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The Murnaghan–Nakayama rule for k-Schur
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Abstract. We prove a Murnaghan–Nakayama rule for k-Schur functions of Lapointe and Morse. That is, we give an
explicit formula for the expansion of the product of a power sum symmetric function and a k-Schur function in terms
of k-Schur functions. This is proved using the noncommutative k-Schur functions in terms of the nilCoxeter algebra
introduced by Lam and the affine analogue of noncommutative symmetric functions of Fomin and Greene.

Résumé. Nous prouvons une règle de Murnaghan-Nakayama pour les fonctions de k-Schur de Lapointe et Morse, c’est-
à-dire que nous donnons une formule explicite pour le développement du produit d’une fonction symétrique “somme de
puissances” et d’une fonction de k-Schur en termes de fonctions k-Schur. Ceci est prouvé en utilisant les fonctions non
commutatives k-Schur en termes d’algèbre nilCoxeter introduite par Lam et l’analogue affine des fonctions symétriques
non commutatives de Fomin et Greene.
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1 Introduction
The Murnaghan–Nakayama rule [11, 14, 15] is a combinatorial formula for the characters χλ(µ) of the sym-
metric group in terms of ribbon tableaux. Under the Frobenius characteristic map, there exists an analogous
statement on the level of symmetric functions, which follows directly from the formula

prsλ =
∑
µ

(−1)ht(µ/λ)sµ. (1)

Here pr is the r-th power sum symmetric function, sλ is the Schur function labeled by partition λ, and the
sum is over all partitions λ ⊆ µ for which µ/λ is a border strip of size r. Recall that a border strip is a
connected skew shape without any 2× 2 squares. The height ht(µ/λ) of a border strip µ/λ is one less than
the number of rows.

In [4], Fomin and Greene develop the theory of Schur functions in noncommuting variables. In particular,
they derive a noncommutative version of the Murnaghan–Nakayama rule [4, Theorem 1.3] for the nilCoxeter
algebra (or more generally the local plactic algebra)

prsλ =
∑
w

(−1)asc(w)wsλ , (2)
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where w is a hook word of length r. Here pr and sλ are the noncommutative analogues of the power
sum symmetric function and the Schur function (introduced in Section 2). The word w is a hook word if
w = blbl−1 . . . b1a1a2 . . . am where

bl > bl−1 > · · · > b1 > a1 ≤ a2 ≤ · · · ≤ am (3)

and asc(w) = m− 1 is the number of ascents in w. Actually, by [4, Theorem 5.1] it can further be assumed
that the support of w is an interval.

In this paper, we derive a (noncommutative) Murnaghan–Nakayama rule for the k-Schur functions of
Lapointe and Morse [10]. k-Schur functions form a basis for the ring Λ(k) = Z[h1, . . . , hk] spanned by
the first k complete homogeneous symmetric functions hr, which is a subring of the ring of symmetric
functions Λ. Lapointe and Morse [10] gave a formula for a homogeneous symmetric function hr times a
k-Schur function (at t = 1) as

hrs
(k)
λ =

∑
µ∈P(k)

s(k)µ , (4)

where the sum is over all k-bounded partitions µ ∈ P(k) such that µ/λ is a horizontal r-strip and µ(k)/λ(k)

is a vertical r-strip. Here λ(k) denotes the k-conjugate of λ. Equation (4) is a simple analogue of the Pieri
rule for usual Schur functions, called the k-Pieri rule. This formula can in fact be taken as the definition of
k-Schur functions from which many of their properties can be derived. Conjecturally, the k-Pieri definition
of the k-Schur functions is equivalent to the original definition by Lapointe, Lascoux, and Morse [6] in terms
of atoms.

