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The topology of restricted partition posets

Richard Ehrenborg1† and JiYoon Jung1
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Abstract. For each composition ~c we show that the order complex of the poset of pointed set partitions Π•~c is a wedge
of β(~c) spheres of the same dimensions, where β(~c) is the number of permutations with descent composition ~c.
Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module SB where
B is a border strip associated to the composition ~c. We also study the filter of pointed set partitions generated by a
knapsack integer partitions and show the analogous results on homotopy type and action on the top homology.

Résumé. Pour chaque composition~c nous montrons que le complexe simplicial des chaı̂nes de l’ensemble ordonné Π•~c
des partitions pointées d’un ensemble est un bouquet de β(~c) sphères de même dimension, où β(~c) est le nombre de
permutations ayant la composition de descentes ~c. De plus, l’action du groupe symétrique sur le groupe d’homologie
de degré maximum est isomorphe au module de Specht SB où B est la bande frontalière associée à la composition ~c.
Nous étudions aussi le filtre des partitions pointées d’un ensemble, engendré par des partitions d’entiers de type “sac à
dos” et nous démontrons des résultats analogues pour le type d’homotopie et pour l’action sur le groupe d’homologie
de degré maximum.
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1 Introduction
The study of partitions with restrictions on their block sizes began in the dissertation by Sylvester (16),
who studied the poset Π2

n of partitions where every block has even size. He proved that the Möbius
function of this poset is given by µ(Π2

n∪{0̂}) = (−1)n/2 ·En−1, whereEn denotes the nth Euler number.
Recall that the nth Euler number enumerates the number of alternating permutations, that is, permutations
α = α1 · · ·αn in the symmetric group Sn such that α1 < α2 > α3 < α4 > · · ·. Stanley (13) generalized
this result to the d-divisible partition lattice Πd

n, that is, the collection of partitions of {1, 2, . . . , n} where
each block size is divisible by d. His results states that the Möbius function µ(Πd

n ∪ {0̂}) is, up to the
sign (−1)n/d, the number of permutations in Sn−1 with descent set {d, 2d, . . . , n − d}, in other words,
the number of permutations with descent composition (d, . . . , d, d− 1).

Calderbank, Hanlon and Robinson (3) extended these results by considering the action of the symmetric
group Sn−1 on the top homology group of the order complex of Πd

n − {1̂}. They showed this action is
the Specht module on the border strip corresponding the composition (d, . . . , d, d− 1).

†Both authors are partially supported by National Science Foundation grants 0902063.

1365–8050 c© 2011 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmAOind.html


282 Richard Ehrenborg and JiYoon Jung

Wachs (17) showed that the d-divisible partition lattice has an EL-shelling, and hence as a corollary
obtained that the homotopy type is a wedge of spheres of dimension n/d − 2. She then gave a more
explicit proof of the representation of the top homology of Πd

n − {1̂}.
So far we note that the d-divisible partition lattice is closely connected with the permutations having

the descent composition (d, . . . , d, d − 1). We explain this phenomenon in this paper by introducing
pointed partitions. They are partitions where one block is considered special, called the pointed block.
We obtain such a partition by removing the element n from its block and making this block the pointed
block. We now extend the family of posets under consideration. For each composition ~c = (c1, . . . , ck)
of n we define a poset Π•~c such that the Möbius function µ(Π•~c ∪ {0̂}) is the sign (−1)k times the number
of permutations with descent composition ~c. Furthermore, the order complex of Π•~c − {1̂} is homotopy
equivalent to a wedge of spheres of dimension k− 2. Finally, we show the action of the symmetric group
on the top homology group H̃k−2(∆(Π•~c−{1̂})) is the Specht module corresponding to the composition~c.

