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Hyperplane Arrangements and Diagonal
Harmonics

Drew Armstrong†

Department of Mathematics, University of Miami, Coral Gables, FL, USA

Abstract. In 2003, Haglund’s bounce statistic gave the first combinatorial interpretation of the q, t-Catalan numbers
and the Hilbert series of diagonal harmonics. In this paper we propose a new combinatorial interpretation in terms
of the affine Weyl group of type A. In particular, we define two statistics on affine permutations; one in terms of
the Shi hyperplane arrangement, and one in terms of a new arrangement — which we call the Ish arrangement. We
prove that our statistics are equivalent to the area’ and bounce statistics of Haglund and Loehr. In this setting,
we observe that bounce is naturally expressed as a statistic on the root lattice. We extend our statistics in two
directions: to “extended” Shi arrangements and to the bounded chambers of these arrangements. This leads to a
(conjectural) combinatorial interpretation for all integral powers of the Bergeron-Garsia nabla operator applied to
elementary symmetric functions.

Résumé. En 2003, la statistique bounce de Haglund a donné la première interprétation combinatoire de la somme
des nombres q, t-Catalan et de la série de Hilbert des harmoniques diagonaux. Dans cet article nous proposons une
nouvelle interprétation combinatoire à partir du groupe de Weyl affine de type A. En particulier, nous définissons
deux statistiques sur les permutations affines; l’une à partir de l’arrangement d’hyperplans Shi, et l’autre à partir d’un
nouvel arrangement — que nous appelons l’arrangement Ish. Nous prouvons que nos statistiques sont équivalentes
aux statistiques area’ et bounce de Haglund et Loehr. Dans ce contexte, nous observons que bounce s’exprime
naturellement comme une statistique sur le réseau des racines. Nous prolongeons nos statistiques dans deux direc-
tions: arrangements Shi “étendus”, et chambres bornées associées. Cela conduit à une interprétation (conjecturale)
combinatoire pour toutes les puissances entières de l’opérateur nabla de Bergeron-Garsia appliqué aux fonctions
symétriques élémentaires.

Keywords: Shi arrangement, Ish arrangement, affine permutations, diagonal harmonics, Catalan numbers, nabla
operator, parking functions

1 Introduction
1.1 Diagonal Harmonics
The symmetric group S(n) acts on the polynomial ring S = Q[x1, . . . , xn] by permuting variables. New-
ton showed that the subring of S(n)-invariant polynomials is generated by the algebraically independent
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power sum polynomials: pk =
∑n
i=1 x

k
i for k = 1, 2, . . . , n. It is known that the coinvariant ring

R = S/(p1, . . . , pn) is a graded version of the regular representation of S(n), with Hilbert series

n∑
i=0

dimRi q
i =

n∏
j=1

(1 + q + q2 + · · ·+ qj) = [n]q!.

The dual ring S∗ = Q[∂/∂x1, . . . , ∂/∂xn] acts on S via the pairing (∂/∂xi)xj = δij , hence the coin-
variant ring is isomorphic to the quotient S∗/(p∗1, . . . , p

∗
n), where p∗k =

∑n
i=1(∂/∂xi)

k for k = 1, . . . , n.
On the other hand, this quotient is naturally isomorphic to the submodule H ⊆ S annihilated by the p∗k:

H = {f ∈ S : p∗k f = 0 for all k}.

This H is called the ring of harmonic polynomials since, in particular, p∗2 is the standard Laplacian
operator on S.

Now consider the ring DS = Q[x1, . . . , xn, y1, . . . , yn] of polynomials in two sets of commuting
variables, together with the diagonal action of S(n), which permutes the x variables and the y variables
simultaneously. Weyl [31] showed that the S(n)-invariant subring of DS is generated by the polarized
power sums: pk,` =

∑n
i=1 x

k
i y
`
i for all k + ` > 0. Hence the ring of diagonal coinvariants DR =

DS/(pk,` : k + ` > 0) is naturally isomorphic to the ring of diagonal harmonic polynomials:

DH = {f ∈ DS :
n∑
i=1

(∂/∂xi)k(∂/∂yi)` f = 0 for all k + ` > 0}.

