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Abstract. We identify two seemingly disparate structures: supercharacters, a useful way of doing Fourier analysis on
the group of unipotent uppertriangular matrices with coefficients in a finite field, and the ring of symmetric functions
in noncommuting variables. Each is a Hopf algebra and the two are isomorphic as such. This allows developments
in each to be transferred. The identification suggests a rich class of examples for the emerging field of combinatorial
Hopf algebras.

Résumé. Nous montrons que deux structures en apparence bien différentes peuvent être identifiées: les super-
caractères, qui sont un outil commode pour faire de l’analyse de Fourier sur le groupe des matrices unipotentes
triangulaires supérieures à coefficients dans un corps fini, et l’anneau des fonctions symétriques en variables non-
commutatives. Ces deux structures sont des algèbres de Hopf isomorphes. Cette identification permet de traduire
dans une structure les dévelopements conçus pour l’autre, et suggère de nombreux exemples dans le domaine nou-
veau des algèbres de Hopf combinatoires.
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1 Introduction
Identifying structures in seemingly disparate fields is a basic task of mathematics. An example, with
parallels to the present work, is the identification of the character theory of the symmetric group with
symmetric function theory. This connection is wonderfully exposited in Macdonald’s book [20]. Later,
Geissinger and Zelevinsky independently realized that there was an underlying structure of Hopf algebras
that forced and illuminated the identification [14, 27]. We present a similar program for a “supercharacter”
theory associated to the uppertriangular group and the symmetric functions in noncommuting variables.
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Let UTn(q) be the group of uppertriangular matrices with entries in the finite field Fq and ones on the
diagonal. This group is a Sylow p-subgroup of GLn(q). Describing the conjugacy classes or characters
of UTn(q) is a provably “wild” problem. In a series of papers, André developed a cruder theory that
lumps together various conjugacy classes into “superclasses” and considers certain sums of irreducible
characters as “supercharacters.” The two structures are compatible (so supercharacters are constant on
superclasses). The resulting theory is very nicely behaved — there is a rich combinatorics describing
induction and restriction along with an elegant formula for the values of supercharacters on superclasses.
The combinatorics is described in terms of set partitions (the symmetric group theory involves integer
partitions) and the combinatorics seems akin to tableau combinatorics. At the same time, supercharacter
theory is rich enough to serve as a substitute for ordinary character theory in some problems [6] .

In more detail, the group UTn(q) acts on both sides of the algebra of strictly upper-triangular matrices
nn (which can be thought of as nn = UTn(q) − 1). The two sided orbits on nn can be mapped back
to UTn(q) by adding the identity matrix. These orbits form the superclasses in UTn(q). A similar
construction on the dual space n∗n gives a collection of class functions on UTn(q) that turn out to be
constant on superclasses. These orbit sums (suitably normalized) are the supercharacters. Let

SC =
⊕
n≥0

SCn,

where SCn is the set of functions from UTn(q) to C that are constant on superclasses, and SC0 =
C-span{1} is by convention the set of class functions of UT0(q) = {}.

Let
Π =

⊕
n≥0

Πn

be the ring of symmetric functions in non-commuting variables. Such functions were considered by Wolf
[25] and Doubilet [12]. More recent work of Sagan brought them to the forefront. A lucid introduction is
given by Rosas and Sagan [22] and combinatorial applications by Gebhard and Sagan [13]. The algebra
Π is actively studied as part of the theory of combinatorial Hopf algebras [3, 7, 9, 10, 17, 21]. The mλ

and thus Π are invariant under permutations of variables.
Our main result is to show that when q = 2, SC has a Hopf structure isomorphic to that of Π. This

construction of a Hopf algebra from the representation theory of a sequence of groups is the main contri-
bution of this paper. It differs from previous work in that supercharacters are used. Previous work was
confined to ordinary characters (e.g. [19]) and the results of [8] indicate that this is a restrictive setting.
This work opens the possibility for a vast new source of Hopf algebras.
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2 Background
2.1 Supercharacter theory
Supercharacters were first studied by André (e.g. [4]) and Yan [26] in relation to UTn(q) in order to
find a more tractable way to understand the representation theory of UTn(q). Diaconis and Isaacs [11]
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then generalized the concept to arbitrary finite groups, and we reproduce a version of this more general
definition below.