Our techniques differ from Wachs’ method for studying the d-divisible partition lattice. Using Quillen’s
fiber lemma, we are able to change the poset question into studying the subcomplexes of the complex of
ordered partitions. These subcomplexes are in fact order complexes of rank-selected Boolean algebras
and hence shellable. The homotopy equivalence given by Quillen’s fiber lemma also carries the action of
the symmetric group.

Ehrenborg and Readdy (4) studied the Möbius function of filters of the partition lattice. They defined the
notion of a knapsack partition. For a filter of a knapsack partition they showed that its Möbius function was
a sum of descent set statistics. We now extend these results topologically by showing that the associated
order complex is a wedge of spheres. The proof follows the same outline as the previous study except
that we use discrete Morse theory to determine the homotopy type of the associated complexes of ordered
set partitions. Furthermore we obtain that the action of the symmetric group on the the top homology is a
direct sum of Specht modules.

We end the paper with open questions for future research.

2 Preliminaries
For basic notions concerning partially ordered sets (posets), see the book by Stanley (14). For topological
background, see the article by Björner (2) and the book by Kozlov (10). Finally, for representation theory
for the symmetric group, see Sagan (12).

Let [n] denote the set {1, 2, . . . , n} and for i ≤ j let [i, j] denote the interval {i, i+1, . . . , j}. A pointed
set partition π of the set [n] is a pair (σ, Z), where Z is a subset of [n] and σ = {B1, B2, . . . , Bk} is a
partition of the set difference [n]− Z. We will write the pointed partition π as

π = {B1, B2, . . . , Bk, Z},

where we underline the set Z and we write 1358|4|267 as shorthand for {{1,3,5,8},{4},{2,6,7}}. More-
over, we call the set Z the pointed block. Let Π•n denote the set of all pointed set partitions on the set [n].
The set Π•n has a natural poset structure. The order relation is given by

{B1, B2, . . . , Bk, Z} < {B1 ∪B2, . . . , Bk, Z},
{B1, B2, . . . , Bk, Z} < {B2, . . . , Bk, B1 ∪ Z}.

The lattice Π•n is isomorphic to the partition lattice Πn+1 by the bijection {B1, . . . , Bk, Z} 7−→
{B1, . . . , Bk, Z ∪ {n+ 1}}. However it is to our advantage to work with pointed set partitions.
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For a permutation α = α1 · · ·αn in the symmetric group Sn define its descent set to be the set

{i ∈ [n− 1] : αi > αi+1}.

Subsets of [n− 1] are in a natural bijective correspondence with compositions of n. Hence we define the
descent composition of the permutation α to be the composition

Des(α) = (s1, s2 − s1, s3 − s2, . . . , sk−1 − sk−2, n− sk−1),

where the descent set of α is the set {s1 < s2 < · · · < sk−1}. We define an integer composition
~c = (c1, . . . , ck) to be a list of positive integers c1, . . . , ck−1 and a non-negative integer ck with c1 +
· · · + ck = n. Note that the only part allowed to be 0 is the last part. Let β(~c) denote the number of
permutations in α ∈ Sn with descent composition ~c for ck > 0. If ck = 0, let β(~c) = 0 for k ≥ 2 and
β(~c) = 1 for k = 1.

On the set of compositions on n we define an order relation by letting the cover relation be adding
adjacent entries, that is,

(c1, . . . , ci, ci+1, . . . , ck) ≺ (c1, . . . , ci + ci+1, . . . , ck).

Observe that this poset is isomorphic to the Boolean algebra Bn on n elements and the maximal and
minimal elements are the two compositions (n) and (1, . . . , 1, 0).

An integer partition λ of a non-negative integer n is a multiset of positive integers whose sum is n. We
will indicate multiplicities with a superscript. Thus {5, 3, 3, 2, 1, 1, 1} = {5, 32, 2, 13} is a partition of 16.
A pointed integer partition (λ,m) of n is pair where m is a non-negative integer and λ is a partition of
n −m. We write this as {λ1, . . . , λp,m} where λ = {λ1, . . . , λp} is the partition and m is the pointed
part. This notion of pointed integer partition is related to pointed set partitions by defining the type of a
pointed set partition π = {B1, B2, . . . , Bk, Z} to be the pointed integer partition

type(π) = {|B1|, |B2|, . . . , |Bk|, |Z|}.

