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Powers of the Vandermonde determinant,
Schur functions, and the dimension game

Cristina Ballantine1

1 Department of Mathematics and Computer Science, College of the Holy Cross, Worcester, MA, USA

Abstract. Since every even power of the Vandermonde determinant is a symmetric polynomial, we want to understand
its decomposition in terms of the basis of Schur functions. We investigate several combinatorial properties of the
coefficients in the decomposition. In particular, I will give a recursive approach for computing the coefficient of the
Schur function sµ in the decomposition of an even power of the Vandermonde determinant in n + 1 variables in
terms of the coefficient of the Schur function sλ in the decomposition of the same even power of the Vandermonde
determinant in n variables if the Young diagram of µ is obtained from the Young diagram of λ by adding a tetris type
shape to the top or to the left.

Résumé. Comme toute puissance paire du déterminant de Vandermonde est un polynôme symétrique, nous voulons
comprendre sa décomposition dans la base des fonctions de Schur. Nous allons étudier plusieurs propriétés combina-
toires des coefficients de la décomposition. En particulier, nous allons donner une approche récursive pour le calcul
du coefficient de la fonction de Schur sµ dans la décomposition d’une puissance paire du déterminant de Vander-
monde en n + 1 variables, en fonction du coefficient de la fonction de Schur sλ dans la décomposition de la même
puissance paire du déterminant de Vandermonde en n variables, lorsque le diagramme de Young de µ est obtenu à
partir du diagramme de Young de λ par l’addition d’une forme de type tetris vers le haut ou vers la gauche.
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1 Introduction
Because Vandermonde determinants are so prevalent in mathematics I will not attempt to list here their
many applications. In the theory of formal power series they are best known for the part they play in the
classical definition of Schur functions. Since each even power of the Vandermonde determinant is a sym-
metric function, it is natural to ask for its decomposition in terms of the basis for the ring of symmetric
functions given by Schur functions. This decomposition has been studied extensively (see [2], [3], [7], and
the references therein) in connection with its usefulness in the understanding of the (fractional) quantum
Hall effect. In particular, the coefficients in the decomposition correspond precisely to the coefficients in
the decomposition of the Laughlin wave function as a linear combination of (normalized) Slater determi-
nantal wave functions. The calculation of the coefficients in the decomposition becomes computationally
expensive as the size of the determinant increases. Several algorithms for the expansion of the square of
the Vandermonde determinant in terms of Schur functions are available (see, for example [7]). However,
a combinatorial interpretation for the coefficient of a given Schur function is still unknown. Recently,
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Boussicault, Luque and Tollu [1] provided a purely numerical algorithm for computing the coefficient
of a given Schur function in the decomposition without computing the other coefficients. The algorithm
uses hyperdeterminants and their Laplace expansion. It was used by the authors to compute coefficients
in the decomposition of even powers of Vandermonde determinants of size up to 11. For determinants of
large size, the algorithm becomes computationally too expensive for practical purposes. In this article we
present recursive combinatorial properties of some of the coefficients on the decomposition.

1.1 Statement of results
We denote by aδn the Vandermonde determinant aδn = det(xn−ji )ni,j=1 =

∏
1≤i<j≤n

(xi − xj). For fixed

positive integers n and k, suppose λ is a partition of kn(n − 1) and µ is a partition of kn(n + 1). We
prove the following results relating 〈a2k

δn+1
, sµ〉 and 〈a2k

δn , sλ〉when the diagram of µ is obtained by adding
a certain configuration of boxes, called a tetris type shape, to the top or to the left of the diagram of λ.

1. (Theorem 4.1) If the Young diagram of µ is obtained by adding the tetris type shape of size 2kn
2kn︷ ︸︸ ︷

. . .

to the top of the Young diagram of λ, then 〈a2k
δn+1

, sµ〉 = 〈a2k
δn , sλ〉.

2. (Corollary 4.3) If the Young diagram of µ is obtained by adding the tetris type shape of size 2kn
2k︷ ︸︸ ︷
. . .

...n


. . .

to the left of the Young diagram of λ, then 〈a2k
δn+1

, sµ〉 = 〈a2k
δn , sλ〉.

For the remaining results let k = 1.

3. (Theorem 4.6) If the Young diagram of µ is obtained by adding the tetris type shape of size 2n
2n−m︷ ︸︸ ︷
. . .

...

 m

to the top of the Young diagram of λ, then 〈a2
δn+1

, sµ〉 = (−1)m(2m+ 1)〈a2
δn , sλ〉.

