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Primitive orthogonal idempotents for R-trivial
monoids
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Abstract. We construct a recursive formula for a complete system of primitive orthogonal idempotents for any R-
trivial monoid. This uses the newly proved equivalence between the notions of R-trivial monoid and weakly ordered
monoid.

Résumé. Nous construisons une formule récursive pour un système complet d’idempotents orthogonaux primitifs
pour tout monoı̈de R-trivial. Nous employons une nouvelle équivalence entre les notions de monoı̈de R-trivial et de
monoı̈de faiblement ordonné.
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1 Introduction
Recently, Denton ([6], [7]) gave a formula for a complete system of primitive orthogonal idempotents
for the 0-Hecke algebra of type A, the first since the question was posed by Norton [9] in 1979. A
complete system of primitive orthogonal idempotents for left regular bands was found by Brown [5]
and Saliola [12]. Finding such collections is an important problem in representation theory because they
decompose an algebra into projective indecomposable modules: if {eJ}J∈I is such a collection for a
finite dimensional algebra A, then A = ⊕J∈IAeJ for indecomposable modules AeJ . They also allow for
the explicit computation of the quiver, the Cartan invariants, and the Wedderburn decomposition of the
algebra (see [4], [2]). For example, in [8], Denton, Hivert, Schilling, and Thiéry use a construction of a
system of idempotents for any J-trivial monoid M to derive combinatorially the Cartan matrix and quiver
of M .

Schocker [13] constructed a class of monoids, called weakly ordered monoids, to generalize 0-Hecke
monoids and left regular bands, with the broader aim of finding a complete system of orthogonal idempo-
tents for the corresponding monoid algebras. We realize this goal here.
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A key step in being able to do so is recognizing that the notions of weakly ordered monoid andR-trivial
monoid are one and the same. This was first pointed out to us by Nicolas M. Thiéry [17] after an intense
discussion between the authors and Denton, Hivert, Schilling, and Thiéry. In Section 2, we fill out an
outline of a proof provided by Steinberg [16], who independently made this same observation. In Section
3, we use this equivalence to construct a complete system of primitive orthogonal idempotents.

2 Weakly ordered monoids and R-trivial monoids
Given any monoid T , that is, a set with an associative multiplication and an identity element, we define a
preorder ≤ as follows. Given u, v ∈ T , write u ≤ v if there exists w ∈ T such that uw = v. We write
u < v if u ≤ v but u 6= v. Unless stated otherwise, the monoids throughout the paper are endowed with
this “weak” preorder. (In the semigroup theory literature, the dual of this preorder is known as Green’s
R-preorder.)

Definition 2.1 A finite monoid W is said to be a weakly ordered monoid if there is a finite upper semi-
lattice (L,�) together with two maps C,D : W → L satisfying the following axioms.

1. C is a surjection of monoids.

2. If u, v ∈W are such that uv ≤ u, then C(v) � D(u).

3. If u, v ∈W are such that C(v) � D(u), then uv = u.

Remark 2.2 This notion was introduced by Schocker [13] to generalize 0-Hecke monoids and left regular
bands, with the broader aim of finding a complete system of orthogonal idempotents for the corresponding
monoid algebras. In his paper, he actually calls these weakly ordered semigroups. However our under-
standing is that monoids include an identity element and semigroups do not. So throughout the paper we
call these weakly ordered monoids.

Definition 2.3 A monoid S is R-trivial if, for all x, y ∈ S, xS = yS implies x = y. It is easy to see that
a monoid S is R-trivial if and only if the preorder ≤ defined above is a partial order.

We restrict our discussion to finite R-trivial monoids.

Example 2.4 A monoid W is called a left regular band if x2 = x and xyx = xy for all x, y ∈ W .
Left-regular bands are R-trivial. Indeed, if xW = yW , then there exist u, v ∈ W such that xu = y and
x = yv. But then, since uv = uvu,

x = yv = xuv = xuvu = yvu = xu = y.

Finitely generated left regular bands are also weakly ordered monoids, see Shocker [13], e.g. 2.4 and
Brown [5], Appendix B.