Lam [5] defined a noncommutative version of the k-Schur functions in the affine nilCoxeter algebra as
the dual of the affine Stanley symmetric functions

Fw(X) =
∑

a=(a1,...,at)

〈hat
(u)hat−1(u) · · ·ha1(u) · 1, w〉 xa1

1 · · ·x
at
t , (5)

where the sum is over all compositions of the length of w satisfying ai ∈ [0, k]. Here

hr(u) =
∑
A

udec
A

are the analogues of homogeneous symmetric functions in noncommutative variables, where the sum is over
all r-subsetsA of [0, k] and udec

A is the product of the generators of the affine nilCoxeter algebra in cyclically
decreasing order with indices appearing in A. We denote the noncommutative analogue of Λ(k) by Λ(k) as
the subalgebra of the affine nilCoxeter algebra generated by these analogues of homogeneous symmetric
functions. See Section 2.3 for further details.

Denote by s(k)
λ the noncommutative k-Schur function labeled by the k-bounded partition λ and pr the

noncommutative power sum symmetric function in the affine nilCoxeter algebra. There is a natural bijection
from k-bounded partitions λ to (k + 1)-cores, denoted corek+1(λ) (see Section 2.1). We define a vertical
domino in a skew-partition to be a pair of cells in the diagram, with one sitting directly above the other. For
the skew of two k-bounded partitions λ ⊆ µ we define the height as

ht(µ/λ) = number of vertical dominos in µ/λ . (6)

For ribbons, that is skew shapes without any 2 × 2 squares, the definition of height can be restated as the
number of occupied rows minus the number of connected components. Notice that is compatible with the
usual definition of the height of a border strip.

All notation and definitions regarding our main Definition 1.1 and Theorem 1.2 are given in Section 2
below.
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Definition 1.1 The skew of two k-bounded partitions, µ/λ, is called a k-ribbon of size r if µ and λ satisfy
the following properties:

(0) (containment condition) λ ⊆ µ and λ(k) ⊆ µ(k);

(1) (size condition) |µ/λ| = r;

(2) (ribbon condition) corek+1(µ)/corek+1(λ) is a ribbon;

(3) (connectedness condition) corek+1(µ)/corek+1(λ) is k-connected (see Definition 2.3);

(4) (height statistics condition) ht(µ/λ) + ht(µ(k)/λ(k)) = r − 1.

Our main result is the following theorem.

Theorem 1.2 For 1 ≤ r ≤ k and λ a k-bounded partition, we have

prs
(k)
λ =

∑
µ

(−1)ht(µ/λ)s(k)
µ ,

where the sum is over all k-bounded partitions µ such that µ/λ is a k-ribbon of size r.

Let λ, ν be k-bounded partitions of the same size and ` the length of ν. A k-ribbon tableau of shape λ and
type ν is a filling, T , of the cells of λ with the labels {1, 2, . . . , `} which satisfies the following conditions
for all 1 ≤ i ≤ `:

(i) the shape of the restriction of T to the cells labeled 1, . . . , i is a partition, and

(ii) the skew shape ri, which is the restriction of T to the cells labeled i, is a k-ribbon of size νi.

We also define

χ
(k)
λ,ν =

∑
T

(∏̀
i=1

(−1)ht(ri)

)
,

where the sum is over all k-ribbon tableaux T of shape λ and type ν.
Iterating Theorem 1.2 gives the following corollary. We remark that this formula may also be considered

as a definition of the k-Schur functions.

Corollary 1.3 For ν a k-bounded partition, we have

pν =
∑

λ∈P(k)

χ
(k)
λ,ν s(k)

λ .

In Section 2 we will see that there is a ring isomorphism

ι : Λ(k) → Λ(k)

sending the noncommutative symmetric functions to their symmetric function counterpart. This leads us to
the following corollary.