The diagonal action preserves the bigrading of DS by x-degree and y-degree, hence DH is a bigraded
S(n)-module. The bigraded Hilbert series

DH(n; q, t) :=
n∑

i,j=0

dim(DH)i,j qitj (1)

has beautiful and remarkable properties. The study of DH(n; q, t) was initiated by Garsia and Haiman
(see [13]) and is today an active area of research.

1.2 Some Arrangements
Let {e1, e2, . . . , en} be the standard basis for Rn. Given v ∈ Rn and k ∈ R, we will often use the notation
“ v = k ” as shorthand for the set {x : (x, v) = k} ⊆ Rn, where (·, ·) is the standard inner product.
Consider the following three arrangements of hyperplanes, respectively called the Coxeter arrangement,
Shi arrangement, and affine arrangement of type An−1:

Cox(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a = 0} ,
Shi(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a ∈ {0, 1}} ,
Aff(n) := {ei − ej = a : 1 ≤ i < j ≤ n, a ∈ Z} .

Since all hyperplanes in this paper contain the line e1 + e2 + · · · + en, we will typically restrict these
arrangements to the (n− 1)-dimensional space

Rn0 := {e1 + e2 + · · ·+ en = 0}.
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Fig. 1: Some arrangements in R3
0

If A is an arrangement in a space V then the connected components of the complement V −∪H∈AH are
called chambers. We will refer to chambers of the Coxeter arrangement as cones; and refer to affine
chambers as alcoves. Let C◦ denote the dominant cone, which satisfies the coordinate inequalities

e1 > e2 > · · · > en,

and let A◦ denote the fundamental alcove, satisfying

e1 > e2 > · · · > en > e1 − 1.

Figure 1 displays the arrangements Cox(3), Shi(3), and Aff(3) in R3
0, with the dominant cone and fun-

damental alcove shaded. The Shi arrangement was introduced by Jian-Yi Shi (see [23, Chapter 7]) in his
description of the Kazhdan-Lusztig cells for certain affine Weyl groups.

1.3 Symmetric Group
The symmetric group S(n) has a faithful representation as a group of isometries of Rn0 generated by the
set

S = {s1, s2, . . . , sn−1},

where si is the reflection in the hyperplane ei − ei+1 = 0. The reflection si corresponds in S(n) to the
transposition of adjacent symbols (i, i+ 1).

The symmetric group acts simply-transitively on the cones of the Coxeter arrangement Cox(n). By
convention, let the dominant cone C◦ correspond to the identity permutation; then for any permutation
w ∈ S(n) the cone wC◦ satisfies

ew(1) > ew(2) > · · · > ew(n).
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1.4 Affine Symmetric Group
Now let sn denote the reflection in the affine hyperplane e1 − en = 1. The linear reflections
{s1, s2, . . . , sn−1} together with the affine reflection an generate the affine Weyl group of type Ãn−1.
This group acts simply-transitively on the set of alcoves, where the fundamental alcove A◦ corresponds
to the identity element of the group. Note that A◦ is a (non-regular) simplex in Rn0 whose facets are
supported by the reflecting hyperplanes of the generators {s1, s2, . . . , sn}.

Lusztig [21] introduced an affine version of the symmetric group, whose combinatorial properties were
developed further by Björner and Brenti [6]. We define S̃(n) as the group of infinite permutations w̃ :
Z→ Z satisfying:

• w̃(k + n) = w̃(k) + n for all k ∈ Z,

• w̃(1) + w̃(2) + · · ·+ w̃(n) =
(
n+1

2

)
.