Example 2.5 Let G be a Coxeter group with simple generators {si : i ∈ I} and relations:

• s2i = 1,

• sisjsisj · · ·︸ ︷︷ ︸
mij

= sjsisjsi · · ·︸ ︷︷ ︸
mij

for positive integers mij .
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Then the 0-Hecke monoid HG(0) has generators {Ti : i ∈ I} and relations:

• T 2
i = Ti,

• TiTjTiTj · · ·︸ ︷︷ ︸
mij

= TjTiTjTi · · ·︸ ︷︷ ︸
mij

for positive integers mij .

Of particular interest is the case when G is the symmetric group Sn. Norton [9] gave a decomposition of
the monoid algebra CHSn(0) into left ideals and classified its irreducible representations. She raised the
question of constructing a complete system of orthogonal idempotents for the algebra. Denton [6] gave
the first construction of a set of orthogonal idempotents for CHSn(0).

The weakly ordered monoid HSn(0) has maps C and D onto the lattice of subsets of {1, . . . , n− 1}.
The map C is the content set of an element: C(Ti1Ti2 · · ·Tik

) = {i1, i2, . . . , ik}. The map D is the
subset of right descents of an element: D(x) = {i ∈ {1, . . . , n − 1} : xTi = x}. Note that the preorder
for this monoid coincides with the weak order on the elements of the Coxeter group.

Example 2.6 Let S be the monoid with identity generated by the following matrices.

g1 :=

 1 0 0
0 0 1
0 0 1

 and g2 :=

 0 1 0
0 1 0
0 0 1

 .
Then S = {1, g1, g2, g1g2, g2g1} and S is both an R-trivial monoid and a weakly ordered monoid. For
example, we can take L be to be usual lattice of subsets of {1, 2}, with C : S → L given by

C(1) = ∅, C(g1) = {1}, C(g2) = {2}, C(g1g2) = C(g2g1) = {1, 2},

and D : S → L given by

D(1) = ∅, D(g1) = {1}, D(g2) = D(g1g2) = {2}, D(g2g1) = {1, 2}.

The monoid S, however, is neither a left regular band, since g1g2 is not idempotent, nor isomorphic to the
0-Hecke monoid HS3(0) on two generators, since the latter has six elements.

The fact that the above examples are both weakly ordered and R-trivial is no coincidence: the purpose
of this section is to show that these two notions are equivalent.

Remark 2.7 A weakly ordered monoid is an R-trivial monoid. Indeed, if W is a weakly ordered monoid,
then Lemma 2.1 in [13] shows that the defining conditions of a weakly ordered monoid imply that the
preorder on W is a partial order (see Definition 2.3).

We will show that any finiteR-trivial monoid S is a weakly ordered monoid using an argument outlined
by Steinberg [16]. We must establish the existence of an upper semi-lattice L and two maps C and D
from S to L that satisfy the conditions of Definition 2.1. We gather here the definitions of L, C and D:

1. L is the set of left ideals Se generated by idempotents e in S, ordered by reverse inclusion;

2. C : S → L is defined as C(x) = Sxω , where xω is the idempotent power of x;
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3. D : S → L is defined as D(u) = C(e), where e is a maximal element in the set {s ∈ S : us = u}
(with respect to the preorder ≤).

The remainder of this section is dedicated to showing that these objects are well-defined and that they
satisfy the conditions of Definition 2.1. We begin by recalling some classical results from the semigroup
literature. The following is [10, Proposition 6.1].

Lemma 2.8 If S is a finite semigroup, then for each x ∈ S, there exists a positive integer ω = ω(x) such
that xω is idempotent, i.e. (xω)2 = xω . Furthermore, if S is R-trivial, then we also have xωx = xω .

Proof: Consider the elements x, x2, x3, . . . . Since S is finite, there exists positive integers i and p such
that xi+p = xi. Then xk+p = xk for all k ≥ i, so if we take ω = ip, then (xω)2 = xω+ip = xω .

If S is R-trivial, then xω ≤ xωx ≤ xωxω = xω , and so xωx = xω . 2

Remark 2.9 In what follows, if x ∈ CS and there exists an N such that xN+1 = xN , we sometimes
abuse notation by writing xω in place of xN .