Similarly, the type of a composition ~c = (c1, . . . , ck) is the pointed integer partition

type(~c) = {c1, . . . , ck−1, ck}.

We now define the poset central to this paper.

Definition 2.1 For ~c a composition of n, let Π•~c be the subposet of the pointed partition lattice Π•n de-
scribed by

Π•~c =
{
π ∈ Π•n : ∃~d ≥ ~c, type(π) = type(~d)

}
.

In other words, the poset Π•~c consists of all pointed set partitions such that their type is the type of some
composition ~d which is greater or equal to the composition ~c in the composition order.

Example 2.2 Consider the composition ~c = (d, . . . , d, d − 1) of the integer n = d · k − 1. For a
composition to be greater than or equal to ~c, it is equivalent to all its parts must be divisible by d except
the last part which is congruent to d− 1 modulo d. Hence Π•~c consists of all pointed set partitions where
the block sizes are divisible by ~d except the pointed block whose size is congruent to d − 1 modulo d.
Hence the poset Π•~c is isomorphic to the d-divisible partition lattice Πd

n+1.
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Example 2.3 We note that Π•~c ∪ {0̂} is in general not a lattice. Consider the composition ~c = (1, 1, 2, 1)
and the four pointed set partitions

π1 = 1|2|34|5, π2 = 2|5|34|1, π3 = 34|125 and π4 = 2|1345

in Π•(1,1,2,1). In the pointed partition lattice Π•5 we have that π1, π2 < 2|34|15 < π3, π4. Since the pointed
set partition 2|34|15 does not belong to Π•(1,1,2,1), we conclude that Π•(1,1,2,1) ∪ {0̂} is not a lattice.

For a poset P define its order complex to be the simplicial complex ∆(P ) where the vertices of the
complex ∆(P ) are the elements of the poset P and the faces are the chains in poset. In other words, the
order complex of P is given by

∆(P ) = {{x1, x2, . . . , xk} : x1 < x2 < · · · < xk, x1, . . . , xk ∈ P}.

For the remainder of this section, we restrict ourselves to considering compositions of n where the last
part is positive. Such a composition lies in the interval from (1, . . . , 1) to (n). This interval is isomorphic
to the Boolean algebra Bn−1 which is a complemented lattice. Hence for such a composition ~c there
exists a complementary composition ~c ′ such that ~c ∧ ~c ′ = (1, . . . , 1) and ~c ∨ ~c ′ = (n). As an example,
the complement of the composition (1, 3, 1, 1, 4) = (1, 1 + 1 + 1, 1, 1, 1 + 1 + 1 + 1) is obtained by
exchanging commas and plus signs, that is, (1 + 1, 1, 1 + 1 + 1 + 1, 1, 1, 1) = (2, 1, 4, 1, 1, 1). Note that
the complementary composition has n− k + 1 parts.

For a composition ~c = (c1, . . . , ck) define the intervals R1, . . . , Rk by Ri = [c1 + · · · + ci−1 +
1, c1 + · · · + ci]. Define the subgroup S~c of the symmetric group Sn by S~c = SR1 × · · · × SRk

.
Let K1, . . . ,Kn−k+1 be the corresponding intervals for the complementary composition ~c ′. Define the
subgroup S′~c by

S′~c = S~c ′ = SK1 × · · · ×SKn−k+1 .

A border strip is a connected skew shape which does not contain a 2 by 2 square (15, Section 7.17).
For each composition ~c there is a unique border strip B that has k rows and the ith row from below
consists of ci boxes. If we label the n boxes of the border strip from southwest to northeast, then the in-
tervals R1, . . . , Rk correspond to the rows and the intervals K1, . . . ,Kn−k+1 correspond to the columns.
Furthermore, the group S~c is the row stabilizer and the group S′~c is the column stabilizer of the border
strip B.

