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Finite Eulerian posets which are binomial or
Sheffer

Hoda Bidkhori

North Carolina State University, NC, USA

Abstract. In this paper we study finite Eulerian posets which are binomial or Sheffer. These important classes of
posets are related to the theory of generating functions and to geometry. The results of this paper are organized as
follows:

• We completely determine the structure of Eulerian binomial posets and, as a conclusion, we are able to classify
factorial functions of Eulerian binomial posets;

• We give an almost complete classification of factorial functions of Eulerian Sheffer posets by dividing the
original question into several cases;

• In most cases above, we completely determine the structure of Eulerian Sheffer posets, a result stronger than
just classifying factorial functions of these Eulerian Sheffer posets.

We also study Eulerian triangular posets. This paper answers questions posed by R. Ehrenborg and M. Readdy. This
research is also motivated by the work of R. Stanley about recognizing the boolean lattice by looking at smaller
intervals.

Résumé. Nous étudions les ensembles partiellement ordonnés finis (EPO) qui sont soit binomiaux soit de type Sheffer
(deux notions reliées aux séries génératrices et à la géométrie). Nos résultats sont les suivants:

• nous déterminons la structure des EPO Euleriens et binomiaux; nous classifions ainsi les fonctions factorielles
de tous ces EPO;

• nous donnons une classification presque complète des fonctions factorielles des EPO Euleriens de type Sheffer;

• dans la plupart de ces cas, nous déterminons complètement la structure des EPO Euleriens et Sheffer, ce qui est
plus fort que classifier leurs fonctions factorielles.

Nous étudions aussi les EPO Euleriens triangulaires. Cet article répond à des questions de R. Ehrenborg and M.
Readdy. Il est aussi motivé par le travail de R. Stanley sur la reconnaissance du treillis booléen via l’étude des petits
intervalles.
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1 Introduction
There are many theories which unify various aspects of enumerative combinatorics and generating func-
tions. One such successful theory introduced by Doubilet, Rota and Stanley [3] is that of binomial posets.
Classically, binomial posets are infinite posets with the property that every two intervals of the same length
have the same number of maximal chains. Doubilet, Rota and Stanley show this chain regularity condi-
tion gives rise to universal families of generating functions. Ehrenborg and Readdy [5] and Reiner [9]
independently generalized the notion of binomial posets to a larger class of posets called Sheffer posets
or upper binomial posets.

Ehrenborg and Readdy [4] gave a complete classification of the factorial functions of infinite Eulerian
binomial posets and infinite Eulerian Sheffer posets. Recall that infinite posets are those posets which
contain an infinite chain. They posed the open question of characterizing the finite case. This paper deals
with these questions.

A Sheffer poset is a graded poset such that the number of maximal chains D(n) in an n-interval [0̂, y]
depends only on ρ(y) = n, the rank of the element y, and the number B(n) of maximal chains in an n-
interval [x, y], where x 6= 0̂, depends only on ρ(x, y) = ρ(y)− ρ(x). The two functions B(n) and D(n)
are called the binomial factorial function and Sheffer factorial function, respectively. Binomial posets are
a special class of Sheffer posets. A binomial poset is a graded poset such that the number of maximal
chains B(n) in an n-interval [x, y] depends only on ρ(x, y) = ρ(y)− ρ(x).

Binomial posets were previously considered in [1], [3], [8], [11] and [13]. Ehrenborg and Readdy
[5] used Sheffer posets and a generalization of R-labeling to study augmented r-signed permutations.
Reiner [9] used them to derive generating functions counting signed permutations by two statistics.

A graded poset P is Eulerian if every non-singleton interval of P satisfies the Euler-Poincaré relation.
(See Definition 2.1.) Eulerian posets form an important class of posets as there are many geometric
examples such as the face lattices of convex polytopes, and more generally, the face posets of regular
CW-spheres.

As we mentioned above, Ehrenborg and Readdy in [4] classify the factorial functions of infinite Eulerian
binomial posets and infinite Eulerian Sheffer posets. Since we are concerned here with finite posets, we
drop the requirement that binomial, Sheffer and triangular posets have an infinite chain. This paper studies
the following natural questions, as suggested by Ehrenborg and Readdy in [4].