We are now ready to construct a lattice corresponding to the R-trivial monoid S. Define

L := {Se : e ∈ S such that e2 = e}.

That is, L is the set of left ideals generated by the idempotents of S. Define a partial order on L by

Se � Sf ⇐⇒ Se ⊇ Sf.

Proposition 2.10 If e, f are idempotents in S, then S(ef)ω is the least upper bound of Se and Sf in L.

Remark 2.11 A fully detailed and elementary proof of this result for R-trivial monoids can be found in
[3], although the motivated reader can deduce this from the above results and definitions. This is a special
case of more general results in the semigroup theory literature. For example, it follows by restricting a
result of Schützenberger to R-trivial monoids [14]. For a detailed discussion within the context of the
representation theory of finite monoids, see [1] and [8].

As a result, we may define the join of two elements Se and Sf in L by

Se ∨ Sf = S(ef)ω.

That is, L is an upper semilattice with respect to this join operation. This observation proves the following.

Proposition 2.12 The map C : S → L defined by C(x) = Sxω is a surjective monoid morphism.

Here is an alternate and useful characterization of C(x).

Proposition 2.13 C(x) = {a ∈ S : ax = a} for all x ∈ S.

Proof: Take an arbitrary element in C(x) = Sxω , say txω . Since
(
txω
)
x = t

(
xωx

)
= txω by Lemma

2.8, we see that txω ∈ {a ∈ S : ax = a}. On the other hand, take b ∈ {a ∈ S : ax = a}. Then

bxω = (bx)xω−1 = bxω−1 = (bx)xω−2 = bxω−2 = · · · = bx = b.
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Therefore, b ∈ Sxω . 2

We now define the map D : S → L. Given u ∈ S, let D(u) = C(e), where e is a maximal element in
the set {s ∈ S : us = u}. To check that D is well-defined, let e and f be two distinct maximal elements
in {s ∈ S : us = u}. Since e ≤ ef and u(ef) = (ue)f = uf = u, by the maximality of e, e = ef .
Similarly, since f ≤ fe and u(fe) = u, the maximality of f implies f = fe. Then, by Proposition 2.12,

C(e) = C(ef) = C(e) ∨ C(f) = C(f) ∨ C(e) = C(fe) = C(f).

Note that the maximality of e and ue2 = u also implies that e = e2, that is, e is idempotent.
The next proposition shows that the maps C and D interact in precisely the manner given in conditions

2 and 3 in Definition 2.1. The following lemma will help us prove this proposition.

Lemma 2.14 Let x, y ∈ S. If x ≤ y, then C(x) � C(y).

Proof: If s ∈ C(y), then sy = s. Since x ≤ y, there exists t ∈ S such that y = xt. So sxt = s, implying
sx ≤ s. That is, s ∈ C(x). Hence C(y) ⊆ C(x), or C(x) � C(y) since s ≤ sx and S is R-trivial. 2

Proposition 2.15 Let u, v ∈ S. (i) If uv ≤ u, then C(v) � D(u). (ii) If C(v) � D(u), then uv = u.

Proof: (i) Since u ≤ uv, u = uv. Hence v lies in the set {s ∈ S : us = u}. Let e be a maximal element
in this set such that v ≤ e. Then, by Lemma 2.14, C(v) � C(e) = D(u).

(ii) By definition, D(u) = C(e), where e is a maximal element of {s ∈ S : us = u}. So if
C(v) � D(u), then C(v) � C(e). Hence C(e) ⊆ C(v). Since ue = u, u lies in C(e). So u is also a
member of C(v); that is, uv = u. 2

Propositions 2.12 and 2.15 tell us that anR-trivial monoid is a weakly ordered monoid. Combining this
with Corollary 2.7, we have the following result.

Theorem 2.16 A monoid W is a weakly ordered monoid if and only if it is an R-trivial monoid.

3 Constructing idempotents
We begin this section with a small technical lemma about R-trivial monoids. The proof is rather trivial,
but we use it often enough in proofs to justify stating it at the onset.