3 The simplicial complex of ordered set partitions
An ordered set partition τ of set S is a list of blocks (C1, C2, . . . , Cm) where the blocks are subsets of
the set S satisfying:

(i) All blocks except possibly the last block are non-empty, that is, Ci 6= ∅ for 1 ≤ i ≤ m− 1.

(ii) The blocks are pairwise disjoint, that is, Ci ∩ Cj = ∅ for 1 ≤ i < j ≤ m.

(iii) The union of the blocks is S, that is, C1 ∪ · · · ∪ Cm = S.

To distinguish from pointed partitions we write 36-127-8-45 for ({3, 6}, {1, 2, 7}, {8}, {4, 5}). The type
of an ordered set partitions, type(τ), is the composition (|C1|, |C2|, . . . , |Cm|).
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Let ∆n denote the collection of all ordered set partitions of the set [n]. We view ∆n as a simplicial
complex. The ordered set partition τ = (C1, C2, . . . , Cm) is an (m− 2)-dimensional face. It has m− 1
facets, which are τ = (C1, . . . , Ci ∪ Ci+1, . . . , Cm) for 1 ≤ i ≤ m − 1. The empty face corresponds
to the ordered partition ([n]). The complex ∆n has 2n − 1 vertices that are of the form (C1, C2) where
C1 6= ∅. Moreover there are n! facets corresponding to permutations in the symmetric group Sn, that is,
for a permutation α = α1 · · ·αn, the associated facet is ({α1}, {α2}, . . . , {αn}, ∅).

The permutahedron is the (n − 1)-dimensional polytope obtained by taking the convex hull of the n!
points (α1, . . . , αn) where α = α1 · · ·αn ranges over all permutations in the symmetric group Sn.
Let Pn denote the boundary complex of the dual of the (n − 1)-dimensional permutahedron. Since the
permutahedron is a simple polytope the complex Pn is a simplicial complex homeomorphic to an (n−2)-
dimensional sphere. In fact, it is the boundary of the complex ∆n.

For a permutation α = α1 · · ·αn in the symmetric group Sn and a composition ~c = (c1, . . . , ck) of n,
define the ordered partition

σ(α,~c) = ({αj : j ∈ Ri})1≤i≤k
= ({α1, . . . , αc1}, {αc1+1, . . . , αc1+c2}, . . . , {αc1+···+ck−1+1, . . . , αn}).

We write σ(α) when it is clear from the context what the composition ~c is.
For a composition ~c define the subcomplex ∆~c to be

∆~c = {τ ∈ ∆n : ~c ≤ type(τ)}.

This complex has all of its facets of type ~c. Especially, each facet has the form σ(α,~c) for some permuta-
tion α. As an example, note that ∆(1,1,...,1) is the complex Pn.

However for a facet F in ∆~c there are ~c ! = c1! · · · ck! permutations that map to it by the function σ. Let
σ−1(F ) denote the unique permutation α that gets mapped to the facet F which satisfies the inequalities

αc1+···+ci+1 < · · · < αc1+···+ci+1

for 0 ≤ i ≤ k − 1. Furthermore, the descent composition of the permutation σ−1(F ) is greater than or
equal to the composition ~c, that is, Des(σ−1(F )) ≥ ~c.

Lemma 3.1 If the composition ~c = (c1, . . . , ck) ends with 0, then the simplicial complex ∆~c is a cone
over the complex ∆(c1,...,ck−1) with apex ([n], ∅) and hence contractible.

