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Arc Spaces and Rogers-Ramanujan Identities
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Abstract. Arc spaces have been introduced in algebraic geometry as a tool to study singularities but they show strong
connections with combinatorics as well. Exploiting these relations we obtain a new approach to the classical Rogers-
Ramanujan Identities. The linking object is the Hilbert-Poincaré series of the arc space over a point of the base
variety. In the case of the double point this is precisely the generating series for the integer partitions without equal
or consecutive parts.

Résumé. Les espaces des arcs ont été introduit pour étudier les singularités, mais ils ont aussi un lien fort avec la
combinatoire. Ce lien permet une nouvelle approche vers les identités de Rogers-Ramanujan. L’objet permettant
cette approche est la série de Hilbert-Poincaré de l’algèbre des arcs centrés en un point de la variété de base. Dans
le cas où cette variété est le point double, cette série est la série génératrice des partitions d’un nombre entier sans
parties égales ou consécutives.

Resumen. Los espacios de arcos han sido introducidos en geometrı́a algebraica como una herramienta para estudiar
singularidades, sin embargo también han mostrado una robusta conexión con la combinatoria. Exprimiendo estas
relaciones obtenemos un nuevo enfoque de las identidades de Rogers-Ramanujan. El objeto vinculante son las series
de Hilbert-Poincaré de los espacios de arcos en un punto de la variedad base. En el caso del punto doble estas series
son precisamente las series generadoras de las particiones enteras sin partes iguales o consecutivas.

Keywords: formal power series, Hilbert-Poincaré series, partitions, Rogers-Ramanujan Identities, arc spaces, infinite
dimensional Gröbner basis

1 Introduction
Arc spaces have first appeared in the work of John Nash (see Nash (1995)) to study resolution of singu-
larities of algebraic varieties. Besides their geometric usefulness (see Ein and Mustaţǎ (2004), and Ishii
(2007) for an overview) arc spaces show strong relations with combinatorics. In this extended abstract we
indicate how to exploit this connection both for algebraic as well as combinatorial benefit. Especially, we
give a new approach towards the well-known Rogers-Ramanujan identities via these ideas. An extended
version of this abstract including complete proofs can be found in Bruschek et al. (2011).
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Before starting with an overview of this note let us emphasize the main algebraic and combinatorial
aspects presented here. First, we suggest to study algebro-geometric properties of algebraic (or analytic)
varieties via natural Hilbert-Poincaré series attached to arc spaces. Second, we propose to derive iden-
tities between partitions by looking at suitable ideals in a polynomial ring in countably many variables
endowed with a natural grading. Connecting both ideas will demand handling Gröbner basis in countably
many variables, a problem which has been successfully dealt with in different contexts over the last years
(see Hillar and Sullivant (2009), Draisma (2010)). In the present situation – that is for very specific ideals
– salvation from the natural obstruction of being infinitely generated comes in the shape of a derivation
making the respective ideals differential.

We start in Section 2 with the definition of the arc space of an algebraic variety as the set of formal
power series solutions (in one variable) to the defining equations of the variety. This data can be encoded
in conditions on the coefficients of the power series, thus yielding countably many equations in countably
many variables. It turns out that these equations have very nice properties: they are homogeneous with
respect to a grading which endows the ith coefficient of the power series with ‘weight’ i, and they are
generated from the defining equations by applying a specific derivation (which will be introduced in the
proof of Lemma 4.4). The first property involves that we can consider the coordinate algebra of the arc
space as a graded algebra and especially we can try to compute its corresponding Hilbert-Poincaré se-
ries. This is elaborated in Section 3 where we also encounter a classical combinatorial object: partitions.
These naturally arise when computing weights of monomials. Indeed, a monomial yα1

1 · · · y
αj

j has weight
α1 · 1 + · · · + αj · j. Asking for the number of monomials (up to coefficients) of some weight m is
thus asking for the number of partitions of m. In Section 4 – using a well-known result from the theory
of partitions – we are able to compute the Hilbert-Poincaré series of a simple, though already interest-
ing, algebraic variety. On the other hand, we can use standard techniques from commutative algebra to
compute the Hilbert-Poincaré series for the double point (i.e., the algebraic variety given by one polyno-
mial equation y2 = 0 in one variable y), thus retrieving the Rogers-Ramanujan identities. Using triple
or even n-fold points we would obtain Gordon’s generalizations of the Rogers-Ramanujan identities (see
Andrews (1998) for a precise statement of those). We conclude with a short synopsis of the theory of
Hilbert-Poincaré series.