Lemma 3.1 Suppose W is an R-trivial monoid. If x, y, z ∈W are such that xyz = x, then xy = x.
Consequently, if x, y1, y2, . . . , ym ∈W are such that xy1 · · · ym = x, then xyi = x for all 1 ≤ i ≤ m.

Proof: If xyz = x then xyW = xW . Therefore xy = x by the definition of W being R-trivial. The
second statement immediately follows from the first. 2

Definition 3.2 LetA be a finite dimensional algebra with identity 1. We say that a set of nonzero elements
Λ = {eJ : J ∈ I} of A is a complete system of primitive orthogonal idempotents for A if:

1. each eJ is idempotent: that is, e2J = eJ for all J ∈ I;

2. the eJ are pairwise orthogonal: that is, eJeK = 0 for J,K ∈ I with J 6= K;
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3. each eJ is primitive (meaning that it cannot be further decomposed into orthogonal idempotents):
if eJ = x+ y with x and y orthogonal idempotents in A, then x = 0 or y = 0;

4. {eJ : J ∈ I} is complete (meaning that the elements sum to the identity):
∑

J∈I eJ = 1.

Remark 3.3 If Λ is a maximal set of nonzero elements satisfying conditions 1 and 2, then Λ is a complete
system of primitive orthogonal idempotents (that is, 3 and 4 also hold). Indeed, eJ is primitive, for if eJ

could be written as x+ y, then we could replace eJ in Λ with x and y, contradicting the maximality of Λ.
To see 4, we just note that if

∑
K eK 6= 1, then 1−

∑
K eK is idempotent and orthogonal to all other eK .

Combining this element with Λ would again contradict the maximality of Λ.

Let W denote a weakly ordered monoid with C and D being the associated “content” and “descent”
maps from W to an upper semi-lattice L. We let G denote a set of generators of W . The main goal of
this paper is to build a method for finding a complete system of orthogonal idempotents for the monoid
algebra CW . In particular, this solves the problem posed by Norton about the 0-Hecke algebra for the
symmetric group.

For each J ∈ L, we define a Norton element AJTJ . Let us begin by defining TJ :

TJ =
( ∏

g∈G
C(g)�J

gω
)ω

∈W.

Remark 3.4 A different ordering of the set G of generators may produce different TJ ’s; so we fix an
(arbitrarily chosen) order.

We now define the AJ in the Norton element AJTJ . First we let

BJ =
∏
g∈G

C(g)6�J

(1− gω) ∈ CW.

In the spirit of Lemma 2.8, we would like to raiseBJ to a sufficiently high power so that it is idempotent.
However,BJ is not an element of the monoidW , so (BJ)ω may not be well defined. The following lemma
and corollary resolve this problem.

Definition 3.5 Given x =
∑

w∈W cww ∈ CW , the coefficient of w in x is cw. We say w is a term of x if
the coefficient of w in x is nonzero.

Lemma 3.6 Let b ∈W and suppose bxω = b for some x ∈ G with C(x) 6� J . If c is a term of bBJ , then
c > b.

Proof: Let D = {xω : x ∈ G, C(x) 6� J, bxω = b}. By assumption D is not empty. Let g1, g2, . . . , gm

be the generators which appear in the definition of BJ . Then

BJ =
∑

i1<i2<···<ik

(−1)kgω
i1g

ω
i2 · · · g

ω
ik
.

It follows from Lemma 3.1 that the coefficient of b in bBJ is counting the terms in BJ where each of
gi1 , . . . , gik

come from D, weighted with sign (−1)k. If |D| = m ≥ 1 then this is 1−m+
(
m
2

)
−
(
m
3

)
+

· · ·+ (−1)m = 0. Therefore c 6= b. The statement now follows from the definition of order, as every term
c of bBJ must be of the form c = bz for some term z appearing in BJ , and hence c ≥ b. 2
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Lemma 3.7 For every J ∈ L, there exists an integerN such that yωBN
J = 0 for all y ∈ G withC(y) � J .