1. Which Eulerian posets are binomial?

2. Which Eulerian posets are Sheffer?

Stanley has proved that one can recognize boolean lattices by looking at smaller intervals (see [7],
Lemma 8). Farley and Schmidt answer a similar question for distributive lattices in [6]. The project of
studying Eulerian binomial posets and Eulerian Sheffer posets is also motivated by their work. In many
cases we use the factorial function of smaller intervals to characterize the whole poset.
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thank Richard Ehrenborg, Margaret A. Readdy and Richard Stanley for helpful discussions and comments
and thank Craig Desjardins for reading a draft of this paper. I am grateful to two anonymous referees for
many helpful suggestions..
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2 Background and Definition
We encourage readers to consult Chapter 3 of [12] for basic poset terminology. All the posets which are
considered in this paper are finite.

We begin by recalling that a graded interval satisfies the Euler-Poincaré relation if it has the same
number of elements of even rank as of odd rank.

Definition 2.1. 1. A graded poset is Eulerian if every non-singleton interval satisfies the Euler-Poincaré
relation. Equivalently, a poset P is Eulerian if its Möbius function satisfies µ(x, y) = (−1)ρ(x,y)

for all x ≤ y in P , where ρ denotes the rank function of P.

2. Consider a graded poset P with rank function ρ. If ρ(x, y) = n, then we call [x, y] an n-interval.

Definition 2.2. A finite graded poset P with unique minimal element 0̂ and unique maximal element 1̂ is
called a (finite) binomial poset if it satisfies the following condition:

1. For all n ∈ N, n ≤ rank(P ), any two n-intervals have the same number B(n) of maximal chains.
We call B(n) the factorial function or binomial factorial function of the poset P .

Definition 2.3. A finite graded poset P with a unique minimal element 0̂ and a unique maximal element
1̂ is called a (finite) Sheffer poset if it satisfies the following two conditions:

1. Any pair of n-intervals [0̂, y] and [0̂, v] have the same number D(n) of maximal chains.

2. Any pair of n-intervals [x, y] and [u, v] such that x 6= 0̂ and u 6= 0̂ have the same number B(n) of
maximal chains.

Let us consider a Sheffer poset P . An interval [0̂, y], where y 6= 0̂, is called a Sheffer interval whereas
an interval [x, y] with x 6= 0̂ is called a binomial interval. The functions B(n) and D(n) are called the
binomial factorial function and Sheffer factorial function of P , respectively. Next we define A(n) and
C(n) to be the number of coatoms in a binomial interval of length n, respectively, a Sheffer interval
of length n. The functions A(n) and C(n) are called the atom function and coatom function of P ,
respectively. The number of elements of rank k in a Sheffer interval of rank n is

D(n)
D(k)B(n− k)

. (1)

Moreover, for a binomial interval [x, y] of rank n in a Sheffer poset, the number of elements of rank k is
equal to

B(n)
B(k)B(n− k)

. (2)

The dual suspension of a poset P is defined in [4] as follows.

Definition 2.4. Let P be a poset with 0̂. We define the dual suspension of P , denoted Σ∗(P ), to be the
poset P with two new elements a1 and a2. Σ∗(P ) has the following order relation: 0̂ <Σ∗(P ) ai <Σ∗(P )

y, for all y > 0̂ in P and i = 1, 2. That is, the elements a1 and a2 are inserted between 0̂ and atoms of
P . Clearly if P is Eulerian then so is Σ∗(P ). Moreover, if P is a binomial poset then Σ∗(P ) is a Sheffer
poset with the factorial function DΣ∗(P )(n) = 2B(n− 1), for n ≥ 2.
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Definition 2.5. Let P be a poset with 1̂. We define the suspension of P , denoted by Σ(P ), to be the poset
P with two new elements a1 and a2 adjoined with the additional order relations that y <Σ(P ) ai <Σ(P ) 1̂,
for all y < 1̂ in P and i = 1, 2.

The dual of the poset P , denoted P ∗, is defined as follows: P ∗ has the same set of elements as P and
the following order relation: x <P∗ y if and only if y <P x.

Definition 2.6. The boolean lattice Bn of rank n is the poset of subsets of [n] = {1, . . . , n} ordered by
inclusion.

Definition 2.7. The butterfly poset Tn of rank n consists of the elements of {0̂}∪ (Dn−1 × {1, 2})∪{1̂},
where Dn−1 × {1, 2} is the direct product of the chain of length n − 1, denoted by Dn−1, and the anti-
chain of rank 2, with the order relation (k, i) ≺ (k+1, j) for all i, j ∈ {1, 2}. Also 0̂ and 1̂ are the unique
minimal and maximal elements of this poset, respectively. Clearly, Tn ∼= Σ∗(Tn−1).

3 Finite Eulerian binomial posets
In this section, we classify the structure of finite Eulerian binomial posets.

First we provide some examples of finite binomial posets. See [4] for infinite versions of Examples 3.1
and 3.2.