4. (Conjecture 4.8) If the Young diagram of µ is obtained by adding the tetris type shape of size 2n
2n−m︷ ︸︸ ︷
. . .

...

 m



Powers of the Vandermonde determinant, Schur functions, and the dimension game 89

to the top of theYoung diagram of λ, then 〈a2
δn+1

, sµ〉 = (−1)m(m+ 1)〈a2
δn , sλ〉.

5. (Theorem 4.12) If the Young diagram of µ is obtained by adding the tetris type shape of size 2n

...

 n− 1

. . .︸ ︷︷ ︸
n− 1

to the left of the Young diagram of λ, then 〈a2
δn+1

, sµ〉 = (−1)n3n〈a2
δn , sλ〉.

We also prove several corollaries of the results above.

2 Notation and basic facts
We first introduce some notation and basic facts about Vandermonde determinants related to this problem.
For details on partitions and Schur functions we refer the reader to [6, Chapter 7].

Let n be a non-negative integer. A partition of n is a weakly decreasing sequence of non-negative
integers, λ := (λ1, λ2, · · · , λ`), such that |λ| :=

∑
λi = n. We write λ ` n to mean λ is a partition of

n. The nonzero integers λi are called the parts of λ. We identify a partition with its Young diagram, i.e.
the array of left-justified squares (boxes) with λ1 boxes in the first row, λ2 boxes in the second row, and
so on. The rows are arranged in matrix form from top to bottom. By the box in position (i, j) we mean
the box in the i-th row and j-th column of λ. The length of λ, `(λ), is the number of rows in the Young
diagram or the number of non-zero parts of λ. For example,

is the Young diagram for λ = (6, 4, 2, 1, 1), with `(λ) = 5 and |λ| = 14.
We write λ = 〈1m1 , 2m2 . . .〉 to mean that λ has mi parts equal to i.
Given a weak composition α = (α1, α2, . . . αn) of length n, we write xα for xα1

1 xα2
2 · · ·xαnn . If

λ = (λ1, λ2, . . . , λn) is a partition of length at most n and δ = δn = (n− 1, n− 2, . . . , 2, 1, 0), then the
skew symmetric function aλ+δ is defined as

aλ+δ = det(xλj+n−ji )ni,j=1. (1)

If λ = ∅,
aδ = det(xn−ji )ni,j=1 =

∏
1≤i<j≤n

(xi − xj) (2)

is the Vandermonde determinant. We have [6, Theorem 7.15.1]

aλ+δ/aδ = sλ(x1, . . . , xn), (3)
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where sλ(x1, . . . , xn) is the Schur function of shape λ in variables x1, . . . , xn. Moreover, for any homo-
geneous symmetric function f of degree n, we have [6, Corollary 7.15.2]

〈f, sλ〉n = [xλ+δ]aδf, (4)

i.e., the coefficient of xλ+δ in aδf . In particular, if f = a2k
δ , then

〈a2k
δ , sλ〉 = [xλ+δ]a2k+1

δ . (5)

We will often write cλ for 〈a2k
δn
, sλ〉.

The goal of this work is to investigate several combinatorial properties of the numbers (1).
We note that |δ| = n(n−1)/2 and aδ is a homogeneous polynomial of degree n(n−1)/2. If 〈a2k

δ , sλ〉 6=
0, then |λ| = kn(n− 1), n− 1 ≤ `(λ) ≤ n, k(n− 1) ≤ λ1 ≤ kn(n− 1) and λn ≤ k(n− 1). Moreover,
if λn = k(n− 1), then λ = (k(n− 1))n.

Whenever it is necessary to emphasize the dimension, we write δn for δ and aδn for aδ .
By āδn we mean aδn with xi replaced by xi+1 for each i = 1, 2, . . . n. Thus,

āδn =
∏

2≤i<j≤n+1

(xi − xj). (6)

Given a weak composition α = (α1, α2, . . . , αn) of n of length n, we denote by cα the coefficient of xα

in a2k+1
δn

. If ξ is a permutation of {1, 2, . . . , n}, and ξ(α) is the weak composition (αξ(1), αξ(2), . . . , αξ(n)),
then cα = sgn(ξ)cξ(α).

To simplify the notation, we write λ = (λ1, λ2, . . . , λn) for a partition with `(λ) ≤ n by setting λj = 0
if j > `(λ).