Proof: Let N = `+ 1, where ` is the length of the longest chain of elements in the poset (W,≤).
Suppose yωBN

J 6= 0. Let cN be a term of BN
J . Then cN is a term of cN−1BJ for some term cN−1 in

yωBN−1
J . Since yωyω = yω , Lemma 3.6 implies that yω is not a term of yωBk

J for any k ≥ 1, so that
cN−1 = yωgω

1 · · · gω
m for some m ≥ 1 and gi ∈ G with C(gi) 6� J . In particular, cN−1g

ω
m = cN−1, and

so, again by Lemma 3.6, cN > cN−1. Repeated application of this argument produces a decreasing chain

cN > cN−1 > cN−2 > · · · > c1

of elements in W , contradicting the fact that the length of the longest chain of elements in (W,≤) is `. 2

Corollary 3.8 For every J ∈ L there exists an N such that BN+1
J = BN

J .

Proof: By Lemma 3.7, (BJ − 1)BN
J = 0 for a sufficiently large N since every element of BJ − 1 is of

the form αyω where α ∈ C, y ∈ G and C(y) � J . 2

This now allows us to define AJ = Bω
J .

Lemma 3.9 Let J ∈ L. Then:

1. TJx = TJ for all x such that C(x) � J;

2. yωAJ = 0 for all y such that C(y) 6� J and y ∈ G.

Proof: Since J = C(TJ), C(x) � J implies C(x) ⊇ C(TJ). We also know that TJ ∈ C(TJ) because
TJ is idempotent. So TJ ∈ C(x), that is, TJx = TJ .

The second part follows from Lemma 3.7 since A = BN . 2

Remark 3.10 Although TJ and AJ are idempotents individually, their product, the Norton element zJ ,
need not be. For example, take the 0-Hecke algebra H6(0) corresponding to the symmetric group S6. Let
J be the subset {1, 4, 5} of {1, 2, 3, 4, 5}. Then TJ = T1T4T5T4, AJ = (1−T2)(1−T3)(1−T2) and zJ

is their product. No power of zJ is idempotent.

Lemma 3.11 The coefficient of TJ in zJ = AJTJ is 1. All other terms y in zJ have C(y) � J .

Proof: The coefficient of the identity element 1 in AJ is 1. Each term of AJTJ is of the form aTJ for a
term a ofAJ . If a 6= 1, then C(a) � J so C(aTJ) = C(a)∨C(TJ) � C(TJ) = J . Hence the coefficient
of TJ in AJTJ is 1 and all other terms have content greater than J . 2

Lemma 3.12 If J 6� K then zJzK = 0.

Proof: Since J 6� K, there exists a g ∈ G with C(g) � J but C(g) 6� K. Then, using Lemma 3.9 (1)
and Lemma 3.9 (2), zJzK = AJTJAKTK = AJ(TJg

ω)AKTK = AJTJ(gωAK)TK = 0. 2

Lemma 3.13 For all J ∈ L, there exists an N such that (1− zJ)N
z2
J = 0.
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Proof (Outline): The proof is somewhat involved, so we only include an outline of the main argument
here. A complete and detailed proof can be found in [3]. To simplify the notation, we temporarily set
T = TJ , A = AJ and z = AT . Fisrt note that (1 − z)kz2 = A(T (1 − A)T )kAT . The idea is to argue
that (T (1−A)T )NA = 0 for N larger than the length of the largest chain in (W,≤).

Let A be the set of terms in 1 − A. Every term of (T (1 − A)T )N is of the form Ta1Ta2T · · · aNT
with ai ∈ A. If we write xi = Ta1Ta2T · · · aiT , then in the R-order we have x1 ≤ x2 ≤ · · · ≤ xN .
For some i we must have xi = xi+1, so by Lemma 3.1, xi = xiai+1. This implies that xi(1 − A)T =
xiai+1(1−A)T = xiT = xi, from which it follows that xiA = 0. 2

Definition 3.14 Let J ∈ L. Let

PJ :=
∑

n,m≥0

(1− zJ)n+m
z2
J =

∑
k≥0

(k + 1) (1− zJ)k
z2
J .

(In Remark 3.20 we establish a summation-free formula for PJ .)