Example 3.1. The boolean lattice Bn of rank n is an Eulerian binomial poset with factorial function
B(k) = k! and atom function A(k) = k, k ≤ n. Every interval of length k of this poset is isomorphic to
Bk.

Example 3.2. The butterfly poset Tn of rank n is an Eulerian binomial poset with factorial function
B(k) = 2k−1 for 1 ≤ k ≤ n and atom function A(k) = 2, for 2 ≤ k ≤ n, and A(1) = 1.

It is not hard to see that in any n-interval of an Eulerian binomial poset P with factorial function B(k)
for 1 ≤ k ≤ n, the Euler-Poincaré relation is stated as follows:

n∑
k=0

(−1)k · B(n)
B(k)B(n− k)

= 0. (3)

The following is [4, Lemma 2.6].

Lemma 3.3. Let P be a graded poset of odd rank such that every proper interval of P is Eulerian. Then
P is an Eulerian poset.

Lemma 3.4. Let P be an Eulerian binomial poset of rank 3. Then the poset P and its factorial function
B(n) satisfy the following conditions:

(i) B(2) = 2 and B(3) = 2q, where q is a positive integer such that q ≥ 2.

(ii) There is a list of integers q1, . . . , qr, qi ≥ 2, such that P ∼= �i=1,...,rPqi
, where Pqi

is the face
lattice of the qi-gon.

This result is [4, Example 2.5].
R. Ehrenborg and M. Readdy proved the following two propositions. See [4, Lemma 2.17 and Prop.

2.15].
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Proposition 3.5. Let P be a binomial poset of rank n with factorial functionB(k) = 2k−1 for 1 ≤ k ≤ n.
Then the poset P is isomorphic to the butterfly poset Tn.

Proposition 3.6. Let P be a binomial poset of rank n with factorial function B(k) = k! for 1 ≤ k ≤ n.
Then the poset P is isomorphic to the boolean lattice Bn of rank n.

The following is [4, Lemma 2.12].

Lemma 3.7. Let P
′

and P be two Eulerian binomial posets of rank 2m+2,m ≥ 2, having atom functions
A
′
(n) and A(n), respectively, which agree for n ≤ 2m. Then the following equality holds:

1
A(2m+ 1)

(
1− 1

A(2m+ 2)

)
=

1
A′(2m+ 1)

(
1− 1

A′(2m+ 2)

)
. (4)

Lemma 3.8. Every Eulerian binomial poset P of rank 4 is isomorphic to either T4 or B4.

In the following theorem we obtain the structure of Eulerian binomial posets of even rank.

Theorem 3.9. Every Eulerian binomial poset of even rank n = 2m ≥ 4 is isomorphic to either Tn or Bn
(the butterfly poset of rank n or boolean lattice of rank n).

Theorem 3.10. Let P be an Eulerian binomial poset of odd rank n = 2m + 1 ≥ 5. Then the poset P
satisfies one of the following conditions:

(i) There is a positive integer k such that P is the k-summation of the boolean lattice of rank n. In
other words, P ∼= �k(Bn).

(ii) There is a positive integer k such that P is the k-summation of the butterfly poset of rank n. In other
words, P ∼= �k(Tn).

Proof. We prove the theorem for two different cases B(3) = 4 and B(3) = 6. Lemma 3.8 implies that
every interval of length 4 is isomorphic either to B4 or T4. Thus the factorial function B(3) can only take
the values 4 or 6 and therefore we are in one of these two cases.

1. B(3) = 6. In this case we claim that there is a positive integer k such that P ∼= �k(Bn). In order
to show that P ∼= �k(Bn), we make the following construction. We remove 1̂ and 0̂ from P .
The remaining poset is a disjoint union of connected components. Consider one of the obtained
connected components and add a minimal element 0̂ and a maximal element 1̂ to it. Denote the
resulting poset by Q. We wish to show that Q ∼= Bn. This implies that P ∼= �k(Bn). It is not
hard to see that Q is an Eulerian binomial poset. The posets P and Q have the same factorial
functions and atom functions up to rank 2m. Hence BQ(k) = BP (k) and AQ(k) = AP (k), for
1 ≤ k ≤ 2m. Therefore, Eq. (2) implies that the number of atoms and coatoms are the same in the
poset Q. Denote this number by t. Let x1, . . . , xt and a1, . . . , at be an ordering of the atoms and
coatoms of Q, respectively. Also, let c1, . . . , cl be the set of elements of rank 2m − 1 in Q. We
show that t = 2m + 1, and this implies that Q ∼= B2m+1. For each element y of rank at least 2 in
Q, let S(y) be the set of atoms of Q that are below y. Set Ai := S(ai) for each element ai of rank
2m, 1 ≤ i ≤ t, and also set Ci := S(ci) for each element ci of rank 2m− 1, 1 ≤ i ≤ l. In order to
show that Q ∼= Bn, we prove the following.
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(1) We show that |Ai ∩Aj | = 2m− 1 for i 6= j.