Theorem 3.2 Let ~c be a composition not ending with a zero. Then the simplicial complex ∆~c is shellable.
The spanning facets (also known as the homology facets) are of the form σ(α) where α ranges over all
permutations in the symmetric group Sn with descent composition ~c, that is, Des(α) = ~c. Hence the
complex ∆~c is homotopy equivalent to wedge of β(~c) spheres of dimension k − 2.

By observing that ∆~c is the order complex of a rank selection of the Boolean algebra Bn, this result is a
direct consequence of that Bn is EL-shellable (1).

4 The homotopy type of the poset Π•~c
We now will use Quillen’s fiber lemma to show that the chain complex ∆(Π•~c − {1̂}) is homotopy equiv-
alent to the simplicial complex ∆~c. Recall that a simplicial map f from a simplicial complex Γ to a
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Fig. 1: The simplicial complex ∆(1,2,1) of ordered partitions. Note that the ordered partition 1234 corresponds to the
empty face.

poset P sends vertices of Γ to elements of P and faces of the simplicial complex to chains of P . We have
the following result due to Quillen (11).

Theorem 4.1 (Quillen’s Fiber Lemma) Let f be a simplicial map from the simplicial complex Γ to the
poset P such that for all x in P , the subcomplex ∆(f−1(P≥x)) is contractible. Then the order complex
∆(P ) and the simplicial complex Γ are homotopy equivalent.

Quillen’s proof of this result uses homotopy colimits. The proof of this result due to Walker (19) shows
that the continuous function f : |Γ| −→ |∆(P )| has a homotopy inverse. We will use this later when we
study the action of the symmetric group in Section 6.

Recall that the barycentric subdivision of a simplicial complex Γ is the simplicial complex sd(Γ) whose
vertices are the non-empty faces of Γ and faces are subsets of chains of faces in Γ ordered by inclusion. It
is well-known that Γ and sd(Γ) are homeomorphic (since they have the same geometric realization) and
hence are homotopy equivalent.

Consider the map φ that sends an ordered set partition (C1, C2, . . . , Ck) to the pointed partition {C1,
C2, . . . , Ck−1, Ck}. We call this map the forgetful map since it forgets about the order between the blocks
except it keeps the last part as the pointed block. Observe that the inverse image of the pointed partition
{C1, C2, . . . , Ck−1, Ck} consists of (k − 1)! ordered set partitions.

Lemma 4.2 Let π be the pointed partition {B1, . . . , Bm−1, Bm} wherem ≥ 2. Let Ω be the subcomplex
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of the complex ∆~c whose facets are given by the inverse image

φ−1
((

Π•~c − {1̂}
)
≥π

)
.

Then the complex Ω is a cone over the apex ([n]−Bm, Bm) and hence is contractible.

Theorem 4.3 The order complex ∆(Π•~c − {1̂}) is homotopy equivalent to the barycentric subdivision
sd(∆~c) and hence ∆~c.

By considering the reduced Euler characteristic of the complex ∆
(
Π•~c − {1̂}

)
, we have the following

corollary.

Corollary 4.4 The Möbius function of the poset Π•~c ∪ {0̂} is given by (−1)k · β(~c).

We note that this corollary can be given a combinatorial proof which avoids Quillen’s fiber lemma.

5 Cycles in the complex ∆~c

In this section and the next we assume that the last part of the composition ~c is non-zero, since in the case
ck = 0 the homology group is the trivial group; see Lemma 3.1.

For α a permutation in the symmetric group Sn, define the subcomplex Σα of the complex ∆~c to be
the simplicial complex whose facets are given by {σ(α ◦ γ) : γ ∈ S′~c}.

Lemma 5.1 The subcomplex Σα is isomorphic to the join of the duals of the permutahedra P|K1| ∗ · · · ∗
P|Kn−k+1| and hence it is sphere of dimension k − 2.

Observe that the facets of ∆~c are in bijection with permutations α such that Des(α) ≥ ~c in the compo-
sition order.

