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The # product in combinatorial Hopf algebras
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Abstract. We show that the # product of binary trees introduced by Aval and Viennot (2008) is in fact defined at the
level of the free associative algebra, and can be extended to most of the classical combinatorial Hopf algebras.

Résumé. Nous montrons que le produit # introduit par Aval et Viennot (2008) est défini au niveau de l’algèbre
associative libre, et peut être étendu à la plupart des algèbres de Hopf combinatoires classiques.
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1 Introduction
There is a well-known Hopf algebra structure, due to Loday and Ronco [8], on the set of planar binary
trees. Using a new description of the product of this algebra, (denoted here by PBT) in terms of Catalan
alternative tableaux, Aval and Viennot [1] introduced a new product, denoted by #, which is compatible
with the original graduation shifted by 1. Since then, Chapoton [2] has given a functorial interpretation of
this operation.

Most classical combinatorial Hopf algebras, including PBT, admit a realization in terms of special
families of noncommutative polynomials. We shall see that on the realization, the # product has a simple
interpretation. It can in fact be defined at the level of words over the auxiliary alphabet. Then, it preserves
in particular the algebras based on parking functions (PQSym), packed words (WQSym), permuta-
tions (FQSym), planar binary trees (PBT), plane trees (the free tridendriform algebra TD), segmented
compositions (the free cubical algebra TC), Young tableaux (FSym), and integer compositions (Sym).
All definitions not recalled here can be found, e.g., in [11; 12; 13].

In this extended abstract, most results are presented without proof.

2 A semigroup of paths
Let A be an alphabet. Words over A can be regarded as encoding paths in a complete graph with a loop
on each vertex, vertices being labelled by A.

Composition of paths, denoted by #, endows the set Σ(A) = A+ ∪ {0} with the structure of a semi-
group:

ua#bv =

{
uav if b = a,
0 otherwise.

(1)
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For example, baaca#adb = baacadb and ab#cd = 0. Thus, the # product maps An ×Am to Am+n−1.
It is graded w.r.t. the path length (i.e., the number of edges in the path).

We have the following obvious compatibilities with the concatenation product: (uv)#w = u · (v#w)
and (u#v) · w = u#(vw) .

Let dk be the linear operator on the free associative algebra K〈A〉 (over some field K) defined by

dk(w) =

{
uav if w = uaav for some a, with |u| = k − 1,
0 otherwise.

(2)

Then, for u of length k, u#v = dk(uv) .

3 Application to combinatorial Hopf algebras
The notion of a combinatorial Hopf algebra is a heuristic one, referring to rich algebraic structures arising
naturally on the linear spans of various families of combinatorial objects. These spaces are generally
endowed with several products and coproducts, and are in particular graded connected bialgebras, hence
Hopf algebras.

The most prominent combinatorial Hopf algebras can be realized in terms of ordinary noncommutative
polynomials over an auxiliary alphabet A. This means that their products, which are described by combi-
natorial algorithms, can be interpreted as describing the ordinary product of certain bases of polynomials
in an underlying totally ordered alphabet A = {a1 < a2 < . . . }.

We shall see that all these realizations are stable under the # product. In the case of PBT (planar binary
trees), we recover the result of Aval and Viennot [1]. In this case, the #-product has been interpreted by
Chapoton [2] in representation theoretical terms.

We shall start with the most natural algebra, FQSym, based on permutations. It contains as subalge-
bras PBT (planar binary trees or the Loday-Ronco algebra, the free dendriform algebra on one genera-
tor), FSym (free symmetric functions, based on standard Young tableaux), and Sym (noncommutative
symmetric functions).

It is itself a subalgebra of WQSym, based on packed words (or set compositions), in which the role
of PBT is played by the free dendriform trialgebra on one generator TD (based on Schröder trees), the
free cubical trialgebra TC (segmented compositions).

Finally, all of these algebras can be embedded in PQSym, based on parking functions.
Note that although all our algebras are actually Hopf algebras, the Hopf structure does not play any role

in this paper.

4 Free quasi-symmetric functions: FQSym and its subalgebras
4.1 Free quasi-symmetric functions

4.1.1 The operation dk on FQSym

Recall that the alphabet A is totally ordered. Thus, we can associate to any word over A a permutation
σ = std(w), the standardized word std(w) of w, obtained by iteratively scanning w from left to right,
and labelling 1, 2, . . . the occurrences of its smallest letter, then numbering the occurrences of the next
one, and so on. For example, std(365182122) = 687193245.
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For a permutation σ, define
Gσ =

∑
std(w)=σ

w . (3)

We shall need the following easy property of the standardization:

Lemma 4.1 Let = u1u2 · · ·un be a word over A, and σ = σ1σ2 . . . σn = std(u). Then, for any factor
of u: std(uiui+1 · · ·uj) = std(σiσi+1 · · ·σj) .