(2) We use part (1) to show that t = 2m+ 1.

(1) We first show that |Ai ∩ Aj | = 2m − 1 for i 6= j. By considering the factorial functions,
Theorem 3.9 implies that the intervals [0̂, ai] and [xj , 1̂] have the same factorial functions as
B2m and so they are isomorphic to B2m for
1 ≤ i ≤ t and 1 ≤ j ≤ t. We conclude that any interval [0̂, ck] of rank 2m− 1 is isomorphic
to B2m−1. As a consequence, we have |Ai| = |S(ai)| = 2m, 1 ≤ i ≤ t and also |Ck| =
|S(ck)| = 2m− 1, 1 ≤ k ≤ l.
If there exist i and j such that Ai ∩ Aj 6= ∅, where 1 ≤ i, j ≤ t, we claim that 2m − 1 ≤
|Ai ∩ Aj | ≤ 2m. Consider an atom xk ∈ Ai ∩ Aj , 1 ≤ k ≤ t. Theorem 3.9 implies that
[xk, 1̂] ∼= B2m. Thus, by considering properties of boolean lattices, there is an element ch of
rank 2m − 2 in this interval which is covered by ai and aj , 1 ≤ h ≤ l. Notice that ch is an
element of rank 2m−1 inQ. Therefore, |Ch| = 2m−1 ≤ |Ai∩Aj | ≤ |Ai| = |S(ai)| = 2m.
We claim that for all distinct pairs i and j, 1 ≤ i, j ≤ t, we have Ai ∩ Aj 6= ∅. In order to
show this claim, associate the graph GQ to the poset Q as follows: A1, . . . , At are vertices of
this graph, and we connect vertices Ai and Aj if and only if Ai ∩Aj 6= ∅.
We will show thatGQ is a complete graph and so |Ai∩Aj | 6= 0 for all i 6= j. SinceQ−{0̂, 1̂}
is connected, GQ is also a connected graph. We show that if {Ai, Aj} and {Aj , Ak} are
different edges of GQ, {Ai, Ak} is also an edge of GQ. Since {Ai, Aj} and {Aj , Ak} are
edges of GQ, we have |Ai ∩ Aj | ≥ 2m − 1 as well as |Aj ∩ Ak| ≥ 2m − 1. On the other
hand, since |Ai| = |Aj | = |Ak| = 2m, we conclude that Ai ∩ Ak 6= ∅. Therefore {Ai, Ak}
is also an edge of GQ. As a consequence, the connected graph GQ is a complete graph. Thus
Ai ∩Aj 6= ∅ and also 2m− 1 ≤ |Ai ∩Aj | ≤ 2m for 1 ≤ i, j ≤ t and i 6= j.
Now, we show that |Ai ∩Aj | = 2m− 1 for all i 6= j. We proceed by contradiction. Suppose
this claim does not hold. Then there are different i and j such that |Ai ∩ Aj | = 2m. We
claim that in the case |Ai ∩ Aj | = 2m, there are two elements of rank 2m − 1 in Q such
that they both are covered by coatoms ai and aj . To show this claim, consider an atom
xf ∈ Ai∩Aj , so we have [xf , 1̂] ∼= B2m. Hence, there is a unique element ch of rank 2m−2
in this interval which is covered by both ai and aj . By induction on m, Lemma 3.4, and the
property that |Ch| ≤ |Ai ∩ Aj | = 2m, we conclude that [0̂, ch] is isomorphic to B2m−1 and
so |Ch| = 2m− 1. Therefore there is an atom xd ∈ Ai ∩Aj \Ch. Since the interval [xd, 1̂] is
isomorphic to B2m, there is an element ck 6= ch of rank 2m− 1 which is covered by coatoms
ai and aj .
Since |Ch| = |S(ch)| = |Ck| = |S(ck)| = 2m−1 andCk andCh are both subsets ofAi∩Aj ,
we conclude that there should be an atom xs ∈ Ck ∩ Ch. Therefore the interval [xs, 1̂] has
two elements ck and ch of rank 2m − 2 such that they both are covered by two elements ai
and aj of rank 2m − 1 in the interval [xs, 1̂]. We know [xs, 1̂] ∼= B2m and there are no two
elements of rank 2m − 2 covered by two elements of rank 2m − 1 in B2m. This contradicts
our assumption, and so |Ai ∩Aj | = 2m− 1 for pairs i and j of distinct elements.
In summary, we have:

(a) |Ai| = 2m for 1 ≤ i ≤ t,
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(b) |Ai ∩Aj | = 2m− 1 for all 1 ≤ i < j ≤ t,
(c)

⋃t
i=1Ai = {x1, . . . , xt}.