The first named author expresses his gratitude to Georg Regensburger and Josef Schicho for many
useful discussions on these topics; the second author thanks Monique Lejeune-Jalabert for introducing
him to Hilbert-Poincaré series; the third named author would like to thank Johannes Nicaise for explaining
him several facts about arc spaces in detail. All authors are indebted to an anonymous referee for pointing
out the connection between Lie algebras and the Rogers-Ramanujan Identities.

2 Arc spaces
Let us briefly recall the notion of arc space. Essentially arc spaces are sets of solutions to polynomial
equations in a formal power series ring in one indeterminate. To be more precise, let f ∈ k[x1, . . . , xn] be
a polynomial in n variables x1, . . . , xn with coefficients in a field k. The formal power series ring in one
variable t over the field k is written as k[[t]]. The arc space of the algebraic variety X defined by f is the
set of power series solutions x(t) = (x1(t), . . . , xn(t)) ∈ k[[t]]n to the equation f(x(t)) = 0. We denote
it byX∞. This set turns out to be eventually algebraic in the sense that it is given by polynomial equations
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(though there are countably many of them). Indeed, write xj(t) =
∑∞
i=0 x

(i)
j ti with new variables x(i)

j ,
1 ≤ j ≤ n and i ∈ N = {0, 1, 2, . . . , }. Expanding f(x(t)) as a power series in t gives

f(x(t)) = F0 + F1t+ F2t
2 + · · ·

with Fi ∈ k[x(i)
j ; 1 ≤ j ≤ n, i ∈ N] polynomials in the coefficients of t in x(t) (see Bruschek (2010)

or Bruschek (2009) for more combinatorial properties of these polynomials). Therefore, a given vector
of formal power series a(t) ∈ k[[t]]n is an element of the arc space X∞ if and only if its coefficients
a
(i)
j fulfill the equations F0, F1, . . .. Algebraically the corresponding set of solutions is described by its

coordinate algebra
J∞(X) = k[x(i)

j ; 1 ≤ j ≤ n, i ∈ N]/(F0, F1, . . .).

Note, that the equation F0 is nothing but our original polynomial f written in variables x(0)
j , 1 ≤ j ≤ n.

We will mostly be interested in the case where we substitute in the Fi for (x(0)
1 , . . . , x

(0)
n ) an n-tuple

p = (p1, . . . , pn) which fulfills f(p) = 0, i.e., which describes a point on our algebraic variety X . The
resulting algebra is called the focussed arc algebra and denoted by Jp∞(X). Without loss of generality
we may assume that p is the origin. If we write fi for the polynomial we obtain after substituting 0 for all
x

(0)
j in Fi then

J0
∞(X) = k[x(i)

j ; 1 ≤ j ≤ n, i ≥ 1]/(f1, f2, . . .).

For sake of completeness we introduce also the jet spaces of X . These are usually defined as truncated
power series solutions to the defining equations of the variety. In the present situation the mth jet space
Xm of X is

Xm = {x(t) ∈
(
k[[t]]/(t)m+1

)n
; f(x(t)) = 0 mod (t)m+1}.

Its coordinate algebra is simply given by

Jm(X) = k[x(i)
j ; 1 ≤ j ≤ n, 0 ≤ i ≤ m]/(F0, F1, . . . , Fm).

with Fi as introduced above. Accordingly, we can also define the focussed mth jet space as

J0
m(X) = k[x(i)

j ; 1 ≤ j ≤ n, 1 ≤ i ≤ m]/(f1, f2, . . . , fm).

It is obvious how these notions extend to the case that our base variety X is not given by one polynomial
f but by finitely many of them. For simplicity of notation we will restrict our considerations to the
hypersurface case though.