Recall that the boundary map of the face σ = (C1, . . . , Cr) in the chain complex of ∆~c is defined by

∂((C1, . . . , Cr)) =
r−1∑
i=1

(−1)i−1 · (C1, . . . , Ci ∪ Ci+1, . . . , Cr).

Lemma 5.2 For α ∈ Sn, the element

gα =
∑
γ∈S′

~c

(−1)γ · σ(α ◦ γ)

in the chain group Ck−2(∆~c) belongs to the kernel of the boundary map and hence to the homology group
H̃k−2(∆~c).

Theorem 5.3 The cycles gα, where α ranges over all permutations with descent composition ~c, form a
basis for the homology group H̃k−2(∆~c).
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6 Representation of the symmetric group
The symmetric group Sn acts naturally on the the poset Π•~c by relabeling the elements. Hence it also
acts on the order complex ∆(Π•~c − {1̂}). Lastly, the symmetric group acts on the top homology group
H̃k−2(∆(Π•~c − {1̂})). We show in this section that this action is a Specht module of the border strip B
corresponding to the composition ~c. For an overview on the representation theory of the symmetric group,
we refer the reader to Sagan’s book (12).

The forgetful map φ from sd(∆~c) to the order complex of the poset Π•~c−{1̂} commutes with the action
of the symmetric group Sn. In other words, we have the commutative diagram

sd(∆~c)
φ−−−−→ ∆(Π•~c − {1̂})

γ

y γ

y
sd(∆~c)

φ−−−−→ ∆(Π•~c − {1̂})

where γ belongs to Sn. Observe that the map φ extends to a continuous function from the geometric
realization |sd(∆~c)| to the geometric realization |∆(Π•~c − {1̂})|, and hence we have the map between the
homology groups φ∗ : H̃k−2(sd(∆~c)) −→ H̃k−2(∆(Π•~c − {1̂})). By applying homology, we obtain that
the following diagram of homology groups commutes:

H̃k−2(sd(∆~c))
φ∗−−−−→ H̃k−2(∆(Π•~c − {1̂}))

γ∗

y γ∗

y
H̃k−2(sd(∆~c))

φ∗−−−−→ H̃k−2(∆(Π•~c − {1̂}))

From the Quillen’s fiber lemma we know that the function φ has a homotopic inverse, say ψ : |∆(Π•~c −
{1̂})| −→ |sd(∆~c)|. Hence we have ψ∗ : H̃k−2(∆(Π•~c − {1̂})) −→ H̃k−2(sd(∆~c)). Note that φ∗ and
ψ∗ are inverses of each other. The function ψ may not commute with the group action. However, since
γ∗ ◦ ψ∗ = ψ∗ ◦ φ∗ ◦ γ∗ ◦ ψ∗ = ψ∗ ◦ γ∗ ◦ φ∗ ◦ ψ∗ = ψ∗ ◦ γ∗ we have that ψ∗ commutes with the group
action. We formulate this statement as follows.

Proposition 6.1 The two homology groups H̃k−2(sd(∆~c)) and H̃k−2(∆(Π•~c − {1̂})) are isomorphic as
Sn-modules.

It is clear that H̃k−2(sd(∆~c)) and H̃k−2(∆~c) are isomorphic as Sn modules. Hence in the remainder
of this section we will study the action the symmetric group Sn on ∆~c and its action on the homology
group H̃k−2(∆~c).

Let B be the border strip that has k rows where the ith row consists of ci boxes. Recall that a tableau
is a filling of the boxes of the shape B with the integers 1 through n. A standard Young tableau is a
tableau where the rows and columns are increasing. A tabloid is an equivalence class of tableaux under
the relation of permuting the entries in each row. See (12, Section 2.1) for details.

Observe that there is a natural bijection between tabloids of shape B and facets of the complex ∆~c by
letting the elements in each row form a block and letting the order of the blocks go from lowest to highest
row. Let MB be the permutation module corresponding to shape B, that is, the linear span of all tabloids
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of shape B. Notice that the above bijection induces a Sn-module isomorphism between the permutation
module MB and the chain group Ck−2(∆~c).