As a consequence, we have t > 2m.

(2) Now, we show that t = 2m + 1. We are going to show that t = 2m + 1. Without loss
of generality, consider the three different sets A1 = S(a1), A2 = S(a2) and A3 = S(a3)
associated with the three coatoms a1, a2 and a3. We know that |A1| = |A2| = |A3| = 2m
and |A1 ∩ A2| = |A2 ∩ A3| = |A1 ∩ A3| = 2m − 1. Without loss of generality, let us
assume that A1 = {x1, x2, . . . , x2m−1, y1} and A2 = {x1, x2, . . . , x2m−1, y2} where yi 6=
x1, . . . , x2m−1 for i = 1, 2. We have the following two different cases:

(a) A3 does not contain y1 and y2.
(b) A3 contains at least one of y1 and y2.

First we study the case, A3 = {x1, x2, . . . , x2m−1, y3} where y3 /∈ {y1, y2, x1, . . . , x2m−1}.
Considering the t − 3 other coatoms ak, 4 ≤ k ≤ t, there are different atoms yk, 4 ≤ k ≤ t,
such that yk /∈ {y1, y2, y3, x1, . . . , x2m−1} and Ak = S(ak) = {x1, x2, . . . , x2m−1, yk}.
This implies that the number of atoms is |

⋃t
i=1Ai| = t+2m−1, which is a contradiction. So

it must be the case thatA3 contains one of y1 or y2. In this case |A2∩A3| = |A1∩A3| = 2m−1
implies that A3 = {x1, x2, . . . , x2m−1, y1, y2} \ {xj} ⊂ A1 ∪A2 for some xj . Since A3 was
chosen arbitrarily, it follows that for each Ak we have Ak ⊂ A1 ∪A2.
Therefore,

t⋃
i=1

Ak = {x1, . . . , x2m−1, y1, y2}. (5)

Thus the number of coatoms in the poset Q is t = 2m+ 1.
By Theorem 3.9, BQ(k) = k! for 1 ≤ k ≤ 2m, therefore BQ(2m + 1) = (2m + 1)!. By
Proposition 3.6, Q is isomorphic to B2m+1 and so P is a union of copies of B2m+1 with their
minimal elements and maximal elements identified. In other words, P ∼= �k(B2m+1). It can
be seen that P is binomial and Eulerian and the proof follows.

(ii) B(3) = 4. With the same argument as part (i), we remove 1̂ and 0̂ from P . The remaining poset
is a disjoint union of connected components. We add a minimal element 0̂ and a maximal element
1̂ to each of these connected components. We show that the obtained posets are isomorphic to Tn.
This implies that P ∼= �k(Tn).

We construct the binomial poset Q by adding 1̂ and 0̂ to one of the connected components of
P − {0̂, 1̂}. We claim that Q is isomorphic to T2m+1. Similar to part (i), let a1, . . . , at and
x1, . . . , xt denote coatoms and atoms of Q. We show that t = 2 which implies Q ∼= T2m+1.

Set Ai = S(ai). By Theorem 3.9, we have |Ai| = 2. It is easy to see that
⋃t
i=1Ai = {x1, . . . , xt}.

Define GQ to be the graph with vertices x1, . . . , xt and edges A1, . . . , At. Since Q \ {0̂, 1̂} is
connected, GQ is also a connected graph. Since [xi, 1̂] ∼= T2m, the degree of each vertex of GQ is
2 and GQ is the cycle of length t. Therefore if t > 2, we have |Ai ∩Aj | = 1 or 0, 1 ≤ i < j ≤ t.
We claim that t = 2. Suppose this claim does not hold and t > 2. Consider an element c of rank 3 in
Q. Lemma 3.4 and Theorem 3.9 imply that both intervals [0̂, c] and [c, 1̂] are isomorphic to butterfly
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posets. Hence there are two coatoms above c, say ak and al, and similarly there are two atoms
below c, say xh and xs. Therefore, we have Ak = Al = {xh, xs}. This is not possible when t > 2.
As a consequence, t = 2 and all theAi’s have two elements and |

⋃t
1Ai| = |{x1, . . . , xt}| = 2 = t.