3 The Hilbert Poincaré series of an arc algebra
Let X be the algebraic variety defined by a polynomial f ∈ k[x1, . . . , xn] with f(0) = 0 and J∞(X)
respectively J0

∞(X) the corresponding arc algebra respectively focussed arc algebra (at 0). Both are
quotient algebras of the polynomial ring k[x(i)

j ; 1 ≤ j ≤ n, i ∈ N]. Besides its natural grading via the
classical ‘degree’ we will endow this polynomial ring with a grading induced by the following weight:
wt(x(i)

j ) = i.
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Proposition 3.1 The ideal (f1, f2, . . .) ⊆ k[x(i)
j ; 1 ≤ j ≤ n, i ∈ N \ {0}] is homogeneous with respect to

the weight wt; hence the focussed arc algebra J0
∞(X) is a graded algebra. Moreover, all homogeneous

parts J0
∞(X)i of weight i are finite dimensional k-vector spaces.

Remark 3.2 The property that fi is homogeneous with respect to wt is inherited from Fi which is homo-
geneous with respect to wt as well.

Having a graded k-algebra with finite dimensional homogeneous components it is natural to ask for the
corresponding Hilbert-Poincaré series. This is the generating series for the sequence of dimensions

dimk J
0
∞(X)i, i ∈ N.

For a short synopsis of technical results in the theory of Hilbert-Poincaré series we refer to the Appendix,
Section 5, or a text on commutative algebra like Greuel and Pfister (2002). In the remaining sections
we will refer to Hilbert-Poincaré series in short as HP-series. The HP-series of the focussed arc algebra
J0
∞(X) will be denoted by HPJ0

∞(X)(t).

Example 3.3 As a first example we compute the HP-series of the arc space of the affine line A1 focussed
at 0. The affine line has coordinate ring k[y], thus, J0

∞(A1) = k[y1, y2, . . .]. The mth homogeneous piece
of J0

∞(A1) with respect to wt is the k-vector space spanned by all monomials of weight m. Let yα with
α ∈ N(N) denote a monomial in k[y1, y2, . . .]. Clearly, it has weight m exactly if

α1 · 1 + · · ·+ αm ·m = m. (1)

Note, that no yi with i > m can appear in yα since then the weight of the monomial would exceed m.
Equation (1) shows that every monomial of weight m corresponds to a partition of m, i.e.,

dimk J
0
∞(A1)m = p(m)

where p: Z → Z denotes the partition function mapping every integer m to its number of partitions.
Therefore we obtain (see Andrews (1998)):

HPJ0
∞(A1)(t) =

∞∏
i=1

1
1− ti

.

Henceforth we will denote the HP-series computed in the last example by H. It is not hard to prove that
for the focussed arc algebra of affine n-space An the following is true

Proposition 3.4 With the above introduced notation we obtain

HPJ0
∞(An)(t) = Hn.

Remark 3.5 For the more algebro-geometric inclined reader we note that if X and Y are analytically
isomorphic at p ∈ X and q ∈ Y then the corresponding focussed arc algebras are isomorphic as graded
algebras, thus having the same HP-series. Therefore, Proposition 3.4 also gives the HP-series for a
smooth point of an arbitrary n-dimensional variety.
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Remark 3.6 Recall that the multiplicity or order of f ∈ k[x1, . . . , xn] is defined as the minimal degree
of a monomial appearing in f , i.e.,

ord f = min{|α|;α ∈ supp(f)},

where we define |α| = α1 + · · ·+ αn as usual. Moreover, we consider the truncation operator

τ≤r : k[[t]]→ k[t] :
∑
i≥0

ait
i 7→

r∑
i=0

ait
i.

As one would expect
τ≤mHPJ0

m(X)(t) = τ≤mHPJ0
∞(X)(t).

From this it is not hard to show the following:

Proposition 3.7 Let f ∈ k[x1, . . . , xn] with f(0) = 0 define the algebraic variety X . Then f has
multiplicity r if and only if r is the maximal number such that

τ≤r−1HPJ0
∞(X) = τ≤r−1Hn.

Moreover
τ≤rHPJ0

∞(X) = τ≤rHn − tr.
Using results of Ein and Mustaţǎ (2004) one can show the following, which was obtained in Mourtada
(2010) by explicit computation:

Proposition 3.8 If X is a surface with a rational double point at the origin then

HPJ0
∞(X)(t) =

(
1

1− t

)3
∏
i≥2

1
1− ti

2

.