Furthermore, there is a bijection between tableaux of shape B and and permutations by reading the
elements in the northeast direction from the border strip. Recall that the group S′~c = SK1×· · ·×SKn−k+1

is the column stabilizer of the border strip B. Let t be a tableau and α its association permutation. Hence
the polytabloid et corresponding to the tableau t is the element gα presented in Lemma 5.2. Since the
Specht module SB is the submodule of MB spanned by all polytabloids, Lemma 5.2 proves that the
Specht module SB is isomorphic to a submodule of the kernel of the boundary map ∂k−2. Since the kernel
is the top homology group H̃k−2(∆~c), and the Specht module SB and the homology group H̃k−2(∆~c)
have the same dimension β(~c), we conclude that they are isomorphic. To summarize we have:

Proposition 6.2 The top homology group H̃k−2(∆~c) is isomorphic to the Specht module SB as Sn-
modules.

By combining Propositions 6.1 and 6.2, the main result of this section follows.

Theorem 6.3 The top homology group H̃k−2(∆(Π•~c − {1̂})) is isomorphic to the Specht module SB as
Sn-modules.

7 Knapsack partitions
We now turn our attention to filters in the pointed partition lattice Π•n that are generated by a pointed
knapsack partition. These filters were introduced in (4).

Recall that we view an integer partition λ as a multiset of positive integers. Let λ = {λe11 , . . . , λ
eq
q }

be an integer partition, where we assume that the λi’s are distinct. If all the (e1 + 1) · · · (eq + 1) integer
linear combinations {

q∑
i=1

fi · λi : 0 ≤ fi ≤ ei

}
are distinct, we call λ a knapsack partition. A pointed integer partition {λ,m} is called a pointed knapsack
partition if the partition λ is a knapsack partition.

Definition 7.1 For a pointed knapsack partition {λ,m} = {λ1, λ2, . . . , λk,m} of n define the sub-
poset Π•{λ,m} to be the filter of Π•n generated by all pointed set partitions of type {λ,m} and define
the subcomplex Λ{λ,m} of the complex ∆n by

Λ{λ,m} = {τ = (C1, . . . , Cr−1, Cr) ∈ ∆n : {C1, . . . , Cr−1, Cr} ∈ Π•{λ,m}}.

For a pointed knapsack partition {λ,m} of n define F to be the filter in the poset of compositions
of n generated by compositions ~c such that type(~c) = {λ,m}. Now define V (λ,m) to be the collection
of all pointed compositions ~c = (c1, c2, . . . , cr) in the filter F such that each ci, 1 ≤ i ≤ r − 1, is
a sum of distinct parts of the partition λ and cr = m. As an example, for λ = {1, 1, 3, 7} we have
(4, 8,m) ∈ V (λ,m) but (2, 10,m) 6∈ V (λ,m).

For a composition ~d in V (λ,m) define ε(~d) to be the composition of type {λ,m}, where each entry di
of ~d has been replaced with a decreasing list of parts of λ. That is,

ε(~d) = (λ1,1, . . . , λ1,t1 , . . . , λs,1, . . . , λs,ts ,m),
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Fig. 2: The simplicial complex Λ{2,1,1}, corresponding to the knapsack partition {2, 1, 1}. Notice that this complex
is the union of two complexes ∆(1,2,1) and ∆(2,1,1).

where λi,1 > λi,2 > · · · > λi,ti ,
∑ti
j=1 λi,j = di and

{λ,m} = {λ1,1, . . . , λ1,t1 , . . . , λs,1, . . . , λs,ts ,m}.

As an example, for the pointed knapsack partition λ = {2, 1, 1} we have ε((3, 1)) = (2, 1, 1), ε((2, 1, 1))
= (2, 1, 1) and ε((1, 2, 1)) = (1, 2, 1). Also note ε(~d) ≤ ~d in the partial order of compositions.

