − pi
n

c

for 1 ≤ i ≤ j ≤ n− 1.

Example 2.9 We continue Example 2.8. We have n = 4, λ = (5, 2, 1, 1, 1), and (b0, b1, b2, b3) =
(0, 3, 1, 1). Then p̃1 = 0, p̃2 = 13, p̃3 = 6, and p̃4 = 7 and p1 = 0, p2 = 6, p3 = 7, and p4 = 13. Thus
Φ(λ) is the alcove with coordinates k13 = 3, k12 = 1, k11 = 1, k23 = 1,k22 = 0, and k33 = 1.

Proposition 2.10 The map Φ from n-cores to dominant alcoves is a bijection.

Proof: We first show that we indeed produce an alcove by the process above. By Lemma 2.2, it is enough
to show that kit + kt+1,j ≤ kij ≤ kit + kt+1,j + 1 for all t such that 1 ≤ t < j. Write pi = nqi + ri for
1 ≤ i ≤ n. Then

kit =

{
qt+1 − qi if rt+1 > ri

qt+1 − qi − 1 if rt+1 < ri,
, kt+1,j =

{
qj+1 − qt+1 if rj+1 > rt+1

qj+1 − qt+1 − 1 if rj+1 < rt+1.
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and

kij =

{
qj+1 − qi if rj+1 > ri

qj+1 − qi − 1 if rj+1 < ri.
. (2.2)

Therefore

kij =

{
kit + kt+1,j if ri < rt+1 < rj+1 or rj+1 < ri < rt+1 or rt+1 < rj+1 < ri

kit + kt+1,j + 1 if ri < rj+1 < rt+1 or rt+1 < ri < rj+1 or rj+1 < rt+1 < ri
,

so that the conditions in Lemma 2.2 are satisfied and we have the Shi coordinates of an alcove. Since each
kij ≥ 0, it is an alcove in the dominant chamber.

Now we reverse the process described above to show that Φ is a bijection. Let {kij}1≤i≤j≤n−1 be
the Shi coordinates of a dominant alcove. Again, write pi = nqi + ri for the intermediate values {pi},
which we first calculate. Then p1 = q1 = r1 = 0 and qi = k1,i−1. We must now determine r2, . . . , rn, a
permutation of 1, . . . , n− 1. However, by (2.2) we can determine the inversion table for this permutation,
using kij for 2 ≤ i ≤ j ≤ n−1 and q1, . . . , qn, so we can compute r2, . . . , rn and therefore p1, p2, . . . , pn.
We can now sort the {pi} according to their residue mod n, giving us p̃1, . . . , p̃n; from this, (b0, . . . , bn−1).
Note that (b0, . . . , bn−1) is a permutation of q1, . . . , qn. 2

Example 2.11 We continue Examples 2.8 and 2.9 here. Suppose we are given that n = 4 and the alcove
coordinates k13 = 3,k12 = 1,k11 = 1,k23 = 1,k22 = 0, and k33 = 1. We demonstrate Φ−1 and calculate
(b0, b1, b2, b3) and thereby the 4-core λ. We have q1 = 0, q2 = 1, q3 = 1, and q4 = 3, and r1 = 0, from
k13, k12, and k11. We must determine r2, r3, r4, a permutation of 1, 2, 3.
k23 = 1 = q4 − q2 − 1 so r4 < r2
k22 = 0 = q3 − q2 so r3 > r2
k33 = 1 = q4 − q3 − 1 so r4 < r3
Therefore we have r3 = 3, r2 = 2, and r4 = 1, which means b1 = q4 = 3, b2 = q2 = 1, and

b3 = q3 = 1.

Remark 2.12 There is a well-known action of Ŝn on n-cores; please see Misra and Miwa (1990), Las-
coux (2001), Lapointe and Morse (2005), for more details and history. This leads to a bijection Ψ from
n-cores to dominant alcoves, where w∅ 7→ w−1A0. We mention that Φ = Ψ, a fact which we will neither
use nor prove here. We also remark that the column (or row) sums of the Shi tableau of an alcove give
us a partition whose conjugate is (n− 1)-bounded, as in the bijections of Lapointe and Morse (2005) or
Björner and Brenti (1996)

3 Separating wall Hθ,m

Separating walls were defined in Section 2.1 as a wall of a region which separates the region from A0.
Equivalently for alcoves, Hα,k is a separating wall for the alcove w−1A0 if there is a simple reflection si,
where 0 ≤ i < n, such that w−1A0 ⊆ Hα,k

+ and (siw)−1A0 ⊆ Hα,k
−. We want to count the regions

which have Hα,m as a separating wall, for any α ∈ ∆+. We do this by induction and the base case will
be α = θ. Our main result in this section characterizes the regions which have Hθ,m as a separating wall
by describing the n-core partitions associated to them under the bijection Φ described in Section 2.6.
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Theorem 3.1 Let Φ : Cn → An be the bijection described in Section 2.6, let R ∈ Sn,m have m-minimal
alcove A, and let λ be the n-core such that Φ(λ) = A. Then Hθ,m is a separating wall for the region
R if and only if the Shi coordinates of the region R are the same as the Shi coordinates of its m-minimal
alcove A and hλ11 = n(m− 1) + 1.