A similar result holds for normal crossings singularities. Indeed, using Theorem 2.2 from Goward and
Smith (2006) one can show:

Proposition 3.9 Let X be the hypersurface given by x1 · · ·xe = 0, e ≤ n, in Ank . Then

HPJ0
∞(X)(t) =

(
e−1∏
i=1

1
1− ti

)n∏
i≥e

1
1− ti

n−1

.

4 Rogers-Ramanujan Identities
The Rogers-Ramanujan Identities are well-known relations between quantities of certain integer parti-
tions. They will appear in what follows for two reasons: one can use them to compute HP-series for some
varieties and in turn we are able to approach them by computing the very same HP-series by different
techniques.
We will use the Rogers-Ramanujan Identities in the following form (sometimes called (first) Rogers-
Ramanujan identity in the literature). For a classical proof and an account of its history, see Andrews
(1998) Chpt. 7.
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Theorem 4.1 (Rogers-Ramanujan Identity) The number of partitions of n into parts congruent to 1 or
4 modulo 5 is equal to the number of partitions of n into parts that are neither repeated nor consecutive.

Its analytic counterpart can be formulated as (see Corollary 7.9 in Andrews (1998)):

Corollary 4.2 (Rogers-Ramanujan Identity, analytic form) Theorem 4.1 is equivalent to the identity

1 +
t

1− t
+

t4

(1− t)(1− t2)
+

t9

(1− t)(1− t2)(1− t3)
+ · · · =

∏
i=1,4 mod5

1
(1− ti)

.

4.1 The Hilbert-Poincaré series of the double point
Let us first use Theorem 4.1 to compute the Hilbert-Poincaré series of the double point X: y2 = 0 in A1.
The corresponding focussed arc algebra looks as follows:

J0
∞(X) = k[y1, y2, . . .]/(2y2

1 , 6y1y2, 6y
2
2 + 8y1y3, . . .).

As before we denote by fi, i ≥ 2, the generators of the defining ideal I of J0
∞(X). In order to compute

the HP-series of this algebra it suffices to compute the HP-series of the algebra

k[y1, y2, . . .]/L(I)

where L(I) is the leading ideal of I with respect to some weight-compatible monomial ordering on
k[y1, y2, . . .], see Theorem 5.3. We endow k[y0, y1, . . .] (and consequently k[y1, y2, . . .]) with the fol-
lowing monomial ordering: for α, β ∈ N(N) we have yα > yβ if and only if wt α > wt β or, in case of
equality, the last non-zero entry of α − β is negative. The leading monomial of fi with respect to this
ordering is determined as

Proposition 4.3 The leading monomial of fi is (j ≥ 1)

lm(fi) =
{
yjyj+1 i = 2j + 1
y2
j i = 2j .

From this we can derive in the present situation L(I):

Lemma 4.4 The leading ideal of I = (fi; i ≥ 2) is given by (lm(fi); i ≥ 2).

Remark 4.5 More precisely the following holds: the leading monomials of (f2, . . . , fq) of weight less
equal q are generated by lm(fi), 2 ≤ i ≤ q. In other words: If we extend {f2, . . . , fq} to a Gröbner basis
of (f2, . . . , fq) all added elements will be of weight larger equal q + 1.

Before giving a short sketch of the proof we introduce the following terminology (cf. Cox et al. (1997)):
let g ∈ k[x1, . . . , xn] and let (h1, . . . , hq) ⊆ k[x1, . . . , xn] be an ideal. We say that g reduces to 0 modulo
(h1, . . . , hq) if there exist ai ∈ k[x1, . . . , xn], 1 ≤ i ≤ q, with g = a1h1 + · · · + aqhq and any leading
monomial of aihi, 1 ≤ i ≤ q, is less or equal to the leading monomial of g.