Corollary 1.4 Theorem 1.2 and Corollary 1.3 also hold when replacing pr by the power sum symmetric
function pr, and s(k)

λ by the k-Schur function s(k)λ .
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Dual k-Schur functions S
(k)
λ indexed by k-bounded partitions λ form a basis of the quotient space Λ(k) =

Λ/〈pr | r > k〉 = Λ/〈mλ | λ1 > k〉 (they correspond to the affine Stanley symmetric functions indexed by
Grassmannian elements). The Hall inner product 〈·, ·〉 : Λ×Λ→ Q defined by 〈hλ,mµ〉 = 〈sλ, sµ〉 = δλ,µ,
can be restricted to 〈·, ·〉 : Λ(k) × Λ(k) → Q, so that s(k)λ and S

(k)
µ form dual bases 〈s(k)λ ,S

(k)
µ 〉 = δλ,µ. Let

zλ be the size of the centralizer of any permutation of cycle type λ. Then 〈pλ, pµ〉 = zλδλ,µ.

Corollary 1.5 For ν a k-bounded partition, we have

S(k)
ν =

∑
λ∈P(k)

1
zλ
χ

(k)
ν,λ pλ .

Since the product of two k-bounded power symmetric functions is again a k-bounded power symmetric
function, the expansion of the dual k-Schur functions in terms of pλ of Corollary 1.5 is better suited for
multiplication than the expansion in terms of monomial symmetric functions. The product of two k-bounded
monomial symmetric functions is a sum of monomial symmetric functions which are not necessarily k-
bounded.

The paper is organized as follows. In Section 2 we introduce all notation and definitions. In particular,
we define the various noncommutative symmetric functions. In Section 3 we prove Theorem 3.1, which is
the analogue of Theorem 1.2 formulated in terms of the nilCoxeter algebra. We conclude in Section 4 with
some related open questions.

A long version of this paper containing a proof that Theorems 1.2 and 3.1 are equivalent is available as a
preprint [1].
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2 Notation
In this section we give all necessary definitions.

2.1 Partitions and cores
A sequence λ = (λ1, λ2, . . . , λ`) is a partition if λ1 ≥ λ2 ≥ · · · ≥ λ` > 0. We say that ` is the length of λ
and |λ| = λ1 + · · · + λ` is its size. A partition λ is k-bounded if λ1 ≤ k. We denote by P(k) the set of all
k-bounded partitions.

One may represent a partition λ by its partition diagram, which contains λi boxes in row i. The conjugate
λt corresponds to the diagram with rows and columns interchanged. We use French convention and label
rows in decreasing order from bottom to top. For example

and

correspond to the partition (3, 1) and its conjugate (2, 1, 1), respectively.
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For two partitions λ and µ whose diagrams are contained, that is λ ⊆ µ, we denote by µ/λ the skew
partition consisting of the boxes in µ not contained in λ. A ribbon is a skew shape which does not contain
any 2× 2 squares. An r-border strip is a connected ribbon with r boxes.

A partition λ is an r-core if no r-border strip can be removed from λ and still results in a partition. For
example

(7)

is a 4-core. We denote the set of all r-cores by Cr.
For a cell c = (i, j) ∈ λ in row i and column j we define its hook length to be the number of cells in row

i of λ to the right of c plus the number of cells in column j of λ weakly above c (including c). An alternative
definition of an r-core is a partition without any cells of hook length equal to a multiple of r [13, Ch. 1, Ex.
8]. The content of cell c = (i, j) is given by j − i (mod r).

There exists a bijection [9]
corek+1 : P(k) → Ck+1 (8)

from k-bounded partitions to (k + 1)-cores defined as follows. Let λ ∈ P(k) considered as a set of cells.
Starting from the smallest row, check whether there are any cells of hook length greater than k. If so, slide
the row and all those in the rows below to the right by the minimal amount so that none of cells in that row
have a hook length greater than k. Then continue the procedure with the rows below. The positions of the
cells define a skew partition and the outer partition is a (k + 1)-core.

The inverse map core−1
k+1 : Ck+1 → P(k) is slightly easier to compute. The partition core−1

k+1(κ) is of the
same length as the (k + 1)-core κ and the ith entry of the partition is the number of cells in the the ith row
of κ which have a hook smaller or equal to k.