Similar to part (i), BQ(k) = 2k−1 for 1 ≤ k ≤ 2m+ 1. By Proposition 3.5, we conclude that Q is
isomorphic to T2m+1. Therefore, there is an integer k > 0 such that P ∼= �k(Tn).

4 Finite Eulerian Sheffer Posets
In this section, we give an almost complete classification of the factorial functions and the structure of
Eulerian Sheffer posets. We study Eulerian Sheffer posets of ranks n = 3 and 4 in Lemmas 3.4 and 4.2.
By these two lemmas, we reduce the set of possible values of B(3) to 4 or 6. In Section 4.1, Lemma 4.3
and Theorems 4.4, 4.9, 4.10 and 4.11 deal with Eulerian Sheffer posets with B(3) = 6. Finally in
Section 4.2, Theorem 4.12 deals with Eulerian Sheffer posets with B(3) = 4.

It is clear that every binomial poset is also a Sheffer poset. Here is an other example of Sheffer posets,
some of which appear in [4] and [9].

Example 4.1. Let T be the poset with the elements 0̂1, 0̂2, 1̂ and the cover relations 0̂1 < 1̂ and 0̂2 < 1̂.
Let Tn be the Cartesian product of n copies of the poset T . The poset Cn = Tn ∪{0̂} denotes the face

lattice of an n-dimensional cube, also known as the cubical lattice. The cubical lattice is a Sheffer poset
with B(k) = k! for 1 ≤ k ≤ n and D(k) = 2k−1(k − 1)! for 1 ≤ k ≤ n+ 1.

It is not hard to see that Lemma 3.4 also characterize the structure of Eulerian Sheffer posets of rank 3.
Lemma 4.2 deals with Eulerian Sheffer posets of rank 4.

Lemma 4.2. Let poset P be an Eulerian Sheffer poset of rank 4. Then one of the following conditions
hold.

1. B(3) = 2b, D(3) = 4, D(4) = 4b, where b ≥ 2.

2. B(3) = 8, D(3) = 3!, D(4) = 23 · 3!.

3. B(3) = 10, D(3) = 3!, D(4) = 5!.

4. B(3) = 4, D(3) = 3!, D(4) = 2 · 3!.

5. B(3) = 3!, D(3) = 3!, D(4) = 4!.

6. B(3) = 3!, D(3) = 4, D(4) = 2 · 3!.

7. B(3) = 3!, D(3) = 10, D(4) = 5!.

8. B(3) = 3!, D(3) = 8, D(4) = 23 · 3!.

9. B(3) = 4, D(3) = 2b, D(4) = 4b where b ≥ 2.
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4.1 Characterization of the factorial functions and structure of Eulerian Sheffer
posets of rank n ≥ 5 for which B(3) = 3!.

In this subsection. we mainly consider Eulerian Sheffer posets with B(3) = 3!. As a consequence of
Lemma 4.2, we know that Eulerian Sheffer posets of rank n ≥ 4 with B(3) = 3! have the Sheffer
factorial functions D(3) = 4, 6, 8 and 10. Lemma 4.3 shows that for any such poset of rank n ≥ 6, the
Sheffer factorial function D(3) can only take the values 4, 6 or 8.

In Subsections 4.1.1, 4.1.2 and 4.1.3, we consider posets withB(3) = 6 and different casesD(3) = 4, 6
and 8, respectively. The question of studying the finite Eulerian Sheffer posets of rank 5 with B(3) = 6
and D(3) = 10 remains open. There is such a poset, namely the face lattice of the 120-cell with Schläfli
symbol {5, 3, 3}.
Lemma 4.3. Let P be an Eulerian Sheffer poset of rank n ≥ 6 with B(3) = 3!. Then D(3) can take only
the values 4, 6, 8.

4.1.1 Characterization of the factorial functions of Eulerian Sheffer posets of
rank n ≥ 5 for which B(3) = 3! and D(3) = 8.

In this subsection, we study the factorial functions of Eulerian Sheffer posets of rank n ≥ 5 for which
B(3) = 3! and D(3) = 8. Theorem 4.4 characterizes the factorial functions of such posets of even rank.
However, the question of characterizing the factorial functions of Eulerian Sheffer posets of odd rank
n = 2m+ 1 ≥ 5 with B(3) = 3! and D(3) = 8 remains open.

Theorem 4.4. Let P be an Eulerian Sheffer poset of even rank n = 2m + 2 ≥ 4 with B(3) = 3!
and D(3) = 8. Then P has the same factorial functions as Cn, the cubical lattice of rank n, that is,
D(k) = 2k−1(k − 1)!, 1 ≤ k ≤ n and B(k) = k!, 1 ≤ k ≤ n− 1.