Remark 3.15 Lemma 3.13 shows there are only finitely many terms in the summation of PJ . Therefore
PJ is a well-defined element of CW for each J ∈ L.

Remark 3.16 A monoid S is called J-trivial if SxS = SyS implies x = y for all x, y ∈ S. When S is
J-trivial it suffices to define

PK =
∑
n≥0

(1− zK)nzK .

Lemma 3.17 The coefficient of TJ in PJ is 1 and all other terms y of PJ have C(y) � J .

Proof: If n+m > 0 then, using that TJ is idempotent,

AJTJAJTJ(1−AJTJ)n+m = AJTJAJ(TJ − TJAJTJ)n+m.

Each term x in (TJ − TJAJTJ)n+m has C(x) � J , so no TJ appears in z2
J(1− zJ)n+m. The coefficient

of TJ in zJ is 1, by Lemma 3.11. Hence TJ appears in z2
J(1 − zJ)0 with coefficient 1. By Lemma 3.11,

since all of the terms y 6= TJ of zJ have C(y) � J and PJ is a polynomial in zJ , all other terms w of PJ

must have C(w) � J . 2

Remark 3.18 As polynomials in x we have for any nonnegative integer N :

x

N∑
n=0

(1− x)n = 1− (1− x)N+1.

Proposition 3.19 For each J ∈ L, the element PJ is idempotent.
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Proof: Let J ∈ L be fixed and let N be such that (1 − zJ)Nz2
J = 0. Let us temporarily denote zJ by z.

We can use Lemma 3.18 to rewrite PJ as

PJ =
∑

n,m≥0

z2(1− z)n+m =
N∑

n=0

N−n∑
m=0

z2(1− z)n+m

=
N∑

n=0

(1− z)n

(
z2

N−n∑
m=0

(1− z)m

)
=

N∑
n=0

(1− z)n
(
z − z(1− z)N−n+1

)
= z

(
N∑

n=0

(1− z)n

)
− (N + 1)z(1− z)N+1 = 1− (1− z)N+1 − (N + 1)z(1− z)N+1.

This implies that z2PJ = z2 since z2(1− z)N+1 = 0, and so

P 2
J =

(
N∑

n=0

N−n∑
m=0

(1− z)n+mz2

)
PJ =

N∑
n=0

N−n∑
m=0

(1− z)n+mz2 = PJ .

2

Remark 3.20 As shown in the calculation above, one could define PJ as

PJ = 1− (1 + (N + 1)zJ)(1− zJ)N+1,

where N is the length of the longest chain in the monoid. For a J-trivial monoid, it suffices to take
PJ = 1− (1− zJ)N+1.

Lemma 3.21 For all J,K ∈ L, with J 6� K, PJPK = 0.

Proof: Follows from Lemma 3.12 and the fact that PJ is a polynomial in zJ with no constant term. 2

Definition 3.22 For each J ∈ L, let

eJ := PJ

(
1−

∑
K�J

eK

)
.

Lemma 3.23 TJ occurs in eJ with coefficient 1. All other terms y of eJ have C(y) � J . In particular,
eJ 6= 0.

Proof: We proceed by induction. If J is maximal, then eJ = PJ , so the statement is implied by Lemma
3.17.

Now suppose the statement is true for all M � J . Then eJ = PJ(1 −
∑

M�J eM ). By induction, all
terms x of eM have C(x) �M � J . So terms y from PJeM have C(y) �M � J . The only other terms
are those from PJ , for which the statement was proved in Lemma 3.17. 2

Lemma 3.24 eKPJ = 0 for K 6� J .
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Proof: The proof is by a downward induction on the semilattice. If K is maximal, then eK = PK , so by
Lemma 3.21, eKPJ = PKPJ = 0.

Now suppose that for every L � K, eLPJ = 0 for L 6� J , and we will show that eKPJ = 0 for
K 6� J . We expand eKPJ :

eKPJ = PK

(
1−

∑
L�K

eL

)
PJ = PKPJ −

∑
L�K

PKeLPJ .

Since K 6� J , we have PKPJ = 0 by Lemma 3.21, and eLPJ = 0 by induction, since L � K and
K 6� J implies L 6� J . 2

Corollary 3.25 eJ is idempotent.