The first property says that w̃ is periodic and the second fixes a frame of reference. The elements of S̃(n)
are called affine permutations, and S̃(n) is the affine symmetric group. Following Björner and Brenti,
we will usually express an affine permutation w̃ ∈ S̃(n) using the window notation:

“w̃ = [w̃(1), w̃(2), · · · , w̃(n)].′′

For integers i < j with i 6≡ j (mod n) we will write ((i, j)) : Z→ Z to denote the “affine tranposition”
that swaps the elements in positions i + kn and j + kn for all k ∈ Z. We could also write ((i, j)) =∏
k(i + kn, j + kn). Lusztig proved that the correspondence si ↔ ((i, i + 1)) defines an isomorphism

between the affine symmetric group and the affine Weyl group of type A. Here the affine tranposition
((i, j)) corresponds to the reflection in the affine hyperplane

ei−n(di/ne−1) − ej−n(dj/ne−1) =
⌈
i

n

⌉
−
⌈
j

n

⌉
. (2)

In particular, note that the generator si = ((i, i + 1)) corresponds to ei − ei+1 = 0 for 1 ≤ i ≤ n − 1,
and sn = ((n, n+ 1)) corresponds to e1 − en = 1.

1.5 The Ish Arrangement
Finally, we introduce a new hyperplane arrangement, called the Ish arrangement. Like the Shi arrange-
ment, the Ish arrangement begins with the

(
n
2

)
linear hyperplanes of the Coxeter arrangement and then

adds another
(
n
2

)
affine hyperplanes:

Ish(n) := Cox(n) ∪ {ei − en = a : 1 ≤ i ≤ n− 1, a ∈ {1, . . . , n− i}}.

Figure 2 displays the arrangements Shi(3) and Ish(3). Note that each has 16 chambers and 4 bounded
chambers. There is an important reason for this: the arrangements Shi(n) and Ish(n) share the same
characteristic polynomial, as we now show.

To avoid extra notation, we will use a non-standard definition of the characteristic polynomial. This
definition is due to Crapo and Rota, and was applied extensively by Athanasiadis — see Stanley [29,
Lecture 5] for details. Let A be an arrangement of finitely many hyperplanes in Rn. Suppose further that
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Fig. 2: The arrangements Shi(3) and Ish(3)

each of these hyperplanes has an equation with integer coefficients. Then, given a (large) finite field Fq
with q elements, we may consider the reduced arrangement Aq in Fnq . It turns out that (for all but finitely
many q), the number of points of Fnq not on any hyperplane of Aq is given by a polynomial in q, called
the characteristic polynomial of A:

χ(A, q) = #
(
Fnq − ∪H∈Aq

H
)

= qn −# ∪H∈Aq
H.

The characteristic polynomial of the Shi arrangement is well known (cf. [29, Theorem 5.16]). Our new
result is the following. (Proof omitted.)

Theorem 1. The Shi arrangement and the Ish arrangement share the same characteristic polynomial, viz.

χ(Ish(n), q) = q (q − n)n−1.

The following is a standard result on real hyperplane arrangements. Let A be an arrangement in a
real d-dimensional space V and suppose that the normals to A span a subspace U ⊆ V of dimension k
— called the rank of A. If k < d then A has no bounded chambers; its chambers that have bounded
intersection with U are called relatively bounded.

Zaslavsky’s Theorem (see, e.g., Theorem 2.5 of [29]). Let A be a real arrangement with dimension d
and rank k. Then:

• The number of chambers of A is (−1)dχ(A,−1).

• The number of relatively bounded chambers of A is (−1)kχ(A, 1).

If we think of Shi(n) and Ish(n) as arrangements in the space Rn0 , then d = k = n− 1.

Corollary 1. The arrangements Shi(n) and Ish(n) have the same number of chambers — i.e. (n+1)n−1

— and the same number of bounded chambers — i.e. (n− 1)n−1.

Open Problem. Find a bijective proof of the corollary.
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In a recent joint paper with Rhoades [2], we have expanded on the relationship between the Shi and
Ish arrangements. The paper shows that the relationship between these objects is deep and somewhat
mysterious. In it we give nice combinatorial labels of the regions and show that these are equinumerous,
but the problem of a bijective proof is still open.

2 Two Statistics on Shi Chambers
Now we define two statistics — called shi and ish — on the chambers of a Shi arrangement (more gen-
erally, on the elements of the group S̃(n)). The first statistic is well known and the second is new. Each
statistic counts certain kind of “inversions” of an affine permutation. We begin by defining these.