Proof: Proof omitted in abstract. 2

We have the following corollary to Theorem 3.1.

Corollary 3.2 There are mn−2 regions in Sn,m which have Hα1n−1,m as a separating wall.

Proof: Let ~b(λ) = (b0, b1, . . . , bn−1) be the vector of level numbers for the n-core λ. Note that h11 =
n(m − 1) + 1 if and only if b1 = m and bi < m for 1 < i ≤ n − 1. There are mn−2 vectors of level
numbers (b0, b1, . . . , bn−1) such that b0 = 0, b1 = m, and 0 ≤ bi ≤ m− 1 for 2 ≤ i ≤ n− 1. 2

4 Arbitrary separating wall
We use hnαk to denote the set of regions in Sn,m which have Hα,k as a separating wall. See Figure 3. In
the language of Athanasiadis (2005), these are the regions whose corresponding co-filtered chain of ideals
have α as an indecomposable element of rank k.

Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hθ,1

Hα1,2

Hα2,2

Hθ,2

Fig. 3: There are three regions in h3
α12

In this section, we present a generating function for regions in hnαk. We use two statistics r() and c() on
regions in the extended Shi arrangement. Let R ∈ Sn,m and define

r(R) = |{(j, k) : R ∈ hnα1jk and 1 ≤ k ≤ m}| and c(R) = |{(i, k) : R ∈ hnαi,n−1k and 1 ≤ k ≤ m}|.

r(R) counts the number of translates of Hα1j ,0 which separate R from A0, for 1 ≤ j ≤ n− 1. Similarly
for c(R) and translates of Hαi,n−1,0.

The generating function is
fnαijm(p, q) =

∑
R∈hnαijm

pc(R)qr(R).
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Example 4.1 f3
α12(p, q) = p4q2 + p4q3 + p4q4.

We let [k]p,q =
∑k−1
j=0 p

jqk−1−j and [k]q = [k]1,q . We will also need to truncate polynomials and the
notation we use for that is j=n∑

j=0

ajq
j


≤qN

=
j=N∑
j=0

ajq
j .

The statistics are related to the n-core partition assigned to the m-minimal alcove for the region.

Claim 4.2 Let λ be an n-core with vector of level numbers (b0, . . . , bn−1) and suppose Φ(λ) = R and
R ∈ hnθm. Then r(R) = m+

∑n−1
i=2 bi and c(R) = m+

∑n−1
i=2 (m− 1− bi).

Proof: Proof omitted in abstract. 2

We thus obtain another corollary to Theorem 3.1.

Corollary 4.3

fnθ,m(p, q) = pmqm(pm−1 + pm−2q + · · ·+ pqm−1 + qm−1)n−2 = pmqm[m]n−2
p,q .

Corollary 4.3 follows from Claim 4.2 and the abacus representation of n-cores which have the pre-
scribed hook length.

Corollary 3.2 can be derived from Corollary 4.3 by evaluating at p = q = 1.
Given a Shi tableau TR = {eij}1≤i≤j≤n−1, where R ∈ Sn,m, let T̃R = {ẽij}1≤i≤j≤n−2 denote the

tableau where ẽij is given by eij . That is, T̃R is TR with the first column removed.

Example 4.4 Suppose R ∈ S5,m and

TR =
e14 e13 e12 e11

e24 e23 e22

e34 e33

e44

. Then T̃R =
e13 e12 e11

e23 e22

e33

The next lemma tells us that T̃R is always the Shi tableau for a region in one less dimension.

Lemma 4.5 If TR is the tableau of a region R ∈ Sn,m and 1 ≤ u ≤ v ≤ n− 1, then T̃R = TR̃ for some
R̃ ∈ Sn−1,m.

Proof: This follows from Lemma 2.5. 2

Lemma 4.6 Let TR be the Shi tableau for the region R ∈ Sn,m and let R̃ be defined by TR̃ = T̃R , where
R̃ ∈ Sn−1,m by Lemma 4.5. Then R ∈ hnαi,n−2m if and only if R̃ ∈ hn−1

αi,n−2m.

Proof: This follows from Lemma 2.6. 2
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In terms of generating functions, Lemma 4.6 states:

fnαi,n−2m(p, q) =
∑

R∈hnαi,n−2m

pc(R)qr(R) =
∑

R̂∈hn−1
αi,n−2m

∑
R∈Sn,m:R̃=R̂

pc(R)qr(R) (4.1)

If R̂ ∈ hn−1
αi,n−n, so that ei,n−2 = m, and R̃ = R̂, then r(R) = r(R̂) + m and c(R) = c(R̂) + k, for

some k. We need to establish the possible values for k.
We will use Proposition 3.5 from Richards (1996) to do this. His “pyramids” correspond to our Shi

tableaux for regions, with his e and w being our n and m+ 1. He does not mention hyperplanes, but with
the conversion uav = m− eu+1,v his conditions in Proposition 3.4 become our conditions in Lemma 2.5.