Proof: We expand eJeJ :

eJeJ = PJ

(
1−

∑
M�J

eM

)
PJ

(
1−

∑
M�J

eM

)
= PJ

(
PJ −

∑
M�J

eMPJ

)(
1−

∑
M�J

eM

)
(1)
= P 2

J

(
1−

∑
M�J

eM

)
(2)
= PJ

(
1−

∑
M�J

eM

)
= eJ ,

where (1) follows from Lemma 3.24, and (2) follows from Lemma 3.19. 2

Lemma 3.26 eJeK = 0 for J 6= K.

Proof: The proof is by downward induction on the lattice L. For a maximal element M ∈ L, eM = PM ,
so eMeK = PMPK(1 −

∑
eL) = 0 by Lemma 3.21. Now suppose that for all M � J , eMeK = 0 for

M 6= K and we will show that eJeK = 0 for J 6= K. We expand eJeK :

eJeK = PJ(1−
∑
L�J

eL)eK = PJ(eK −
∑
L�J

eLeK) (1)

If K 6� J , then
∑

L�J eLeK = 0 by our induction hypothesis, so PJ(eK −
∑

L�J eLeK) = PJeK =
PJPK(1−

∑
M�K eM ) = 0 by Lemma 3.21.

If K � J , then
∑

L�J eLeK = eK since eK is idempotent and eLeK = 0 for L 6= K by the inductive
hypothesis. Therefore eK −

∑
L�J eLeK = 0 and hence the right hand side of (1) is zero. 2

Theorem 3.27 The set {eJ : J ∈ L} is a complete collection of orthogonal idempotents for CW .

Proof: From [13], we know that the maximal number of such idempotents is the cardinality of L. The
rest of the claim is just Lemma 3.23, Corollary 3.25 and Lemma 3.26. 2

Appendix: An example
We show by example how to use the above construction to create orthogonal idempotents for the free left
regular band on two generators.
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Idempotents for the free left regular band on two generators
Let S be the left regular band freely generated by two elements a, b. Then S = {1, a, b, ab, ba}. All
elements of S are idempotent. Also aba = ab and bab = ba. The lattice L has four elements: ∅ :=
S, a := Sa, b := Sb and ab := Sab = Sba, where ∅ ≺ a ≺ ab and ∅ ≺ b ≺ ab, but a and b have no
relation. We begin by computing the elements PJ .
J = ∅: Neither of the generators satisfies C(g) � J , so T∅ = 1 ∈ S. B∅ = (1− a)(1− b). Also

B2
∅ = (1− a)(1− b)(1− a)(1− b) = (1− a− b+ ab)(1− a)(1− b)

= (1− a− b+ ab)(1− b) = (1− a− b+ ab) = B∅.

Therefore A∅ = B∅ = 1− a− b+ ab, so z∅ = 1− a− b+ ab is idempotent and

P∅ = 1− a− b+ ab.

J = a: Then C(a) � a and C(b) 6� a, so Ta = a and Ba = 1 − b = Aa since 1 − b is idempotent.
Therefore za = (1− b)a = a− ba. z2

a = a− ab and one can check that z3
a = z2

a, so

Pa = z2
a(1 + (1− za) + (1− za)2 + . . . ) = z2

a = a− ab.

One can check that Pa is idempotent.
J = b: Similarly,

Pb = b− ba.
J = ab: C(a), C(b) � ab, so Tab = ab and Aab = 1. zab = ab is idempotent, so

Pab = ab.

We can now compute the idempotents eJ . Since ab is maximal,

eab = ab.

Since Paeab = (a− ab)ab = ab− ab = 0,

ea = Pa(1− eab) = Pa = a− ab

and similarly,
eb = b− ba.

Finally, note that P∅ea = (1− a− b+ ab)(a− ab) = 0 and similarly P∅eb = 0, so that

e∅ = P∅(1− ea − eb − eab) = P∅ − P∅eab = 1− a− b+ ab− ab+ ba = 1− a− b+ ba.

One can check that {e∅, ea, eb, eab} is a collection of mutually orthogonal idempotents.
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