This implies that FQSym is stable under the dk:

dk(Gσ) =

{
Gstd(σ1···σk−1σk+1···σn) if σk+1 = σk + 1,
0 otherwise.

(4)

We shall make use of the dual basis of the Gσ when dealing with subalgebras of FQSym. In the dual
basis Fσ defined by Fσ := Gσ−1 , the formula is

dk(Fσ) =

{
F

std(σ1···kk̂+1···σn)
if σ has a factor k k+1,

0 otherwise,
(5)

where â means that a is removed.

4.1.2 Algebraic structure
The Gσ span a subalgebra of the free associative algebra, denoted by FQSym. The product is given by

GαGβ =
∑

γ=uv, std(u)=α, std(v)=β

Gγ . (6)

The set of permutations occuring in the r.h.s. is called the convolution of α and β, and denoted by α ∗ β.
Hence,

Gσ#Gτ = dk(GσGτ ) =
∑

ν∈σ#τ

Gν , (7)

where σ#τ = {ν| |ν| = k + l − 1, std(ν1 . . . νk) = σ; std(νk . . . νk+l−1) = τ} .
Indeed, Gσ#Gτ is the sum of all words of the form w = uxv, with std(ux) = σ and std(xv) = τ .

For example, G132#G231 = G14352 + G15342 + G24351 + G25341.

4.1.3 Multiplicative bases
The multiplicative bases Sσ and Eσ of FQSym are defined by (see [4])

Sσ =
∑
τ≤σ

Gτ and Eσ =
∑
τ≥σ

Gτ , (8)

where ≤ denotes the left weak order.
For α ∈ Sk and β ∈ Sl, define α ↑ β ∈ Sk+l−1 as the output of the following algorithm:

• scan the letters of α from left to right and write: αi+β1−1 if αi ≤ αk or αi+max(β)−1 if αi >
αk,
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• scan the letters of β starting from the second one and write: βi if βi < β1 or βi+αk−1 if βi ≥ β1.

Similarly, define α ↓ β by:

• scan the letters of α and write: αi if αi < αk or αi + β1 − 1 if αi ≥ αk,

• scan the letters of β starting from the second one and write: βi + αk − 1 if βi ≤ β1 or βi +
max(α)− 1 if βi > β1.

For example, 3412 ↑ 35124 = 78346125 and 3412 ↓ 35124 = 56148237.

Theorem 4.2 The permutations appearing in a #-product Gα#Gβ is an interval of the left weak order:

Gα#Gβ =
∑

γ∈[α↓β,α↑β]

Gγ . (9)

Using only either the lower bound or the upper bound, one obtains:

Corollary 4.3 The bases Sσ and Eσ are multiplicative for the #-product:

Sα#Sβ = Sα↑β and Eα#Eβ = Eα↓β . (10)

For example, S3412#S35124 = S78346125 and E3412#E35124 = E56148237.

4.1.4 Freeness
The above description of the # product in the S basis implies the following result:

Theorem 4.4 For the # product, FQSym is free on either Sα or Gα where α runs over non-secable
permutations, that is, permutations of size n ≥ 2 such that any prefix α1 . . . αk of size 2 ≤ k < n is not,
up to order, the union of an interval with maximal value σk and another interval either empty or with
maximal value n.

The generating series of the number of non-secable permutations (by shifted degree d′(σ) = n− 1 for
σ ∈ Sn) is Sequence A077607 of [15]

NI(t) := 2 t+ 2 t2 + 8 t3 + 44 t4 + 296 t5 + 2312 t6 + . . . (11)

or equivalently 1/(1−NI(t)) =
∑
n≥1 n!tn−1.

4.2 Young tableaux: FSym

The algebra FSym of free symmetric functions [3] is the subalgebra of FQSym spanned by the coplactic
classes

St =
∑

Q(w)=t

w =
∑

P (σ)=t

Fσ (12)

where (P,Q) are the P -symbol and Q-symbol defined by the Robinson-Schensted correspondence. This
algebra is isomorphic to the algebra of tableaux defined by Poirier and Reutenauer [14]. We shall denote
by STab(n) the standard tableaux of size n.