Let λ ∈ P(k). Then the k-conjugate λ(k) of λ is defined as core−1
k+1(corek+1(λ)t).

Example 2.1 For k = 3, take λ = (3, 2, 1, 1) ∈ P(k) so that

core4 : 7→

which is the 4-core in (7) (where we have drawn the original boxes of λ in bold). To obtain the k-conjugate
λ(3) of λ we calculate

core−1
4 : 7→ .

2.2 Affine nilCoxeter algebra
The affine nilCoxeter algebra Ak is the algebra over Z generated by u0, u1, . . . , uk satisfying

u2
i = 0 for i ∈ [0, k],
uiui+1ui = ui+1uiui+1 for i ∈ [0, k],
uiuj = ujui for i, j ∈ [0, k] such that |i− j| ≥ 2,

(9)

where all indices are taken modulo k + 1. We view the indices i ∈ [0, k] as living on a circle, with node i
being adjacent to nodes i−1 and i+1 (modulo k+1). As with Coxeter groups, we have a notion of reduced
words of elements u ∈ Ak as the shortest expressions in the generators. If u = ui1 · · ·uim is a reduced
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expression, we call {i1, . . . , im} the support of u denoted supp(u) (which is independent of the reduced
word and only depends on u itself). Also, i1 . . . im is the corresponding reduced word and len(u) = m is
the length of u.

A word w in the letters [0, k] is cyclically decreasing (resp. increasing) if the length of w is at most k,
every letter appears at most once, and if i, i− 1 ∈ w then i occurs before (resp. after) i− 1. Note that since
ui and uj commute if i is not adjacent to j, all cyclically decreasing (resp. increasing) words w with the
same support give rise to the same affine nilCoxeter group element

∏
i∈w ui. For a proper subset A ( [0, k]

we define udec
A ∈ Ak (resp. uinc

A ∈ Ak) to be the element corresponding to cyclically decreasing (resp.
increasing) words with support A.

Example 2.2 Take k = 6 and A = {0, 2, 3, 4, 6}. Then udec
A = (u0u6)(u4u3u2) = (u4u3u2)(u0u6) and

uinc
A = (u6u0)(u2u3u4) = (u2u3u4)(u6u0).

If u ∈ Ak is supported on a proper subset S of [0, k], then we specify a canonical interval IS which
contains the subset S. Identify the smallest element a (from the numbers 0 through k with the integer order)
which does not appear in S. Then the canonical cyclic interval which we choose orders the elements

a+ 1 < a+ 2 < · · · < k < 0 < 1 < · · · < a− 1,

(where we identify k and −1 when necessary).

Definition 2.3 An element u ∈ Ak (resp. word w) is k-connected if its support S is an interval in IS .

Example 2.4 For k = 6, the word w = 0605 is k-connected, whereas w = 06052 is not.

Suppose u ∈ Ak has support S ( [0, k]. We say that u corresponds to a hook word if it has a reduced
word w of the form of Equation (3) with respect to the canonical order IS . In this case we denote by asc(u)
or asc(w) the number of ascents ascIS

(w) in the canonical order.

Example 2.5 Take u = u3u2u6u0u4 ∈ A6. In this case S = {0, 2, 3, 4, 6} and IS is given by 2 < 3 < 4 <
5 < 6 < 0. The word w = (3)(2460) is a hook word with respect to IS and asc(u) = 3.

The generators ui in the nilCoxeter algebra Ak act on a (k + 1)-core ν ∈ Ck+1 by

ui · ν =

{
ν with all corner cells of content i added if they exist,
0 otherwise.

(10)

This action is extended to the rest of the algebra Ak and can be shown to be consistent with the relations of
the generators. Under the bijection core−1

k+1 to k-bounded partitions only the topmost box added to diagram
survives. The action of ui on a k-bounded partition λ under corek+1 is denoted ui · λ.