3 The box-complement of a partition

Definition: Let λ = (λ1, λ2, . . . , λn−1, λn) be a partition of kn(n − 1) with `(λ) ≤ n. The box-
complement of λ is the partition of kn(n− 1) given by

λbc := (2k(n− 1)− λn, 2k(n− 1)− λn−1, . . . , 2k(n− 1)− λ2, 2k(n− 1)− λ1). (7)

Thus, λbc is obtained from λ in the following way. Place the Young diagram of λ in the upper left
corner of a box with n rows each of length 2k(n − 1). If we remove the Young diagram of λ and rotate
the remaining shape by 180◦, we obtain the Young diagram of λbc.

Example: Let k = 1, n = 4 and λ = (5, 3, 2, 2). Then λbc = (4, 4, 3, 2). The Young diagram of λ is
shown on the left of the 4× 6 box. The remaining squares of the box are marked with X . They form the
diagram of λbc rotated by 180◦.

X
X X X

X X X X
X X X X
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Lemma 3.1 (Box-complement lemma) With the notation above we have

〈a2k
δ , sλ〉 = 〈a2k

δ , sλbc〉. (8)

For a proof in the case k = 1, see [2, Section 6] where the box-complement partition is referred to as
the reversed partition. We prove the lemma for general k by elementary means, using induction on n. In
[2], Dunne also explains the physical meaning of the box-complement lemma.

4 The dimension game
The goal of this section is to establish a relationship between 〈a2k

δn+1
, sµ〉 and 〈a2k

δn
, sλ〉 when there is a

relationship between λ ` kn(n− 1) and µ ` kn(n+ 1) of the type described in the introduction.

Theorem 4.1 If λ = (λ1, λ2, . . . , λn) is a partition of kn(n− 1) with `(λ) ≤ n and µ is the partition of
kn(n+ 1) given by µ = (2kn, λ1, λ2, . . . , λn), then

〈a2k
δn+1

, sµ〉 = 〈a2k
δn , sλ〉. (9)

Thus, adding the tetris type shape
2kn︷ ︸︸ ︷

. . .

to the top of the diagram for λ does not change the coefficient.

Proof: The proof follows by induction from

a2k+1
δn+1

=
n+1∏
i=2

(x1 − xi)2k+1 · ā2k+1
δn

. (10)

2

Remark: The theorem is also true if λ is just a weak composition of kn(n − 1) (with no more than one
part equal to 0).

Note: The result of the theorem for k = 1 is also noted in (23a) of [7].

Corollary 4.2 If λ = (2k(n− 1), 2k(n− 2), . . . , 4k, 2k, 0) = 2kδn, then 〈a2k
δn
, sλ〉 = 1.

Using Theorem 4.1 and Lemma 3.1, we obtain the following corollary.

Corollary 4.3 If λ = (λ1, λ2, . . . , λn) is a partition of kn(n − 1) with `(λ) ≤ n, and µ is the partition
of kn(n+ 1) given by µ = λ+ 〈(2k)n〉 = (λ1 + 2k, λ2 + 2k, . . . , λn + 2k), then

〈a2k
δn+1

, sµ〉 = 〈a2k
δn , sλ〉. (11)

Thus adding the tetris type shape 2k︷ ︸︸ ︷
. . .

...n


. . .



92 Cristina Ballantine

to the left of the diagram of λ does not change the coefficient.

Note: For k = 1 this is (23b) of [7].
For the remainder of the article we set k = 1.

Lemma 4.4 Suppose λ ` n(n − 1) with n − 1 ≤ `(λ) ≤ n and 〈a2
δn
, sλ〉 6= 0. If λn = λn−1 = . . . =

λn−i = s, then i ≤ s, i.e., the maximum number of rows of size s at the bottom of the diagram is s+ 1.

Proof: We examine the coefficient of xλ + δn in a3
δn

. Suppose i = s+ 1. Then

xλ+δn = (xλ1+n−1
1 · · ·xλn−s+sn−s ) ·Ms, (12)

where the monomial Ms = x2s+1
n−s−1 · · ·x

s+2
n−2x

s+1
n−1x

s
n has degree

(3s+ 1)(s+ 2)
2

.
On the other hand,

n∏
j=n−s

(xn−s−1 − xj)3 ·
n∏

j=n−s+1

(xn−s − xj)3 · · ·
n∏

j=n−1

(xn−2 − xj)3 · (xn−1 − xn)3 (13)

contributes powers of xn−s−1, xn−s, . . . , xn to all monomials in a3
δn

. However, each monomial in the

product (13) has degree
(3s+ 3)(s+ 2)

2
. Therefore, i ≤ s.