A supercharacter theory of a finite group G is a pair (K,X ) where K is a partition of G and X is a
partition of the irreducible characters of G such that

(a) Each K ∈ K is a union of conjugacy classes,

(b) {1} ∈ K, where 1 is the identity element of G, and {11} ∈ X , where 11 is the trivial character of G.

(c) For X ∈ X , the character ∑
ψ∈X

ψ(1)ψ

is constant on the parts of K,

(d) |K| = |X |.

We will refer to the parts of K as superclasses, and for some fixed choice of scalars cX ∈ Q (which are
not uniquely determined), we will refer to the characters

χX = cX
∑
ψ∈X

ψ(1)ψ, for X ∈ X

as supercharacters (the scalars cX should be picked such that the supercharacters are indeed characters).
For more information on the implications of these axioms, including some redundancies in the definition,
see [11].

There are a number of different known ways to construct supercharacter theories for groups, including

• Gluing together group elements and irreducible characters using outer automorphisms [11],

• Finding normal subgroups N / G and grafting together superchararacter theories for the normal
subgroup N and for the factor group G/N to get a supercharacter theory for the whole group [16].

This paper will however focus on a technique first introduced for algebra groups [11], and then generalized
to some other types of groups by André and Neto (e.g. [5]).

The group UTn(q) has a natural two-sided action on the Fq-spaces

n = UTn(q)− 1 and n∗ = Hom(n,Fq)

given by left and right multiplication on n and for λ ∈ n∗,

(uλv)(x− 1) = λ(u−1(x− 1)v−1), for u, v, x ∈ UTn(q).

It can be shown that the orbits of these actions parametrize the superclasses and supercharacters, respec-
tively, for a supercharacter theory. In particular, two elements u, v ∈ UTn(q) are in the same superclass
if and only if u − 1 and v − 1 are in the same two-sided orbit in UTn(q)\n/UTn(q). Since the action
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of UTn(q) on n can be viewed as applying row and column operations, we obtain a parameterization of
superclasses given by

{
Superclasses
of UTn(q)

}
←→

 u− 1 ∈ n with at most
one nonzero entry in
each row and column

 .

This indexing set is central to the combinatorics of this paper, so we give several interpretations for it. Let

Sn(q) =

{
Sets λ of triples i a_j = (i, j, a) ∈ [n]× [n]× F×q ,

with i < j, and i a_j, k
b
_l ∈ λ implies i 6= k, j 6= l

}
,

where we will refer to the elements of Sn(q) as F×q -set partitions. In particular,

Sn(q) ←→

 u− 1 ∈ n with at most
one nonzero entry in
each row and column


λ = {iφ(i,j)

_ j | (i, j) ∈ D} 7→
∑
i
a
_j∈λ

aeij ,

(2.1)

where eij is the matrix with 1 in the (i, j) position and zeroes elsewhere.

Remark 1 Consider the map

π : Sn(q) → Sn(2)
λ 7→ {i 1

_j | i a_j ∈ λ},
(2.2)

which ignores the part of the data that involves field scalars. Note that Sn(2) is in bijection with the set
partitions of the set {1, 2, . . . , n}. Indeed, the connected components of an element λ ∈ Sn(2) may be
viewed as the blocks of a partition of {1, 2, . . . , n}. Composing the map π with this bijection associates a
set partition to an element ofMn(q) or Sn(q), which we call the underlying set partition.

Fix a nontrivial homomorphism ϑ : F+
q → C×. For each λ ∈ n∗, construct a UTn(q)-module

V λ = C-span{vµ | µ ∈ −UTn(q) · λ}

with left action given by

uvµ = ϑ
(
µ(u−1 − 1)

)
vuµ, for u ∈ UTn(q), µ ∈ −UTn(q)λ.

Up to isomorphism, these modules depend only on the two-sided orbit in UTn(q)\n∗/UTn(q) of λ.
Furthermore, there is an injective function ι : Sn(q)→ n∗ given by

ι(λ) : n −→ Fq
X 7→

∑
i
a
_j∈λ

aXij
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that maps Sn(q) onto a natural set of orbit representatives in n∗. We will identify λ ∈ Sn(q) with
ι(λ) ∈ n∗.