In order to prove Theorem 4.4, we establish the following two lemmas.

Lemma 4.5. Let Q be an Eulerian Sheffer poset of odd rank 2m + 1, m ≥ 2, with B(3) = 3!. Then
the coatom function of Q must satisfy at least one of the following inequalities: C(n) 6= 2(n − 1) for
2 ≤ n ≤ 2m and C(2m+ 1) 6= 4m+ 1.

Lemma 4.5 implies the following.

Corollary 4.6. Let P be an Eulerian Sheffer poset of rank 2m + 2, m ≥ 2, with B(k) = k!, for
1 ≤ k ≤ 2m. Then the coatom function of P must satisfy at least one of the following inequalities:
C(n) 6= 2(n− 1), 2 ≤ n ≤ 2m, C(2m+ 1) 6= 4m+ 1 and C(2m+ 2) 6= 4(2m+ 1).

Lemma 4.7. LetQ be an Eulerian Sheffer poset of rank 2m+2,m ≥ 2, withB(k) = k! for 1 ≤ k ≤ 2m.
Then the coatom function of Q must satisfy at least one of the following inequalities: C(n) 6= 2(n − 1),
2 ≤ n ≤ 2m, C(2m+ 1) 6= 4m− 1 and C(2m+ 2) 6= 4

3 (2m+ 1).

The following lemma can be obtained by applying the proof of Lemma 4.8 in [4].

Lemma 4.8. Let P and P
′

be two Eulerian Sheffer posets of rank 2m + 2, m ≥ 2, such that their
binomial factorial functions and coatom functions agree up to rank n ≤ 2m. That is, B(n) = B

′
(n) and

C(n) = C
′
(n), where m ≥ 2. Then the following equation holds:

1
C(2m+ 1)

(
1− 1

C(2m+ 2)

)
=

1
C ′(2m+ 1)

(
1− 1

C ′(2m+ 2)

)
. (6)
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of Theorem 4.4. In order to prove the theorem, we inductively show that the Eulerian Sheffer poset P
and C2m+2, the cubical latice of rank 2m+ 2, have the same coatom functions.

LetC(k) andC
′
(k) = 2(k−1) respectively be the coatom functions of the Eulerian Sheffer poset P and

C2m+2 for 2 ≤ k ≤ 2m+ 2. We only need to show that C(k) = C
′
(k) = 2(k− 1) for 2 ≤ k ≤ 2m+ 2.

We prove this claim by induction on m. By Lemma 4.2, an Eulerian Sheffer poset of even rank 4 with
B(3) = 3! and D(3) = 8 has the same factorial function as C4. Therefore, C(4) = C

′
(4) = 6 and

the claim holds for m = 1. Suppose m ≥ 2. By the induction hypothesis C(k) = C
′
(k) = 2(k − 1)

for 2 ≤ k ≤ 2m. Set F = C(2m + 1) and E = C(2m + 2). Theorem 3.10 implies that B(k) = k!
for 1 ≤ k ≤ 2m and there is a positive integer α such that B(2m + 1) = α(2m + 1)!. We know that
D(k) = 2k−1(k − 1)! for 1 ≤ k ≤ 2m, so D(2m + 1) = F22m−1(2m − 1)! and D(2m + 2) =
EF22m−1(2m− 1)!. Since P is an Eulerian Sheffer poset, the Euler-Poincaré relation implies that

1 +
2m+2∑
k=1

(−1)kD(2m+ 2)
D(k)B(2m+ 2− k)

= 0. (7)

By substituting the values of the factorial functions, we have

2− E +
EF

2

[
1

2m
− 1

2m(2m+ 1)
+

22m

2m(2m+ 1)
− 22m

2αm(2m+ 1)

]
= 0. (8)

Thus,

E

(
1− F

(
2αm+ (α− 1)22m

4αm(2m+ 1)

))
= 2. (9)

In case α ≥ 2, it is easy to verify that(
2αm+ (α− 1)22m

4αm(2m+ 1)

)
>

1
2m

. (10)

Since F ≥ A(2m) ≥ 2m, the left-hand side of Eq. (9) becomes negative in this case. Therefore, α = 1
and the posets P and C2m+2 have the same binomial factorial functions. Since 2m+ 1 = A(2m+ 1) ≤
C(2m+ 2) <∞, Lemma 4.8 implies that 4m− 1 ≤ C(2m+ 1) = F ≤ 4m+ 1. Since α = 1, Eq. (9)
implies that 2− E + EF

4m+2 = 0. Thus E and F must satisfy one of the following cases:

(1) F = 4m− 1 and E = 4
3 (2m+ 1).