Note that S 3 4

1 2

= G2413 + G3412, so that d1(S 3 4

1 2

) = G312, which does not belong to FSym.

Hence FSym is not stable under the dk. However, we have:
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Theorem 4.5 FSym is stable under the #-product.

For example,

S 2

1 3

# S 3

2

1

= S 5

4

2

1 3

+ S 5

2 4

1 3

(13)

S 3

1 2

# S 3

2

1

= S 5

4

3

1 2

(14)

S 3

2

1

# S 2

1 3

= S 4

3

2

1 5

(15)

S 3

2

1

# S 3

1 2

= S 3

2 5

1 4

+ S 5

3

2

1 4

(16)

Note that those products do not have same number of terms, so that there is no natural definition of what
would be the # product on the usual (commutative) symmetric functions.

For T an injective tableau and S a subset of its entries, let us denote by T|S the (sub-)tableau consisting
of the restriction of T to its entries in S. For T, T ′ two skew tableaux, we denote their plactic equivalence
(as for words) by T ≡ T ′, that is we can obtain T ′ from T by playing Jeu de Taquin. The # product in
FSym is given by the following simple combinatorial rule.

Proposition 4.6 Let T1 and T2 be two standard tableaux of sizes k and `. Then

ST1 # ST2 =
∑

ST (17)

where T runs over standard tableaux of size k+ `−1 such that: T|{1,...,k} = T1 and T|{k,...,k+l−1} ≡ T2.

With this description, it is easy to compute by hand

S 4

1 2 3

# S 3

1 2

= S 6

4 5

1 2 3

+ S 6

4

1 2 3 5

+ S 4 6

1 2 3 5

. (18)

4.3 Planar binary trees: PBT

4.3.1 Algebraic structure
Recall that the natural basis of PBT can be defined by

PT =
∑
T (σ)=T

Gσ (19)

where T (σ) is the shape of the decreasing tree of σ.
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Proposition 4.7 The image of a tree by dk is either 0 or a single tree:

dk(PT ) =

{
PT ′ ,

0,
(20)

according to whether k is the left child of k + 1 in the unique standard binary search tree of shape T
(equivalently if the k-th vertex in the infix reading of T has no right child), in which case T ′ is obtained
from T by contracting this edge, the result being 0 otherwise.

By the above result, any product PT ′#PT ′′ is in PBT. We just need to select those linear extensions
which are not annihilated by dk. Since dk(Fσ) is nonzero iff σ has (as a word) a factor k k+1, the image
under dk of the surviving linear extensions are precisely those of the poset obtained by identifying the
rightmost node of T ′ with the leftmost node of T ′′. Thus, # is indeed the Aval-Viennot product.

4.3.2 Multiplicative bases
The multiplicative basis of initial intervals [5] (corresponding to the projective elements of [2]) is a subset
of the S basis of FQSym:

HT = Sτ (21)

where τ is the maximal element of the sylvester class T [5]. These maximal elements are the 132-avoiding
permutations. Hence, they are preserved by the # operation, so that we recover Chapoton’s result: the
# product of two projective elements is a projective element. One can also apply the argument the other
way round: since one easily checks that the # product of two permutations avoiding the pattern 132 also
avoids this pattern, it is a simple proof that PBT is stable under #.

As in the case of FQSym, the fact that the S basis is still multiplicative for the # product implies that
the product in the P basis is an interval in the Tamari order.

4.4 Noncommutative symmetric functions: Sym

4.4.1 Algebraic structure
Recall that Sym is freely generated by the noncommutative complete functions

Sn(A) =
∑

i1≤i2≤...≤in

ai1ai2 · · · ain = G12···n (22)

Here, we have obviously Sn#Sm = Sn+m−1. This implies, for l(I) = r, I = I ′ir and J = j1J
′′,

SI#SJ = SI
′·(ir+j1−1)·J′′ and similarly RI#RJ = RI′·(ir+j1−1)·J′′ , (23)

where SI is the basis of products of noncommutative complete symmetric functions and RI are noncom-
mutative ribbon Schur functions. For example, R1512#R43 = R15153.

Clearly, as a #-algebra, Sym+ is the free graded associative algebra K〈x, y〉 over the two generators
x = S2 = R2 and y = Λ2 = R11 of degree 1, the neutral element being S1 = R1 = Λ1.