Example 2.6 Taking ν = core4(λ) from Example 2.1 we obtain

u2 · ν = and core−1
4 (u2 · ν) =

where the boxes added by u2 of content 2 are indicated in bold.
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2.3 Noncommutative symmetric functions

We now give the definition of the noncommutative symmetric functions er, hr, s(r−i,1i), pr, and s(k)
λ in

terms of the affine nilCoxeter algebra.
Following Lam [5], for r = 1, . . . , k, we define the noncommutative homogeneous symmetric functions

hr =
∑

A∈([0,k]r )
udec
A ,

where udec
A is a cyclically decreasing element with supportA as defined in Section 2.2. We take as a defining

relation for the elements er the equation
∑r
i=0(−1)ier−ihi = 0. It can be shown [5, Proposition 16] that

then
er =

∑
A∈([0,k]r )

uinc
A ,

where uinc
A is a cyclically increasing element with support A. More generally, the hook Schur functions for

r ≤ k are given by
s(r−i,1i) = hr−iei − hr−i+1ei−1 + · · ·+ (−1)ihr

and we will demonstrate in Corollary 3.5 (below) that these elements may also be expressed as a sum over
certain words.

The noncommutative power sum symmetric functions for 1 ≤ r ≤ k are defined through the analogue of
a classical identity with ribbon Schur functions

pr =
r−1∑
i=0

(−1)is(r−i,1i).

Lam [5, Proposition 8] proved that, even though the variables ui do not commute, the elements hr for
1 ≤ r ≤ k commute and consequently, so do the other elements er, pr, s(r−i,1i) we have defined in terms
of the hr. We define Λ(k) = Z[h1, . . . ,hk] to be the noncommutative analogue of Λ(k) = Z[h1, . . . , hk].

We define the noncommutative k-Schur functions s(k)
λ by the noncommutative analogue of the k-Pieri

rule (4). Let us denote by H(k)
r the set of all pairs (µ, λ) of k-bounded partitions µ, λ such that µ/λ is a

horizontal r-strip and µ(k)/λ(k) is a vertical r-strip (which describes the summation in the k-Pieri rule).
Then for a k-bounded partition λ we require that

hrs
(k)
λ =

∑
µ:(µ,λ)∈H(k)

r

s(k)
µ . (11)

This definition can be used to expand the hµ elements in terms of the elements s(k)
λ . The transition matrix is

described by the number of k-tableaux of given shape and weight (see [9]). Since this matrix is unitriangular,
this system of relations can be inverted over the integers and hence {s(k)

λ | λ ∈ P(k)} forms a basis of Λ(k).

As shown in [9, 7], for 1 ≤ r ≤ k, we have if (µ, λ) ∈ H(k)
r , then there is a cyclically decreasing element

u ∈ Ak of length r such that µ = u · λ. Moreover, if u ∈ Ak is cyclically decreasing and µ = u · λ 6= 0,
then (µ, λ) ∈ H(k)

r .
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Example 2.7 Take λ = (3, 3, 1, 1) ∈ P(3) and u = u0u3. Then

core4(λ) = and u · core4(λ) =

so that ((3, 3, 2, 1, 1), (3, 3, 1, 1)) ∈ H(3)
2 .

Hence, we may rewrite (11) as

hrs
(k)
λ =

∑
µ:(µ,λ)∈H(k)

r

s(k)
µ =

∑
A∈([0,k]r )

s(k)

udec
A ·λ

,

where we assume s(k)

udec
A ·λ

= 0 if udec
A · λ = 0. The elements hr =

∑
A∈([0,k]r ) u

dec
A generate Λ(k), and

therefore more generally for any element f =
∑
u cuu ∈ Λ(k) with u ∈ Ak and cu ∈ Z

f s(k)
λ =

∑
u

cus
(k)
u·λ . (12)

Since all of the noncommutative symmetric functions in this section commute and satisfy the same defin-
ing relations as their commutative counterparts, there is a ring isomorphism

ι : Λ(k) → Λ(k)

sending hr 7→ hr, er 7→ er, pr 7→ pr, s(k)
λ 7→ s

(k)
λ .