2

Reformulating the previous lemma in terms of the box-complement of the partition λ, we obtain the
following corollary.

Corollary 4.5 Suppose λ ` n(n − 1) with n − 1 ≤ `(λ) ≤ n and 〈a2
δn
, sλ〉 6= 0. If λ1 = λ2 = . . . =

λm = 2n−m− 1, then λm+1 < 2n−m− 1.

Theorem 4.6 Let 1 ≤ m ≤ n. Let λ ` n(n − 1) with n − 1 ≤ `(λ) ≤ n and parts λ1 = λ2 = . . . =
λm = 2n −m − 1. Let µ ` n(n + 1) with parts µ1 = µ2 = . . . = µm+1 = 2n −m and (if m < n)
µj = λj−1 for j = m+ 2, . . . , n+ 1. Then,

〈a2
δn+1

, sµ〉 = (−1)m(2m+ 1)〈a2
δn , sλ〉. (14)

Thus, adding the tetris type shape 2n−m︷ ︸︸ ︷
. . .

...

 m

to the top of the diagram of λ changes the coefficient by a multiple of (−1)m(2m+ 1).

Proof: The proof relies on tricky but elementary linear algebra and reduces to [6, Exercise 7.37(b)] which
shows that

〈a2
δm , s〈(m−1)m〉〉 = (−1)(

m
2 ) · 1 · 3 · · · (2m− 1). (15)
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2

Note: If k = 1, Theorem 4.1 fits into the pattern of Theorem 4.6 for m = 0.

Exercise 7.37(c) of [6] follows as an easy corollary of Theorems 4.6 and 4.1.

Corollary 4.7 If λ = ((n+ i− 1)n−i, (i− 1)i), 1 ≤ i ≤ n, then

〈aδn , sλ〉 = (−1)
1
2 (n−1)(n−2i)[1 · 3 · · · (2i− 1)] · [1 · 3 · · · (2(n− i)− 1)]. (16)

We state conjecturally a similar combinatorial recursive property.

Conjecture 4.8 Let 1 ≤ m ≤ n − 1. Let λ ` n(n − 1) with n − 1 ≤ `(λ) ≤ n and parts λ1 = λ2 =
. . . = λm = 2n−m− 2. Let µ ` n(n+ 1) with parts µ1 = 2n−m, µ2 = . . . = µm+1 = 2n−m− 1
and (if m < n) µj = λj−1 for j = m+ 2, . . . , n+ 1. Then,

〈a2
δn+1

, sµ〉 = (−1)m(m+ 1)〈a2
δn , sλ〉. (17)

Thus adding the tetris type shape 2n−m︷ ︸︸ ︷
. . .

...

 m

to the top of the diagram of λ changes the coefficient by a multiple of (−1)m(m+ 1).
The statement of the conjecture will be proved if we can show the following.
Let l = (l1, l2, . . . , lm, lm+1 = 0) be a partition of m of length at most m + 1 (thus, at least one part

is zero). Let α be a permutation of {1, 2, . . . ,m} and let β be a permutation of {1, 2, . . . ,m,m + 1}.
Denote by C(l, α) the coefficient of

x
2m−3+lα(1)
1 x

2m−4+lα(2)
2 · · ·xm−2+lα(m)

m = x〈(m−2)m〉+α(l∗)+δm (18)

in a3
δm

(here, l∗ = (l1, l2, . . . , lm)) and denote by C(l, β) the coefficient of

x
2m+lβ(1)
1 x

2m−2+lβ(2)
2 x

2m−3+lβ(3)
3 · · ·xm+lβ(m)

m x
m−1+lβ(m+1)
m+1 = x〈m,(m−1)m〉+β(l)+δm+1 (19)

in a3
δm+1

.
We need to show that for each partition l = (l1, l2, . . . lm) of m of length at most m,∑

β∈Sm+1

C(l, β) = (−1)m(m+ 1)
∑
α∈Sm

C(l, α). (20)

The particular cases of Conjecture 4.8 when m = 1 or m = n− 1 can be proved directly.
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Proposition 4.9 (Case m = 1 of Conjecture 4.8) Let λ = (2n− 3, λ2, . . . , λn) ` n(n− 1) and
µ = (2n− 1, 2n− 2, λ2, . . . , λn) ` n(n+ 1). Then

〈a2
δn+1

, sµ〉 = −2〈a2
δn , sλ〉. (21)

Proof: The proof is elementary and relies on a case analysis of the contribution of (x1 − x2)3 to the
coefficient of xµ+δn+1 in a3

δn+1
.