The traces of the modules V λ for λ ∈ Sn(q) are the supercharacters of UTn(q), and they have a nice
supercharacter formula given by

χλ(uµ) =


q#{(i,j,k)|i<j<k,i

a
_k∈λ}

q#{(i
a
_l,j

b
_k)∈λ×µ|i<j<k<l}

∏
i
a
_l∈λ
i
b
_l∈µ

ϑ(ab),
if i a_k ∈ λ and i < j < k

implies i b_j, j
b
_k /∈ µ,

0, otherwise.

(2.3)

where uµ has superclass type µ [6]. Note that the degree of the supercharacter is

χλ(1) =
∏

i
a
_k∈λ

qk−i−1. (2.4)

Define
SC =

⊕
n≥0

SCn, where SCn = C-span{χλ | λ ∈ Sn(q)},

and let SC0 = C-span{χ∅}. By convention, we write 1 = χ∅, since this element will be the identity of
our Hopf algebra. Note that since SCn is in fact the space of superclass functions of UTn(q), it also has
another distinguished basis, the superclass characteristic functions,

SCn = C-span{κµ | µ ∈ Sn(q)}, where κµ(u) =
{

1, if u has superclass type µ,
0, otherwise,

and κ∅ = χ∅. Section 3 will explore a Hopf structure for this space.

2.2 Representation theoretic functors on SC

We will focus on two representation theoretic operations on the space SC. For J = (J1|J2| · · · |J`) any
set composition of {1, 2, . . . , n}, let

UTJ(q) = {u ∈ UTn(q) | uij 6= 0 with i < j implies i, j are in the same part of J}.

In the remainder of the paper we will need variants of a straightening map on set compositions. For each
set composition J = (J1|J2| · · · |J`), let

stJ([n]) = stJ1(J1)× stJ2(J2)× · · · × stJ`(J`), (2.5)

where for K ⊆ [n], stK : K −→ [|K|] is the unique order preserving map. For example,
st(14|3|256)([6]) = {1, 2} × {1} × {1, 2, 3}.

We can extend this straightening map to a canonical isomorphism

stJ : UTJ(q) −→ UT|J1|(q)×UT|J2|(q)× · · · ×UT|J`|(q) (2.6)
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by reordering the rows and columns according to (2.5). For example, if J = (14|3|256), then

UTJ(q) 3


1 0 0 a 0 0
0 1 0 0 b c
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 d
0 0 0 0 0 1

 stJ7−→

((
1 a
0 1

)
, (1),

(
1 b c
0 1 d
0 0 1

))
∈ UT2(q)×UT1(q)×UT3(q).

Combinatorially, if J = (J1|J2| · · · |J`) we let

SJ(q) = {λ ∈ Sn(q) | i a_j ∈ λ implies i, j are in the same part in J}.

Then we obtain the bijection

stJ : SJ(q) −→ S|J1|(q)× S|J2|(q)× · · · × S|J`|(q) (2.7)

that relabels the indices using the straightening map (2.5). For example, if J = 14|3|256, then

stJ

(
• • • • • •
1 2 3 4 5 6

a
b )

=
• •
1 2

a ×
•
1

×
• • •
1 2 3

b

Note that UTm(q) × UTn(q) is an algebra group, so it has a supercharacter theory with the standard
construction [11] such that

SC(UTm(q)×UTn(q)) ∼= SCm ⊗ SCn.

The combinatorial map (2.7) preserves supercharacters across this isomorphism.
The first operation of interest is restriction

JResUTn(q)
stJ (UTJ (q)) : SCn −→ SC|J1| ⊗ SC|J2| ⊗ · · · ⊗ SC|J`|

χ 7→ ResUTn(q)
UTJ (q)(χ) ◦ st−1

J ,

or
JResUTn(q)

stJ (UTJ (q))(χ)(u) = χ(st−1
J (u)), for u ∈ UT|J1|(q)× · · · ×UT|J`|(q).

Remark 2 There is an algorithmic method for computing restrictions of supercharacters (and also tensor
products of characters) [23, 24]. This has been implemented in Sage.

For an integer composition (m1,m2, . . . ,m`) of n, let

UT(m1,m2,...,m`)(q) = UT(1,...,m1|m1+1,...,m1+m2|···|n−m`+1,...,n)(q) ⊆ UTm1+···+m`(q).