Now, define for any composition I = (i0, . . . , ir), the binary word: b(I) = 0i0−11(0i1−1)1 . . . (0ir−1).
On the binary coding of a composition I , one can read an expression of RI , SI , and ΛI in terms of
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#-products of the generators x, y: replace the concatenation product by the #-product, replace 0 by
respectively x, x, or y, and 1 by respectively y, x+ y, or x+ y, so that

RI := (xi0−1)##y#(xi1−1)##y# . . .#(xir−1)#, (24)

SI := (xi0−1)##(x+ y)#(xi1−1)##(x+ y)# . . .#(xir−1)#, (25)

and
ΛI := (yi0−1)##(x+ y)#(yi1−1)##(x+ y)# . . .#(yir−1)#. (26)

Note that in particular, the maps sending SI either to RI or ΛI are algebra automorphisms. This
property will extend to a Hopf algebra automorphism with the natural coproduct.

4.4.2 Coproduct
In this case, we have a natural coproduct: the one for which x and y are primitive:

∇S2 = S2 ⊗ S1 + S1 ⊗ S2, and ∇Λ2 = Λ2 ⊗ Λ1 + Λ1 ⊗ Λ2, (27)

and, the neutral element S1 is grouplike: ∇S1 = S1 ⊗ S1. Then,

∇Sn =
n∑
i=1

(
n− 1
i− 1

)
Si ⊗ Sn+1−i. (28)

The coproduct of generic SI , ΛI , and RI all are the same: since x and y are primitive, x + y is also
primitive, so that, e.g.,

∇RI =
∑

w,w′|w w′=b(I)

C
b(I)
w,w′RJ ⊗RK , (29)

where J (resp. K) are the compositions whose binary words are w (resp. w′), and Cb(I)w,w′ is the coefficient
of b(I) in w w′. Another way of presenting this coproduct is as follows: given b(I), choose for each
element if it appears on the left or on the right of the coproduct (hence giving 2|I|−1 terms) and compute
the corresponding products of x and y.

Hence, the maps sending SI either to RI or ΛI are Hopf algebra automorphisms.

4.4.3 Duality: quasi-symmetric functions under #

Since Sym is isomorphic to the Hopf algebra K〈x, y〉 on two primitive generators x and y, its dual is the
shuffle algebra on two generators whose coproduct is given by deconcatenation.

Since all three bases S, R, and Λ behave in the same way for the Hopf structure, the same holds for
their dual bases, so that the bases MI , FI , and the forgotten basis of QSym have the same product and
coproduct formulas. In the basis FI , this is

FI#FJ =
∑

w∈b(I) b(J)

FK , (30)

where K is the composition such that b(K) = w.
For example, F3#F12 = 3F14 + 2F23 + F32, since xx yx = 3 yxxx+ 2xyxx+ xxyx.
Note that since the product is a shuffle on words in x and y, all elements in a product FIFJ have same

length, which is l(I) + l(J)− 1.
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5 Word quasi-symmetric functions: WQSym and its subalgebras
5.1 Word quasi-symmetric functions
5.1.1 Algebraic structure
Word quasi-symmetric functions are the invariants of the quasi-symmetrizing action of the symmetric
group (in the limit of an infinite alphabet), see, e.g., [12].

The packed word u = pack (w) associated with a word w in the free monoid A∗ is obtained by the
following process. If b1 < b2 < . . . < br are the letters occuring in w, u is the image of w by the
homomorphism bi 7→ ai. For example, pack (469818941) = 235414521. A word u is said to be packed
if pack (u) = u. Such words can be interpreted as set compositions, or as faces of the permutohedreon,
and are sometimes called pseudo-permutations [6].

As in the case of permutations, we have:

Lemma 5.1 Let u = u1u2 · · ·un be a word over A, and v = v1v2 . . . vn = pack (u). Then, for any
factor of u, pack (uiui+1 · · ·uj) = pack (vivi+1 · · · vj) .

The natural basis of WQSym, which lifts the quasi monomial basis of QSym, is labelled by packed
words. It is defined by

Mu =
∑

pack (w)=u

w . (31)

Note that WQSym is stable under the operators dk. We have

dk(Mw) =

{
Mw1···wk−1wk+1···wn if wk = wk+1,

0 otherwise,
(32)

so that WQSym is also stable under #. Since in this basis the ordinary product is given by

MuMv =
∑

w=u′v′; pack (u′)=u, pack (v′)=v

Mw , (33)

we have
Mu#Mv = dk(MuMv) =

∑
w∈u#v

Mw, (34)

where u#v = {w| |w| = k + l − 1,pack (w1 . . . wk) = u; pack (wk . . . wk+l−1) = v}.
For example, M121#M12 = M1212 + M1213 + M1312.