2.1 Affine Inversions
Let w be an element of the (finite) symmetric group S(n). If w(i) > w(j) for indices 1 ≤ i < j ≤ n
we say that the tranposition (i, j) is an inversion of w — equivalently, this means that the hyperplane
ei − ej = 0 separates the cone wC◦ from the dominant cone C◦. The number of inversions of w is called
its length.

In the affine symmetric group S̃(n), there is again a correspondence between hyperplanes and transpo-
sitions. Recall that the affine transpositions ((i, j)) and ((i′, j′)) coincide if i′ = i+ kn and j′ = j + kn
for some k ∈ Z, in which case they represent the same hyperplane (2). Hence, each affine transposition
has a standard representative in the set

T̃ := {((i, j)) : 1 ≤ i ≤ n, i < j, i 6≡ j mod n} ⊆ S̃(n).

Given an affine permutation w̃ ∈ S̃(n) and an affine transposition ((i, j)) ∈ T̃ such that w̃(i) > w̃(j),
we say that ((i, j)) is an affine inversion of w̃ — equivalently, the hyperplane (2) separates the alcove
w̃A◦ from the fundamental alcove A◦. Again, the (affine) length of w̃ is its number of affine inversions.

2.2 The shi statistic
Each chamber of the Shi arrangement contains a set of alcoves and among these is a unique alcove of
minimum length — which we call the representing alcove of the chamber, or just a Shi alcove. This
defines an injection from Shi chambers into the affine symmetric group. Figure 3 displays the represent-
ing alcoves for Shi(3), labeled by affine permutations. We have labeled the Shi hyperplanes with their
corresponding affine transpositions,

Shi(n) = {((i, j)) : 1 ≤ i ≤ n, i < j < n+ i} .

Definition 2.1. Given a Shi chamber with representing alcove A, let shi(A) denote the number of Shi hy-
perplanes separatingA from the fundamental alcoveA◦. Equivalently, ifA = w̃A◦ for affine permutation
w̃ ∈ S(n), then shi(w̃) is the number of affine inversions ((i, j)) of w̃ satisfying i < j < n+ i.

For example, consider the permutation w̃ = [1, 5, 0] in the figure. The inversions of w̃ are
((1, 3)), ((2, 3)), ((2, 4)), ((2, 6)), and hence w̃ has length 4. However, only three of these —
viz. ((1, 3)), ((2, 3)), ((2, 4)) — come from Shi hyperplanes, hence shi(w̃) = 3.
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Fig. 3: Chambers of Shi(3) labeled by affine permutations
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Fig. 4: The shi and ish statistics on the chambers of Shi(3)

2.3 The ish statistic
To give a natural definition for our second statistic, we must discuss the coset space S̃(n)/S(n). By
abuse of notation, let S(n) denote the subgroup of S̃(n) generated by the subset

I = {s1, . . . , sn−1} ⊆ {s1, . . . , sn−1, sn} = S.

In the language of Coxeter groups we say that S(n) is a parabolic subgroup of S̃(n). WhenW = S̃(n)
the standard notation for this is to write S(n) = WI . Then each affine permutation w̃ has a canonical
decomposition

w̃ = wIw̃
I ,

where wI ∈ WI is a finite permutation and w̃I ∈ W is the unique coset representative of minimum
(affine) length. Combinatorially, [w̃I(1), . . . , w̃I(n)] is the increasing rearrangement of [w̃(1), . . . , w̃(n)]
and wI is the finite permutation needed to achieve the rearrangement. Geometrically, alcoves of the form
A = w̃IA◦ are contained in the dominant cone C◦; hence w̃A◦ = wIA is contained in the cone wIC◦.

We define the ish statistic in terms of minimal coset representatives.

Definition 2.2. Consider a Shi chamber with representing alcove A and suppose that A = w̃A◦. Its
minimal coset representative w̃IA◦ is an alcove in the dominant cone C◦. Let ish(A) denote the number
of hyperplanes of the form ei − en = a (with 1 ≤ i ≤ n − 1 and a ∈ Z) separating w̃IA◦ from the
fundamental alcove A◦. Equivaently, let ish(w̃) denote the number of affine inversions of w̃I of the form
((n, j)).