Similar to Theorem 3.2 we have the following topological conclusion. However, this time the tool is
not shelling, but discrete Morse theory.

Theorem 7.2 There is a Morse matching on the simplicial complex Λ{λ,m} such that the only critical
cells are of the form σ(α, ε(~d)) where ~d ranges in the set V (λ,m) and α ranges over all permutations in
the symmetric group Sn with descent composition ~d. Hence, the simplicial complex Λ{λ,m} is homotopy
equivalent to wedge of

∑
~d∈V (λ,m) β(~d) spheres of dimension k − 1.

Example 7.3 Consider the pointed knapsack partition {λ,m} = {2, 1, 1}, whose associated complex
Λ{2,1,1} is shown in Figure 2. Note that V (λ,m) = {(1, 2, 1), (2, 1, 1), (3, 1)}. The critical cells of the
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complex Λ{2,1,1} are as follows:

~d β(~d) ε(~d) critical cells
(1, 2, 1) 5 (1, 2, 1) 2-14-3, 3-14-2, 3-24-1, 4-13-2, 4-23-1
(2, 1, 1) 3 (2, 1, 1) 14-3-2, 24-3-1, 34-2-1
(3, 1) 3 (2, 1, 1) 12-4-3, 13-4-2, 23-4-1

Note that Λ{2,1,1} is homotopy equivalent to a wedge of 11 circles.

Now by the same reasoning as in Section 4, that is, using the forgetful map φ and Quillen’s fiber lemma,
we obtain the homotopy equivalence between the order complex of pointed partitions Π•{λ,m} − {1̂} and
the simplicial complex of ordered set partitions Λ{λ,m}.

Theorem 7.4 The order complex ∆
(

Π•{λ,m} − {1̂}
)

is homotopy equivalent to the barycentric subdivi-

sion sd(Λ{λ,m}) and hence the simplicial complex Λ{λ,m}.

As a corollary we obtain the Möbius function of the poset Π•{λ,m} ∪ {0̂}; see (4).

Corollary 7.5 (Ehrenborg–Readdy) The Möbius function of the poset Π•{λ,m} ∪ {0̂} is given by

µ
(

Π•{λ,m} ∪ {0̂}
)

= (−1)k ·
∑

~d∈V (λ,m)

β(~d).

By the same reasoning as Sections 5 and 6, we have the following isomorphism.

Theorem 7.6 The two homology groups H̃k−1

(
∆
(

Π•{λ,m} − {1̂}
))

and H̃k−1

(
Λ{λ,m}

)
are isomor-

phic as Sn-modules. Furthermore, they are isomorphic to the direct sum of Specht modules⊕
~d∈V (λ,m)

SB(~d).

8 Concluding remarks
We have not dealt with the question whether the poset Π•~c is EL-shellable. Recall that Wachs proved that
the d-divisible partition lattice Πd

n∪{0̂} has an EL-labeling. Ehrenborg and Readdy gave an extension of
this labeling to prove that Π•(d,...,d,m) is EL-shellable (5). Furthermore, Woodroofe (20) showed that the
order complex ∆(Πd

n−{1̂}) has a convex ear decomposition. This is not true in general for ∆(Π•~c−{1̂}).
Can these techniques be used for studying other subposets of the partition lattice? One such subposet is

the odd partition lattice, that is, the collection of all partition where each block size is odd. More generally,
what can be said about the case when all the block sizes are congruent to r modulo d? These posets have
been studied in (3) and (18). Moreover, what can be said about the poset Π•{λ,m} when {λ,m} is not a
pointed knapsack partition?

Another analogue of the partition lattice is the Dowling lattice. Subposets of the Dowling lattice have
been studied in (5) and (8; 9). Here the first question to ask is what is the right analogue of the ordered set
partitions.
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