5.1.2 Multiplicative bases
Recall that there exists an order on packed words generalizing the left weak order : it is the pseudo-
permutohedron order. This order has a definition in terms of inversions (see [6]) similar to the definition
of the left weak order. The generalized inversion set of a given packed word w is the union of the set of
pairs (i, j) such that i < j and wi > wj with coefficient one (full inversions), and the set of pairs (i, j)
such that i < j and wi = wj with coefficient one half (half-inversions).

One then says that two words u and v satisfy u < v for the pseudo-permutohedron order iff the coeffi-
cient of any pair (i, j) in u is smaller than or equal to the same coefficient in v.

Note that the definition of u ↑ v and u ↓ v (see the section about FQSym) does not require u and v to
be permutations. One then has
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Theorem 5.2 The words appearing in the product Mu#Mv is an interval of the pseudo-permutohedron
order:

Mu#Mv =
∑

w∈[u↓v,u↑v]

Mw . (35)

The multiplicative bases Su and Eu of WQSym are defined in [12] by

Su =
∑
v≤u

Mv and Eu =
∑
v≥u

Mv , (36)

where ≤ is the pseudo-permutohedron order.

Proposition 5.3 The S and E-bases are multiplicative for the #-product:

Su#Sv = Su↑v and Eu#Ev = Eu↓v. (37)

5.1.3 Freeness
As in the case of FQSym, we can describe a set of free generators in the S basis for WQSym.

We shall say that a packed word u of size n is secable if there exists a prefix u1 . . . uk of size 2 ≤ k < n
such that: {u1, . . . , uk} ∩ {uk, . . . , un} = {uk} and the set {u1, . . . , uk} is, up to order the union of an
interval with maximal value uk and another interval either empty or with maximal value the maximal
entry of the whole word u.

Conversely, a packed word of size at least 2 which is not secable will be called non-secable.

Theorem 5.4 For the # product, WQSym is free on the Su or Mu where u runs over non-secable
packed words.

If a packed word u is weighted by t|u|−1, the generating series PW(t) of (unrestricted) packed words
corresponds to Sequence A000670 of [15]:

PW(t) = 1 + 3 t+ 13 t2 + 75 t3 + 541 t4 + 4683 t5 + 47293 t6 + . . . (38)

The generating series NSPW of non-secable packed words is related to PW by the relation PW(t) =
1/(1−NSPW (t)) which enables us to compute NSPW :

NSPW(t) = 3 t+ 4 t2 + 24 t3 + 192 t+ 1872 t5 + 21168 t6 + . . . (39)

5.2 The free tridendriform algebra TD

The realization of the free dendriform trialgebra given in [11] involves the following construction. With
any word w of length n, associate a plane tree T (w) with n + 1 leaves, as follows: if m = max(w) and
if w has exactly k − 1 occurences of m, write

w = v1mv2 · · · vk−1mvk , (40)

where the vi may be empty. Then, T (w) is the tree obtained by grafting the subtrees T (v1), , . . . , T (vk)
(in this order) on a common root, with the initial condition T (ε) = ∅ for the empty word. For example,
the tree associated with 243411 is

xxxxx
KKKKKK

��� ,,, 4
��� ,,, 4

���� 8888

2 3 1 1

(41)
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We shall call sectors the zones containing numbers and say that a sector is to the left of another sector
if its number is to the left of the other one, so that the reading of all sectors from left to right of any T (w)
gives back w.

Now define a polynomial by
MT :=

∑
T (w)=T

Mw . (42)

Then, exactly as in the case of PBT, we have

Theorem 5.5
dk(MT ) =

{
MT ′ ,
0, (43)

depending on whether the k-th and k + 1-th sectors are grafted on the same vertex or not. In the nonzero
case, T ′ is obtained from T by gluing the k-th and k+1-th sectors.

Corollary 5.6 The operation # is internal on TD.

5.3 The free cubical algebra TC

Define a segmented composition as a finite sequence of integers, separated by vertical bars or commas, e.g.,
(2, 1 | 2 | 1, 2). We shall associate an ordinary composition with a segmented composition by replacing
the vertical bars by commas. Recall that the descents of an ordinary composition are the positions of
the ones in the associated binary word. In the same way, there is a natural bijection between segmented
compositions of sum n and sequences of length n− 1 over three symbols <,=, >: start with a segmented
composition I. If i is not a descent of the underlying composition of I, write< ; otherwise, if i corresponds
to a comma, write = ; if i corresponds to a bar, write >.