In our language, his Proposition 3.5 (i) becomes

Lemma 4.7 (Richards (1996)) Let s1, s2, . . . , sn be non-negative integers with

s1 ≥ s2 ≥ . . . sn = 0 and si ≤ (n− i)m.

Then there is a unique region R ∈ Sn,m with Shi tableau TR = {eij}1≤i≤jn−1 such that

sj = sj(R) =
n−j∑
i=1

ei,n−j for 1 ≤ j ≤ n− 1

We include a proof for compeleteness. Proof: Proof omitted in abstract. 2

Lemma 4.7 means for all pairs (TR̂ , k), where TR̂ = {êij}1≤i≤j≤n−2 and R̂ ∈ hn−1
αm , and k is an

integer such that
∑n−2
i=1 êi,n−2 ≤ k ≤ (n − 1)m, there is a region R ∈ Sn,m whose Shi tableau has first

column sum is k and gives TR̂ when its first column is removed; that is, T̃R = TR̂ .
Continuing (4.1), keeping in mind that s1(R) = c(R),

fnαi,n−2m(p, q) =
∑

R̂∈hn−1
αi,n−2m

∑
s1(R̂)≤k≤n(m−1)

pr(R̂)+mqc(R̂)+k (4.2)

=
(
pm[(n− 2)m+ 1]qfn−1

αi,n−2m(p, q)
)
≤q(n−1)m

. (4.3)

Example 4.8 Consider R1, R2, and R3 in S3,2 with tableaux

2 2 1
2 2
2

2 2 1
2 2
1

2 2 1
2 2
0

respectively. Then R̃1 = R̃2 = R̃2 = R, where R is the region in S2,2 with tableau
2 1
2

(i) In the statement of Proposition 3.5, Richards makes the claim for a unique Shi tableau for 0 ≤ j ≤ n− 2. However, in the proof,
he shows the result for 0 ≤ j ≤ n− 1.
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The next proposition will provide a method for determining whether or not Hα1n−j ,m is a separating
wall for R. Given a Shi tableau T = {bij}1≤i≤j≤n−1 for a region in Sn,m, let T ′ be its conjugate given
by T ′ = {b′ij}1≤i≤j≤n−1, where b′ij = bn−j,n−i.

Example 4.9
By Lemma 2.5, T ′ will also be Shi tableau of a region in Sn,m. Additionally, by Lemma 2.6, we have

the following proposition.

Proposition 4.10 Suppose the regions R and R′ are related by

(TR)′ = TR′ .

Then R ∈ hnαijm if and only if R ∈ hnαn−j,n−im.

In terms of generating functions, this becomes the following:

fnαijm(p, q) = fnαn−j,n−im(q, p). (4.4)

We will now combine Theorem 3.1, Proposition 4.6, and Proposition 4.10 to produce an expression for
the generating function for regions with a given separating wall.

Given a polynomial f(p, q) in two variables, let φkm(f) be the polynomial

(pm[m(k − 2) + 1]qf(p, q))≤q(k−1)m

and let ρ(f) be the original polynomial with p and q reversed: f(q, p). Then (4.2) is

fnαijm(p, q) = φnm(fn−1
αijm(p, q)) and (4.4) is fnim(j, p)q = ρ(fnαn−j,n−im(p, q)).

Finally, the full recursion is

Theorem 4.11

fnαuvm(p, q) = φn(φn−1(. . . φv+2(ρ(φv+1(. . . (φv−u+3(pmqm[m]v−up,q ) . . .).

The idea behind the theorem is that, given a root αuv in dimension n − 1, we remove columns using
Lemma 4.7 until we are in dimension (v + 1) − 1, then we conjugate, then remove columns again until
our root is α1,v−u+1 and we are in dimension (v − u+ 2)− 1.

Example 4.12 We would like to know how many elements there are in h7
α242; that is, how many dominant

regions in the 2-Shi arrangement for n = 7 have Hα24,2 as a separating wall.

f7
α242(p, q) =

(
p2[13]qf6

α242(p, q)
)
≤q12

=
(
p2[13]q

(
p2[11]qf5

α242(p, q)
)
≤q10

)
≤q12

=
(
p2[13]q

(
p2[11]qf5

α132(q, p)
)
≤q10

)
≤q12

=
(
p2[13]q

(
p2[11]q

(
q2[9]pf4

α132(q, p)
)
≤p8

)
≤q10

)
≤q12

=
(
p2[13]q

(
p2[11]q

(
q2[9]p

(
p2q2[2]2p,q

))
≤p8

)
≤q10

)
≤q12
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After expanding this polynomial and evaluating at p = q = 1, we see there are 781 such regions.
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