Two notes: In order to facilitate later generalization, we have defined ish in terms of all hyperplanes of
the form ei − en = a. In our current context, however, only the Ish hyperplanes (i.e. a ∈ {1, . . . , n− i})
will contribute. We also emphasize the fact that ish is a statistic on the (representing alcoves of) Shi
chambers, not on the Ish chambers. It seems that the chambers of the Ish arrangement are not so natural.

For example, consider the affine permutation w̃ = [-1, 4, 3], as shown in Figure 3. It is contained in the
cone [1, 3, 2]C◦ and its increasing rearrangement is [-1, 3, 4]. Hence, it has parabolic decomposition

[-1, 4, 3] = w̃ = wIw̃
I = [1, 3, 2] [-1, 3, 4].
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The inversions of w̃I = [-1, 3, 4] are ((2, 4)) and ((3, 4)), of which only the second is an Ish hyperplane;
hence ish(w̃) = 1. In Figure 4 we have displayed the shi and ish statistics for all chambers of Shi(3).
(Note: to compute ish by hand, one may extend the Ish hyperplanes from the dominant cone to the other
cones by reflection.) Their joint-distribution is recorded in the following table:

ish

shi

0 1 2 3
0 1
1 2 1
2 2 3 1
3 1 2 2 1

2.4 Theorems and a Conjecture
We will make four assertions and then describe our state of knowledge about them (i.e. whether each is a
Theorem or a Conjecture). We will use the following notation.

Recall from (1) that DH(n; q, t) denotes the bigraded Hilbert series of the ring of diagonal harmonic
polynomials. Define

Shi(n; q, t) :=
∑
A

qish(A)t(
n
2)−shi(A),

where the sum is taken over representing alcoves A for the chambers of the arrangement Shi(n). We say
that an alcove is positive if it is contained in the dominant cone C◦ (i.e. if A is on the “positive” side of
each generating hyperplane). Let Shi+(n; q, t) denote the corresponding sum over positive Shi alcoves.
Finally, consider the standard q-integer, q-factorial, and q-binomial coefficient:

[a]q = 1 + q + · · ·+ qa−1,

[a]q! = [a]q[a− 1]q · · · [2]q[1]q,[
a

b

]
q

=
[a]q!

[a− b]q![b]q!
.

Assertions.

(1) Shi(n; q, t) = DH(n; q, t), and hence is symmetric in q and t.

(2) q(
n
2)Shi(n; q, 1/q) = [n+ 1]n−1

q .

(3) Shi+(n; q, t) is equal to Garsia and Haiman’s q, t-Catalan number, and hence is symmetric in q and
t.

(4) q(
n
2)Shi+(n; q, 1/q) = 1

[n]q

[
2n
n−1

]
q
, the q-Catalan number.

In particular, note that q(
n
2)Shi+(n; q, 1/q) is equal to the sum of qshi(A)+ish(A) over the positive Shi

alcoves A. For n = 3 we may compute this sum using the data in Figure 4 to obtain

1 + q2 + q3 + q4 + q6 =
[6]q[5]q
[3]q[2]q

=
1

[3]q

[
6
2

]
q

,
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which is a q-Catalan number. One may check that the other three assertions are also true in the case n = 3.
We will now state the main theorem of this paper, but omit its proof.

Main Theorem. There exists a natural bijection from the (n + 1)n−1 chambers of the Shi arrangement
to parking functions which sends our statistics (ish, shi−

(
n
2

)
) to the statistics (bounce, area′) of Haglund

and Loehr [16].

This allows us to clarify the Assertions.

Status. Each of the following depends on the Main Theorem.

(1) Conjecture. This is equivalent to a conjecture of Haglund and Loehr [16] (known in a different
form to Haiman). No combinatorial explanation of the q, t symmetry is known.

(2) Theorem. This is equivalent to a theorem of Loehr [17].

(3) Theorem. This follows from theorems of Garsia and Haglund [9, 10]. No combinatorial explana-
tion of the q, t symmetry is known.

(4) Theorem. This is equivalent to a theorem of Haglund [14], which was later proved bijectively by
Loehr [18].
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