There is a surjective homomorphism τ : UTn(q) → UT(m1,m2,...,m`)(q) such that τ2 = τ (τ fixes the
subgroup UT(m1,m2,...,m`)(q) and sends the normal complement to 1). We now obtain the inflation map

InfUTn(q)
UT(m1,m2,...,m`)

(q) : SCm1 ⊗ SCm2 ⊗ · · · ⊗ SCm` −→ SCn,

where
InfUTn(q)

UT(m1,m2,...,m`)
(q)(χ)(u) = χ(τ(u)), for u ∈ UTn(q).
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2.3 The Hopf algebra Π

Symmetric polynomials in a set of commuting variablesX are the invariants of the action of the symmetric
group SX of X by automorphisms of the polynomial algebra K[X] over a field K.

WhenX = {x1, x2, . . .} is infinite, we let SX be the set of bijections onX with finitely many nonfixed
points. Then the subspace of K[[X]]SX of formal power series with bounded degree is the algebra of
symmetric functions Sym(X) over K. It has a natural bialgebra structure defined by

∆(f) =
∑
k

f ′k ⊗ f ′′k , (2.8)

where the f ′k, f
′′
k are defined by the identity

f(X ′ +X ′′) =
∑
k

f ′k(X ′)f ′′k (X ′′), (2.9)

and X ′ + X ′′ denotes the disjoint union of two copies of X . The advantage of defining the coproduct in
this way is that ∆ is clearly coassociative and that it is obviously a morphism for the product. For each
integer partition λ = (λ1, λ2, . . . , λ`), the monomial symmetric function corresponding to λ is the sum

mλ(X) =
∑

xα∈O(xλ)

xα (2.10)

over elements of the orbit O(xλ) of xλ = xλ1
1 xλ2

2 · · ·x
λ`
` under SX , and the monomial symmetric func-

tions form a basis of Sym(X). The coproduct of a monomial function is

∆(mλ) =
∑

µ∪ν=λ

mµ ⊗mν . (2.11)

The dual basis m∗λ of mλ is a multiplicative basis of the graded dual Sym∗, which turns out to be iso-
morphic to Sym via the identification m∗n = hn (the complete homogeneous function, the sum of all
monomials of degree n).

The case of noncommuting variables is very similar. LetA be an alphabet, and consider the invariants of
SA acting by automorphisms on the free algebra K〈A〉. Two words a = a1a2 · · · an and b = b1b2 · · · bn
are in the same orbit whenever ai = aj if and only if bi = bj . Thus, orbits are parametrized by set
partitions in at most |A| blocks. Assuming as above that A is infinite, we obtain an algebra based on all
set partitions, defining the monomial basis by

mλ(A) =
∑
w∈Oλ

w, (2.12)

where Oλ is the set of words such that wi = wj if and only if i and j are in the same block of λ.
One can introduce a bialgebra structure by means of the coproduct

∆(f) =
∑
k

f ′k ⊗ f ′′k where f(A′ +A′′) =
∑
k

f ′k(A′)f ′′k (A′′), (2.13)
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and A′ + A′′ denotes the disjoint union of two mutually commuting copies of A. The coproduct of a
monomial function is

∆(mλ) =
∑

J⊆[`(λ)]

mst(λJ ) ⊗mst(λJc ). (2.14)

This coproduct is cocommutative. With the unit that sends 1 to m∅ and the counit ε(f(A)) = f(0, 0, . . .),
we have that Π is a connected graded bialgebra and therefore a graded Hopf algebra.

Remark 3 We note that Π is often denoted in the literature as NCSym or WSym.

3 A Hopf algebra realization of SC

In this section we describe a Hopf structure for the space

SC =
⊕
n≥0

SCn

= C-span{κµ | µ ∈ Sn(q), n ∈ Z≥0}
= C-span{χλ | λ ∈ Sn(q), n ∈ Z≥0}.

The product and coproduct are defined representation theoretically by the inflation and restriction opera-
tions of Section 2.2,

χ · ψ = InfUTa+b(q)
UT(a,b)(q)

(χ× ψ), where χ ∈ SCa, ψ ∈ SCb, (3.1)

and
∆(χ) =

∑
J=(A|Ac)
A⊂[n]

JResUTn(q)
UT|A|(q)×UT|Ac|(q)

(χ), for χ ∈ SCn. (3.2)

For a combinatorial description of the Hopf structure of SC it is most convenient to work with the super-
class characteristic functions.