(2) F = 4m and E = 4m+ 2.

(3) F = 4m+ 1 and E = 4(2m+ 1).

As we have discussed in Corollary 4.6 and Lemma 4.7, the cases (1) and (3) are not possible. Case (2)
occurs in the cubical lattice of rank 2m + 2, C2m+2. Thus, the poset P has the same factorial functions
as C2m+2, as desired.

Classification of the factorial functions of Eulerian Sheffer posets of odd rank n = 2m + 1 ≥ 5 with
B(3) = 6 and D(3) = 8 remains open. Let α be a positive integer and set Qα = �α(C2m+1). It can be
seen thatQα is an Eulerian Sheffer poset and it has the following factorial functions: D(k) = 2k−1(k−1)!
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for 1 ≤ k ≤ n − 1, D(n) = α · 2n−1(n − 1)! and B(k) = k! for 1 ≤ k ≤ n− 1. We ask the following
question:

Question: Let P be an Eulerian Sheffer poset of odd rank n = 2m + 1 ≥ 5 with B(3) = 6, D(3) =
8. Is there a positive integer α such that the poset P has the same factorial functions as poset Qα =
�α(C2m+1), where C2m+1 is a cubical lattice of rank 2m+ 1?

4.1.2 Characterization of the structure of Eulerian Sheffer posets of rank n ≥ 5
for which B(3) = 3!, and D(3) = 3! = 6.

Theorem 4.9. Let P be an Eulerian Sheffer poset of rank n ≥ 3 with B(3) = D(3) = 3! = 6 for
3-intervals. P satisfies one of the following cases:

(i) There is an integer k ≥ 1 such that P ∼= �k(Bn), where n is odd.

(ii) P ∼= Bn, where n is even.

4.1.3 Characterization of the structure of Eulerian Sheffer posets of rank n ≥ 5
for which B(3) = 3! and D(3) = 4.

Let P be an Eulerian Sheffer poset of rank n ≥ 5, with B(3) = 3! and D(3) = 4. In this section we show
that in the case n = 2m + 2 the poset P satisfies P ∼= Σ∗(�α(B2m+1)) for some integer α ≥ 1 and in
the case n = 2m+ 1, P ∼= �α(Σ∗(B2m)), for some integer α ≥ 1.

Theorem 4.10. Let P be an Eulerian Sheffer poset of even rank n = 2m + 2 ≥ 4 with B(3) = 3! and
D(3) = 4. Then P ∼= Σ∗(�α(B2m+1)), where α = B(2m+1)

(2m+1)! is a positive integer for n ≥ 6 and α = 1
for n = 4. Consequently the poset P has the following binomial and Sheffer factorial functions.

(i) B(k) = k! for 1 ≤ k ≤ 2m, and B(2m+ 1) = α(2m+ 1)!,

(ii) D(1) = 1, D(k) = 2(k − 1)! for 2 ≤ k ≤ 2m+ 1, and D(2m+ 2) = 2α(2m+ 1)!.

Theorem 4.11. Let P be an Eulerian Sheffer poset of odd rank n = 2m + 1 ≥ 5 with B(3) = 6 and
D(3) = 4. Then P ∼= �α(Σ∗(B2m)) for some positive integer α.

4.2 Characterization of the structure and factorial functions of Eulerian Sheffer
posets of rank n ≥ 5 with B(3) = 4.

In this section, we characterize Eulerian Sheffer posets of rank n ≥ 5 with B(3) = 4. Let P be an
Eulerian Sheffer poset of rank n ≥ 5 with B(3) = 4. It can be seen that the poset P satisfies one of the
cases:

1. P has the following binomial factorial function B(k) = 2k−1, where 1 ≤ k ≤ n− 1;

2. n is even and there is a positive integer α > 1 such that poset P has the binomial factorial function
B(k) = 2k−1 for 1 ≤ k ≤ n− 2 and B(n− 1) = α · 2n−2 for some positive integer α.

As a consequence of Theorems 3.11 and 3.12 in [4], we can characterize posets in the case (i). Theo-
rem 4.12 deals with the case (ii).

Theorem 4.12. Let P be an Eulerian Sheffer poset of even rank n = 2m + 2 > 4 with the binomial
factorial function B(k) = 2k−1 for 1 ≤ k ≤ 2m, and B(2m + 1) = α · 22m, where α > 1 is a positive
integer. Then P ∼= Σ∗(�α(T2m+1)).
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