2

Using Proposition 4.9 and Theorem 4.1 we can prove by induction the following observation that Dunne
finds remarkable (see [2, Section 6]). Starting with the partition λ of Corollary 4.2, λ = (2(n− 1), 2(n−
2), . . . , 4, 2, 0), if we remove the last box from the jth row of the Young diagram of λ and add it to the
end of the (j + k)th row, the coefficient changes to (−1)k · 3 · 2k−1.

Corollary 4.10 Fix an integer j with 1 ≤ j ≤ n− 1 and let k be a fixed integer such that j+ 1 ≤ k ≤ n.
If ν ` n(n− 1) is given by

(2(n−1), . . . , 2(n−j+1), 2(n−j)−1, 2(n−j−1), . . . , 2(n−k+1), 2(n−k)+1, 2(n−k−1), . . . , 2, 0),
(22)

then
〈aδn , sν〉 = (−1)k−j · 3 · 2k−j−1. (23)

Proposition 4.11 (Case m = n − 1 of Conjecture 4.8) Let λ = 〈(n − 1)n〉 ` n(n − 1) and µ =
〈n+ 1, nn〉 ` n(n+ 1). Then

〈a2
δn+1

, sµ〉 = (−1)n−1n〈a2
δn , sλ〉. (24)

Proof: We first introduce some definitions following [6, Chapter 7]. Denote by fλ the number of standard
Young tableaux (SYT) of shape λ. Given a Young diagram λ and a square u = (i, j) of λ, let h(u) denote
the hook length of u, the number of squares directly to the right or directly below u, including u itself
once. Thus

h(u) = λi + λ′j − i− j + 1.

We also define the content c(u) of λ at u = (i, j) by

c(u) = j − i.

If λ is a partition of t, the hook-length formula [6, Corollary 7.21.6] gives

fλ =
t!∏

u∈λ h(u)
. (25)

If λ is a partition of n(n − 1) and λ = η + 〈(n − 2)n〉 (thus η is a partition of n), then, by [6, Exercise
7.37.d]

〈a2
δn , sλ〉 = (−1)(

n
2)fη

∏
s∈η

(1− 2c(s)). (26)
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As noted in [4],
fλ =

∑
ν∈λ\1

fν , (27)

where λ \ 1 is the set of partitions obtained from λ by removing a corner. (This formula follows directly
from the construction of standard Young tableaux.)

For the partitions λ and µ in the statement of the proposition, we have

λ = 〈(n− 1)n〉 = 〈1n〉+ 〈(n− 2)n〉 (28)

and
µ = 〈2, 1n−1〉+ 〈(n− 1)n〉. (29)

Then, by (26), we have

〈a2
δn , sλ〉 = (−1)(

n
2)f〈1n〉

∏
s∈〈1n〉

(1− 2c(s)) = (−1)(
n
2)1 · 3 · 5 · · · (2n− 1) (30)

and

〈a2
δn , sµ〉 = (−1)(

n+1
2 )f〈2,1n−1〉

∏
s∈〈2,1n−1〉

(1− 2c(s)) = (31)

(−1)(
n+1

2 ) (n+ 1)!
(n+ 1)(n− 1)!

(−1) · 1 · 3 · 5 · · · (2n− 1) = (−1)n−1n〈a2
δn , sλ〉. (32)

2

Theorem 4.12 Let λ ` n(n− 1) with `(λ) = n− 1 and λn−1 ≥ n− 1 and let µ ` n(n+ 1) be given by
µ = (λ1 + 1, λ2 + 1, . . . , λn−1 + 1, n, 1). Then,

〈a2
δn+1

, sµ〉 = (−1)n3n〈a2
δn , sλ〉. (33)

Thus adding the tetris type shape

...

 n− 1

. . .︸ ︷︷ ︸
n− 1

to the left of the diagram of λ changes the coefficient by a multiple of (−1)n3n.

Proof: If λ ` n(n − 1) with `(λ) = n − 1 is as in the statement of the theorem, then λn−1 equals n or
n− 1.