3 Main result: Murnaghan–Nakayama rule in terms of words
We now restate Theorem 1.2 in terms of the action of words. This result is proved in the remainder of this
section.

Theorem 3.1 For 1 ≤ r ≤ k and λ a k-bounded partition, we have

prs
(k)
λ =

∑
(w,µ)

(−1)asc(w)s(k)
µ , (13)

where the sum is over all pairs (w, µ) of reduced wordsw in the affine nilCoxeter algebraAk and k-bounded
partitions µ satisfying

(1′) (size condition) len(w) = r;

(2′) (ribbon condition) w is a hook word;

(3′) (connectedness condition) w is k-connected;

(4′) (weak order condition) µ = w · λ.

The proof of Theorem 3.1 essentially amounts to computing an expression for pr in terms of words.
Since all words involved will be of length ≤ k, there will be a canonical order on the support as introduced
in Section 2.2. The statistic asc(w), and the property of being a hook word, will always be in terms of this
canonical ordering.
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Lemma 3.2 For 0 ≤ i ≤ r ≤ k,
hr−iei =

∑
w

w , (14)

where the sum is over all words w satisfying (1′), (2′) with respect to the canonical order, and asc(w) ∈
{i− 1, i}.

Proof: hr−i is the sum over all cyclically decreasing nilCoxeter group elements of length r− i and ei is the
sum over all cyclically increasing nilCoxeter group elements of length i. Hence

hr−iei =
∑
(u,v)

u cycl. dec., |u| = r − i
v cycl. inc., |v| = i

uv.

Rearrange each u and v so that they together form a hook with respect to the canonical order associated to
the set supp(u) ∪ supp(v). Either the last letter of u is smaller than the first letter of v, in which case the
total ascent is i, or the last letter of u is bigger than the first letter in v, in which case the total number of
ascents is i − 1. This yields a bijection between hook words in the canonical order and pairs appearing in
this sum with the number of ascents in {i, i − 1}. In the corner case i = 0 (resp. i = r) the number of
ascents can only be 0 (resp. r − 1 due to the fact that the words are of length r). 2

Example 3.3 Take k = 8, u = (u1u0u8)(u5u4) and v = (u2u3)(u0), so that i = 3 and r = 8. In
this case the canonical order is 7 < 8 < 0 < 1 < 2 < 3 < 4 < 5 and we would write uv as uv =
[(u5u4)(u1u0u8)][(u0)(u2u3)], giving rise to the word w = (5410)(8023) with i = 3 ascents. If on the
other hand u = (u1u0)(u5u4) and v = (u2u3)(u8u0), so that i = 4 and r = 8, then we would write
uv = [(u5u4)(u1u0)][(u8u0)(u2u3)], giving rise to the word w = (5410)(8023) with i− 1 = 3 ascents.

Remark 3.4 Note that there may be multiplicities in (14) with respect to affine nilCoxeter group elements
because there may be several hook words with the same number of ascents that are equivalent to the same
affine nilCoxeter element. For example, (4)(20) and (0)(24) are two different hook words with exactly one
ascent with respect to the interval I{0,2,4} = {2 < 4 < 0}. Of course, they both correspond to the same
affine nilCoxeter element since all letters in the word commute. The element with u = u2 and v = u4u0

would give rise to the hook word w = (240) with 2 ascents.

We can use this lemma to get an expression for hook Schur functions.

Corollary 3.5 For 0 ≤ i ≤ r ≤ k, the hook Schur function is

s(r−i,1i) =
∑
w

w ,

where the sum is over all words w satisfying (1′), (2′) with respect to the canoncial order, and asc(w) = i.