Proposition 3.1

(a) For µ ∈ Sk(q), ν ∈ Sn−k(q),

κµ · κν =
∑

λ=µtγt(k+ν)∈Sn(q)

i
a
_l∈γ implies i≤k<l

κλ,

where (k + ν) = {(k + i) a
_(k + j) | i a_j ∈ ν} and t denotes disjoint union.

(b) For λ ∈ Sn(q),
∆(κλ) =

∑
λ=µtν

µ∈SA(q),ν∈SAc (q)
A⊆{1,2,...,n}

κstA(µ) ⊗ κstAc (ν).
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Example 1 We have

κ
• • •
1 2 3

a · κ
• • • •
1 2 3 4

b c =κ
• • • • • • •
1 2 3 4 5 6 7

a b c +
∑
d∈F×q

(
κ
• • • • • • •
1 2 3 4 5 6 7

a d b c + κ
• • • • • • •
1 2 3 4 5 6 7

a d b c + κ
• • • • • • •
1 2 3 4 5 6 7

a
d
b c + κ

• • • • • • •
1 2 3 4 5 6 7

a
d

b c

)

+
∑

d,e∈F×q

(
κ
• • • • • • •
1 2 3 4 5 6 7

a
d

e b c + κ
• • • • • • •
1 2 3 4 5 6 7

a d
e
b c

)
.

and

∆
(
κ
• • • •
1 2 3 4

a

)
=κ
• • • •
1 2 3 4

a ⊗ κ∅ + 2κ
• • •
1 2 3

a ⊗ κ•
1

+ κ
• •
1 2

a ⊗ κ• •
1 2

+ κ• •
1 2

⊗ κ
• •
1 2

a + 2κ•
1

⊗ κ
• • •
1 2 3

a + κ∅ ⊗ κ
• • • •
1 2 3 4

a .

By comparing Proposition 3.1 to (2.14) and the product on monomials, we obtain the following theo-
rem.

Theorem 3.2 For q = 2, the map
ch : SC −→ Π

κµ 7→ mµ

is a Hopf algebra isomorphism.

Note that although we did not assume for the theorem that SC is a Hopf algebra, the fact that ch
preserves the Hopf operations implies that SC for q = 2 is indeed a Hopf algebra.

Corollary 3.3 The algebra SC with product given by (3.1) and coproduct given by (3.2) is a Hopf alge-
bra.

Remark 4

(a) Note that the isomorphism of Theorem 3.2 is not in any way canonical. In fact, the automorphism
group of Π is rather large, so there are many possible isomorphisms. For our chosen isomor-
phism, there is no nice interpretation for the image of the supercharacters under the isomorphism
of Theorem 3.2. Even less pleasant, when one composes it with the map

Π −→ Sym

that allows variables to commute (see [12, 22]), one in fact obtains that the supercharacters are
not Schur positive. But, exploration with Sage suggests that it may be possible to choose an isomor-
phism such that the image of the supercharacters are Schur positive.

(b) Although the antipode is determined by the bialgebra structure of Π, explicit expressions are not
well understood. However, there are a number of forthcoming papers (e.g. [2, 18]) addressing this
situation.
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The Hopf algebra SC has a number of natural Hopf subalgebras. One of particular interest is the
subspace spanned by linear characters (characters with degree 1). In fact, for this supercharacter theory
every linear character of Un is a supercharacter and by (2.4) these are exactly indexed by the set

Ln = {λ ∈ Sn(q) | i a_j ∈ λ implies j = i+ 1}.

Corollary 3.4 For q = 2, the Hopf subalgebra

LSC = C-span{χλ | i 1
_j ∈ λ implies j = i+ 1},

is isomorphic to the Hopf algebra of noncommutative symmetric functions Sym studied in [15].

Remark 5 In fact, for each k ∈ Z≥0 the space

SC(k) = C-span{χλ | i_j ∈ λ implies j − i ≤ k}

is a Hopf subalgebra. This gives an unexplored filtration of Hopf algebras which interpolate between
LSC and SC.
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