Case I: λn−1 = n. Then λ = 〈nn−1〉 and, after repeatedly applying Theorem 4.6, we have

cλ := 〈a2
δn , sλ〉 = (−1)(

n−1
2 )1 · 3 · 5 · · · (2n− 3).
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In this case µ = 〈(n+ 1)n−1, n, 1〉 and the calculation of cµ = 〈adn+1 , sµ〉 relies on Proposition 4.11.
Case II: λn−1 = n− 1. Thus, λ = 〈(n− 1)n−1〉+ ν, where ν is a partition of n− 1. The last part of

ν can only be 0 or 1. If νn−1 = 1, then we are in Case I. Therefore, we assume νn−1 = 0.
Using Corollary 4.3, we have

〈a2
δn , sλ〉 = 〈a2

δn−1
, sλ/〈2n−1〉〉.

Since λ/〈2n−1〉 = 〈(n− 3)n−1〉+ ν is a partition of (n− 1)(n− 2), we can use (26) to obtain

〈a2
δn , sλ〉 = (−1)(

n−1
2 )fν

∏
s∈ν

(1− 2c(s)). (34)

We can also use (25) to write

〈a2
δn , sλ〉 = (−1)(

n−1
2 ) (n− 1)!∏

u∈ν h(u)

∏
s∈ν

(1− 2c(s)). (35)

Now let us consider µ = (n+ ν1, n+ ν2, . . . , n+ νn−1, n, 1). We have

xµ+δn+1 = x2n+ν1
1 x2n+ν2−1

2 · · ·x2n−νi−i+1
i · · ·xn+3+νn−2

n−2 x
n+2+νn−1
n−1 xn+1

n xn+1.

We write a3
δn+1

as

a3
δn+1

= a3
δn

n∏
i=1

(xi − xn+1)3.

For each i = 1, 2, . . . , n, the product
n∏
i=1

(xi − xn+1)3 contributes

−3x2
ixn+1x

3
1x

3
2 · · ·x3

i−1x
3
i+1 · · ·x3

n

and a3
δn

contributes

x2n+ν1−3
1 x2n+ν2−4

2 x2n+ν3−5
3 · · ·x2n+νi−1−i−1

i−1 x2n−νi−i−1
i x

2n+νi+1−i−3
i+1 · · ·xn+νn−1−1

n−1 xn−2
n

with multiplicity ci to forming xµ+δn+1 .

If νi−1 = νi, then ci = 0. Moreover, cn = 0 since we assumed that νn−1 = 0.

For each i = 1, 2, . . . , n, such that νi−1 > νi, ci = 〈a2
δn
, sηi〉, where

ηi = (n+ν1−2, n+ν2−2, n+ν3−2, . . . , n+νi−1−2, n+νi−1, n+νi+1−2, . . . , n+νn−1−2, n−2).
(36)

Thus
ηi = 〈(n− 2)n〉+ ν̃i, (37)
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where ν̃i is the partition of n obtained from ν by adding a box at the end of the ith row, i.e.,

ν̃i = (ν1, ν2, . . . , νi−1, νi + 1, νi+1, . . . , νn−1). (38)

To find ci we can now use (26). We have

ci = (−1)(
n
2)fν̃i

∏
s∈ν̃i

(1− 2c(s)), (39)

or, using (25),

ci = (−1)(
n
2) n!∏

u∈ν̃i h(u)

∏
s∈ν̃i

(1− 2c(s)). (40)

Now let us compare
∏
s∈ν

(1− 2c(s)) and
∏
s∈ν̃i

(1− 2c(s)). We have

∏
s∈ν̃i

(1− 2c(s)) = (1− 2c(i, νi + 1))
∏
s∈ν

(1− 2c(s)) = (2i− 2νi − 1)
∏
s∈ν

(1− 2c(s)). (41)

Thus, using (34) and (39), in order to prove the theorem, we need to show that

nfν =
n∑
i=1

νi−1>νi

fν̃i(2i− 2νi − 1). (42)

Note that the terms for i = 1 and i = `(ν) + 1 are always included in the sum.
The Statement (42) can be proved by induction using the commutativity of the operations ”removal of

one box” and ”addition of one box”. It also follows from [5].
2

5 Open problems
1. Ideally, one would be able to find other rules involving different tetris type shapes.

2. In [3], the authors define admissible partitions and conjecture that they determine the Schur func-
tions with non-zero coefficients in the decomposition of the (2k)th power of the Vandermonde
determinant. However, the conjecture fails and counterexamples have been provided by [7]. It
remains an open problem to find a non-vanishing criterion for these coefficients.
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