Sketch of Proof: According to the theory of Gröbner basis it suffices to show that all S-polynomials of
the generators fi reduce to 0 modulo the ideal (f2, f3, . . .). In addition, we may restrict our considerations
to S(fi, fj) with coprime leading monomials lm(fi) and lm(fj) (see for example Cox et al. (1997), §9,
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Proposition 4). By Proposition 4.3 this reduces our investigation to S-polynomials of the following three
types: S(f2j−1, f2j), S(f2j , f2j+1) and S(f2j−1, f2j+1). We prove that all these S-polynomials reduce
to 0 by exploiting the differential structure of the arc ideal F0, F1, . . .: every Fi can be obtained from Fi−1

by applying the k-derivation
D: k[y0, y1, . . .]→ k[y0, y1, . . .]

given by Dyi = yi+1. Moreover, for i ≥ 2 both Fi and fi have the same leading term, thus, any S-
polynomial of fi and fj lifts to an S-polynomial of Fi and Fj ; it suffices to reduce S(Fi, Fj) to 0. This
can be achieved by applying an appropriate power of the derivation D to the simple relation

2y1F0 − y0F1 = 0.

To give an example, note that S(F3, F4) = y2F3 − y1F4, and

0 = D4(2y1F0 − y0F1) = 2y5F0 + 7y4F1 + 8y3F2 + 2S(F3, F4)− y0F5.

This shows that S(F3, F4) reduces to 0 modulo (F0, F1, . . .). 2

Remark 4.6 The task of proving Lemma 4.4 or more generally of determining the leading ideal for the
defining ideal of an arc algebra is in essence the determination of a Gröbner basis for an ideal which has
countably many generators. Fortunately, the infinitely many generators are not arbitrary but determined
by a finite number of polynomials using the derivation D which was introduced in the above sketch of
proof. Similar situations appeared in the work of Hillar and Sullivant (2009), and Draisma (2010).

The computation of the HP-series of k[y1, y2, . . .]/L(I) allows an easy combinatorial interpretation:
the weight of a monomial yα can be interpreted, as we have seen already in Section 3, as an integer
partition. By factoring out L(I) we factor out all monomials yα which contain as factors an y2

i or yiyi+1.
Therefore, the weights of the remaining monomials correspond to integer partitions without repeated or
consecutive parts. Thus, from Theorem 4.1 we deduce:

Theorem 4.7 The Hilbert-Poincaré series of the focussed arc algebra J0
∞(X) of the double line X: y2 =

0 over the origin equals:

HPJ0
∞(X)(t) =

∞∏
i=1,4

mod 5

1
1− ti

.

Remark 4.8 We have recently learned from Edward Frenkel that this result can be obtained in a com-
pletely different way, namely by studying representations of the Virasoro algebra Feigin and Frenkel
(1993).

4.2 An alternative approach to Rogers-Ramanujan
In the previous section we used a combinatorial interpretation of the leading ideal of I = (f2, f3, . . .)
to compute the HP-series of the corresponding graded algebra. There are commutative algebra methods
to do this as well which yield a new approach to the Rogers-Ramanujan identity. By applying these we
will obtain a recursion formula for the generating functions appearing therein which has already been
considered by Andrews and Baxter (1989), though the present method gives a natural way to obtain it.
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Consider the graded algebra S = k[yi; i ≥ 1]/L(I). It is immediate (see the proof of Proposition 4.7)
that its HP-series equals the generating series of the number of partitions of an integer n without repeated
or consecutive parts. Differently, we compute the HP-series of S by recursively defining a sequence of
formal power series (generating functions) in t which converges in the (t)-adic topology to the desired
HP-series. We will simply write k[≥ d] for the polynomial ring k[yi; i ≥ d]. It will be endowed with the
grading wt yi = i. The ideal generated by y2

i , yiyi+1, i ≥ d, in k[≥ d] will be denoted by Id. As usual, if
E is an ideal in a ring R and f ∈ R then we denote the ideal quotient, i.e.,

{a ∈ R ; a · f ∈ E}

by (E : f). Corollary 5.2 implies in the present situation

HPk[≥d]/Id
(t) = HPk[≥d+1]/Id+1(t) + td · HPk[≥d+2]/Id+2(t).