Now, with each word w of length n, associate a segmented composition S(w), defined as the sequence
s1, . . . , sn−1 where si is the comparison sign between wi and wi+1.

For example, given w = 1615116244543, one gets the sequence <><>=<><=<>> and the seg-
mented composition (2|2|1, 2|2, 2|1|1).

Given a segmented composition I, define:MI =
∑
S(T )=IMT .

It has been shown in [12] that theMI generate a Hopf subalgebra of TD and that their product is given
by

MI′MI′′ =MI′.I′′ +MI′,I′′ +MI′|I′′ . (44)

where I′.I′′ is obtained by gluing the last part of I′ with the first part of I′′.
As before, it is easy to see that

Theorem 5.7
dk(MI) =

{
MI′ ,
0, (45)

depending on whether k is not or is a descent of the underlying composition of I. In the nonzero case,
I′ is obtained from I by decreasing the entry that corresponds to the entry containing the k-th cell in the
corresponding composition, that is, if I = (i1, . . . , i`) where the i are separated by commas or vertical
bars, decreasing in where n is the smallest integer such that i1 + · · ·+ in > k.

For the same reason, the following result is also true: MI′#MI′′ =MI′.′I′′ , where I′.′I′′ amounts to
glue together the last part of I′ with the first part of I′′ minus one, leaving the other parts unchanged.
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6 Parking quasi-symmetric functions: PQSym
A parking function on [n] = {1, 2, . . . , n} is a word a = a1a2 · · · an of length n on [n] whose non-
decreasing rearrangement a↑ = a′1a

′
2 · · · a′n satisfies a′i ≤ i for all i. We shall denote by PF the set of

parking functions.
For a word w over a totally ordered alphabet in which each element has a successor, one can define

[13] a notion of parkized word park(w), a parking function which reduces to std(w) when w is a word
without repeated letters.

For w = w1w2 · · ·wn on {1, 2, . . .}, we set

d(w) := min{i|#{wj ≤ i} < i} . (46)

If d(w) = n + 1, then w is a parking function and the algorithm terminates, returning w. Otherwise,
let w′ be the word obtained by decrementing all the elements of w greater than d(w). Then park(w) :=
park(w′). Since w′ is smaller than w in the lexicographic order, the algorithm terminates and always
returns a parking function.

For example, let w = (3, 5, 1, 1, 11, 8, 8, 2). Then d(w) = 6 and the word w′ = (3, 5, 1, 1, 10, 7, 7, 2).
Then d(w′) = 6 and w′′ = (3, 5, 1, 1, 9, 6, 6, 2). Finally, d(w′′) = 8 and w′′′ = (3, 5, 1, 1, 8, 6, 6, 2), that
is a parking function. Thus, park(w) = (3, 5, 1, 1, 8, 6, 6, 2).

Lemma 6.1 Let u = u1u2 · · ·un be a word over A, and c = c1c2 . . . cn = park(u). Then, for any factor
of u: park(uiui+1 · · ·uj) = park(cici+1 · · · cj) .

Recall from [13], that with a parking function a, one associates the polynomial

Ga =
∑

park(w)=a

w . (47)

These polynomials form a basis of a subalgebra(i) PQSym of the free associative algebra over A. In this
basis, the product is given by

GaGb =
∑

c=uv; park(u)=a, park(v)=b

Gc . (48)

Thus,
Ga#Gb =

∑
c∈a#b

Gc, (49)

where a#b = {c| |c| = k + l − 1,park(c1 . . . ck) = a,park(ck . . . ck+l−1) = b}. Indeed, Ga#Gb is
the sum of all words of the form w = uxv, with park(ux) = a and park(xv) = b.

Note that PQSym is not stable under the operators dk. For example, d1(G112) is not in PQSym.
However, let d′k be the linear operator defined by

d′k(Gc) =

{
Gc1...ck−1ck+1...cn

if ck = ck+1 and c1 . . . ck−1ck+1 . . . cn ∈ PF,
0 otherwise.

(50)

(i) Strictly speaking, this subalgebra is rather PQSym∗, the graded dual of the Hopf algebra PQSym, but both are actually
isomorphic.
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Proposition 6.2 Then, if a is of length k, one has: Ga#Gb = d′k(GaGb) .

For example, G121#G1141 = G121161 + G121151 + G121141 .
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