Proof: From our definition of the noncommutative Schur functions indexed by a hook partition, it follows
that

s(r−i,1i) = hr−iei − hr−i+1ei−1 + · · ·+ (−1)ihr.

Hence by Lemma 3.2 the only words which do not appear in two terms with opposite signs are those that
have asc(w) = i, which implies the corollary. 2
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Example 3.6 Let k = 3. Then for r = 3 and i = 1 we have

s2,1 = u1u0u1 + u2u1u2 + u3u2u3 + u0u3u0

+ u1u3u0 + u1u0u2 + u2u0u1 + u2u1u3 + u3u1u2 + u3u2u0 + u0u2u3 + u0u3u1.

We can now write an expression for pr by using the definition.

Corollary 3.7 For 1 ≤ r ≤ k,
pr =

∑
w

(−1)asc(w)w,

where the sum is over all words w satisfying (1′) and (2′) in the canonical order.

Proof: This follows immediately from the definition

pr =
r−1∑
i=0

(−1)is(r−i,1i) .

2

In fact, we may restrict our attention to those words in the sum also satisfying (3′) because it is possible
to show that those not satisfying (3′) will cancel.

Lemma 3.8 For r ≤ k,
pr =

∑
w

(−1)asc(w)w,

where the sum is over all words w satisfying (1′), (2′), and (3′).

Proof: Since each canonical interval can be viewed as an interval of the finite nilCoxeter group, the sign-
reversing involution described before [4, Theorem 5.1] still holds and there is a sign-reversing involution on
the terms which do not satisfy (3′). Hence it suffices to sum only over terms which are connected cyclic
intervals. 2

Example 3.9 Let k = 3. Then

p2 = u1u0 + u2u1 + u3u2 + u0u3 − (u1u2 + u2u3 + u3u0 + u0u1).

Theorem 3.1 now follows from the action of words on s(k)
λ given by Equation (12).

4 Outlook
By Corollaries 1.3, 1.4 and 1.5, the Murnaghan-Nakayama rule proved in this paper gives the expansion of
the power sum symmetric functions in terms of the k-Schur functions s(k)λ ∈ Λ(k) and the expansion of the
dual k-Schur functions S

(k)
λ ∈ Λ(k) in terms of the power sums:

pν =
∑

λ∈P(k)

χ
(k)
λ,ν s

(k)
λ and S(k)

ν =
∑

λ∈P(k)

1
zλ
χ

(k)
ν,λ pλ .
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Unlike in the symmetric function case, where the Schur functions sλ ∈ Λ are self-dual, there should be a dual
version of the Murnaghan-Nakayama rule of this paper, namely a combinatorial formula for the coefficients
χ̃

(k)
λ,ν in the expansion of the power sum symmetric functions in terms of the dual k-Schur functions

pν =
∑

λ∈P(k)

χ̃
(k)
λ,ν S

(k)
λ

or, equivalently by the same arguments as in the proof of Corollary 1.5,

s(k)ν =
∑

λ∈P(k)

1
zλ
χ̃

(k)
ν,λ pλ .

Since the s(k)ν are known to be Schur-positive symmetric functions [8], they correspond to representa-
tions of the symmetric group under the Frobenius characteristic map. Furthermore, the characters of these
representations are given by the χ̃(k)

ν,λ. An explicit description of such representations is an interesting open
problem, which has been studied by Li-Chung Chen and Mark Haiman [2]. In the most generality they
conjecture a representation theoretical model for the k-Schur functions with a parameter t which keeps track
of the degree grading; the χ̃(k)

ν,λ described above should give the characters of these representations without
regard to degree.

Computer evidence suggests that the ribbon condition (2) of Definition 1.1 might be superfluous because
it is implied by the other conditions of the definition. This was checked for k, r ≤11 and for all |λ| = n ≤ 12
and |µ| = n+ r.
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