For simplicity of notation let h(d) stand for HPk[≥d]/Id
(t). Then the last equation reads as

h(d) = h(d+ 1) + td · h(d+ 2) (2)

and one deduces

Proposition 4.9 For the HP-series HPJ0
∞(X)(t) = h(1) we obtain

h(1) = Ad · h(d) +Bd+1 · h(d+ 1),

for Ai, Bi ∈ k[[t]] fulfilling the following recursion

Ad = Ad−1 +Bd

Bd+1 = Ad−1 · td−1

with initial conditions A1 = A2 = 1 and B2 = 0,B3 = t.

If (sd)d∈N is a sequence of formal power series sd ∈ k[[t]] we will denote by lim sd its limit – if it exists
– in the (t)-adic topology. Since ord Bd ≥ d − 2 it is immediate that both limAd and limBd exist, in
fact: limBd = 0 and

h(1) = limAd.

The recursion from Proposition 4.9 can easily be simplified. We obtain:

Corollary 4.10 With the above introduced notation HPJ0
∞(X)(t) = limAd where Ad fulfills

Ad = Ad−1 + td−2 ·Ad−2

with initial conditions A1 = A2 = 1.

The recursion appearing in this corollary is well-known since Andrews and Baxter (1989). Its limit is
precisely the infinite product

∞∏
i=1,4

mod 5

1
1− ti

,

i.e., the generating series of the number of partitions with parts equal to 1 or 4 modulo 5. Note, that our
construction gives the generating series Gi defined in Andrews and Baxter (1989) an interpretation as
Hilbert-Poincaré series of the quotients k[≥ i]/Ii. This immediately implies that the series Gi are of the
form Gi = 1 +

∑
j≥iGijt

j .
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5 Appendix
In this section we collect some of the basics about the theory of Hilbert-Poincaré series. For a detailed
introduction, especially proofs, we refer to Greuel and Pfister (2002).

LetA be a (Z-)graded k-algebra and letM = ⊕i∈ZMi be a gradedA-module with ith graded piecesAi
and Mi of finite k-dimension. The Hilbert function HM : Z→ Z of M is defined by HM (i) = dimkMi,
and its corresponding generating series

HPM (t) =
∑
i∈Z

HM (i)ti ∈ Z[[t]]

is called the Hilbert-Poincaré series of M . It is well-known that if A is a Noetherian k-algebra generated
by homogeneous elements x1, . . . , xn of degrees d1, . . . , dn and M is a finitely generated A-module then

HPM (t) =
QM (t)∏n

i=1(1− tdi)

for some QM (t) ∈ Z[t] which is called the (weighted) first Hilbert series of M . If A respectively M is
non-Noetherian then the Hilbert-Poincaré series of M need not be rational anymore. For the rest of this
section we assume that the polynomial ring k[x1, . . . , xn] is graded (not necessarily standard graded). The
notions of homogeneous ideal and degree are to be understood relative to this grading. IfM is graded then
for any integer d we write M(d) for the dth twist of M , i.e., the graded A-module with M(d)i = Mi+d.

The following lemma follows immediately from additivity of dimension:

Lemma 5.1 (Lemma 5.1.2 in Greuel and Pfister (2002)) Let A and M be as above. Let d be a non-
negative integer, f ∈ Ad and ϕ:M(−d) → M be defined by ϕ(m) = f ·m; then ker(ϕ) and coker(ϕ)
are graded A/(f)-modules with the induced gradings and

HPM (t) = td · HPM (t) + HPcoker(ϕ)(t)− td · HPker(ϕ)(t).

As an immediate consequence we obtain the useful:

Corollary 5.2 (Lemma 5.2.2 in Greuel and Pfister (2002)) Let I ⊆ k[x1, . . . , xn] be a homogeneous
ideal, and let f ∈ k[x1, . . . , xn] be a homogeneous polynomial of degree d then

HPk[x]/I(t) = HPk[x]/(I,f)(t) + td · HPk[x]/(I:f)(t).

For homogeneous ideals the leading ideal already determines the Hilbert-Poincaré series:

Theorem 5.3 (Theorem 5.2.6 in Greuel and Pfister (2002)) Let> be a graded monomial ordering on a
polynomial ring k[x1, . . . , xn], let I ⊆ k[x] be a homogeneous ideal and denote by L(I) its leading ideal
with respect to >. Then

HPk[x]/I(t) = HPk[x]/L(I)(t).
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