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Matroid base polytopes

Definition
A matroid base polytope Q(M) for a matroid M on [n] is the polytope in
R

n whose vertices are the incidence vectors of the bases of M.

Example

A matroid M on [4] The matroid base polytope Q(M)
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Faces of a matroid base polytope

Proposition(Ardila and Klivans, 2006)

For ω ∈ R
n, let Q(M)ω be the face of Q(M) at which

∑n
i=1 ωixi attains

its minimum.

Q(M)ω = Q(Mω) for some matroid Mω.

Mω depends only on

F := F(ω) := {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]},

where ω is constant on Si − Si−1 and ω|Si−Si−1
< ω|Si+1−Si

.

In fact,

MF := Mω =
k+1⊕

i=1

(M|Si
)/Si−1.
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Faces of a matroid base polytope

Definition
α, β ∈ [n] are equivalent if there are bases B and B′ of M such
that α ∈ B and B′ = B − {α} ∪ {β}.

The equivalence classes are called connected components.

A matroid M is connected if it has only one connected component.

Definition
A flag F = {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]} is factor-connected
if (M|Si

)/Si−1 are connected for i = 1, . . . , k + 1.

Definition
Two factor-connected flags F and F ′ of same length are equivalent if
they are equal in all but rank j and (M|Sj+1

)/Sj−1 has two connected
components. Then take the transitive closure.

Sangwook Kim George Mason University FPSAC 2008 6 / 21



Faces of a matroid base polytope

Definition
α, β ∈ [n] are equivalent if there are bases B and B′ of M such
that α ∈ B and B′ = B − {α} ∪ {β}.

The equivalence classes are called connected components.

A matroid M is connected if it has only one connected component.

Definition
A flag F = {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]} is factor-connected
if (M|Si

)/Si−1 are connected for i = 1, . . . , k + 1.

Definition
Two factor-connected flags F and F ′ of same length are equivalent if
they are equal in all but rank j and (M|Sj+1

)/Sj−1 has two connected
components. Then take the transitive closure.

Sangwook Kim George Mason University FPSAC 2008 6 / 21



Faces of a matroid base polytope

Definition
α, β ∈ [n] are equivalent if there are bases B and B′ of M such
that α ∈ B and B′ = B − {α} ∪ {β}.

The equivalence classes are called connected components.

A matroid M is connected if it has only one connected component.

Definition
A flag F = {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]} is factor-connected
if (M|Si

)/Si−1 are connected for i = 1, . . . , k + 1.

Definition
Two factor-connected flags F and F ′ of same length are equivalent if
they are equal in all but rank j and (M|Sj+1

)/Sj−1 has two connected
components. Then take the transitive closure.

Sangwook Kim George Mason University FPSAC 2008 6 / 21



Faces of a matroid base polytope

Definition
α, β ∈ [n] are equivalent if there are bases B and B′ of M such
that α ∈ B and B′ = B − {α} ∪ {β}.

The equivalence classes are called connected components.

A matroid M is connected if it has only one connected component.

Definition
A flag F = {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]} is factor-connected
if (M|Si

)/Si−1 are connected for i = 1, . . . , k + 1.

Definition
Two factor-connected flags F and F ′ of same length are equivalent if
they are equal in all but rank j and (M|Sj+1

)/Sj−1 has two connected
components. Then take the transitive closure.

Sangwook Kim George Mason University FPSAC 2008 6 / 21



Faces of a matroid base polytope

Definition
α, β ∈ [n] are equivalent if there are bases B and B′ of M such
that α ∈ B and B′ = B − {α} ∪ {β}.

The equivalence classes are called connected components.

A matroid M is connected if it has only one connected component.

Definition
A flag F = {∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sk ⊂ Sk+1 = [n]} is factor-connected
if (M|Si

)/Si−1 are connected for i = 1, . . . , k + 1.

Definition
Two factor-connected flags F and F ′ of same length are equivalent if
they are equal in all but rank j and (M|Sj+1

)/Sj−1 has two connected
components. Then take the transitive closure.

Sangwook Kim George Mason University FPSAC 2008 6 / 21



Faces of a matroid base polytope

Proposition(K.)

Two factor-connected flags F and F ′ are equivalent if and only if
MF = MF ′ .

Example

A matroid M on [4]

Q(M)

F1 = {∅ ⊂ {2} ⊂ {1, 2} ⊂ [4]}.

F2 = {∅ ⊂ {2} ⊂ {2, 3, 4} ⊂ [4]}.

F1 and F2 are equivalent.

MF1 =

MF2 =
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Faces of a matroid base polytope

Theorem (K.)
For a face σ of Q(M),

Lσ :=
⋃

F factor connected,
Q(MF )=σ

F forms a distributive lattice.

Lσ
∼= J(Pσ) where Pσ is the poset defined by

The elements of Pσ are the connected components Ci of Mσ.

C1 < C2 if and only if

σ ⊂ {x ∈ R
n :
∑

e∈S

xe = r(S)} and C2 ⊂ S ⊂ [n] implies C1 ⊂ S
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Hyperplane splits of a matroid base polytope

Definition
A hyperplane split of Q(M) is a decomposition of Q(M) as
Q(M1) ∪ Q(M2) where

M1 and M2 are matroids,

Q(M1) ∩ Q(M1) is a proper face of both Q(M1) and Q(M2).

Example
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Hyperplane splits of a matroid base polytope

Theorem (K.)
Let M be a rank r matroid on [n] and H be a hyperplane in R

n defined
by
∑

e∈S xe = k. Then H gives a hyperplane split of Q(M) if and only if

r(S) > k and r(Sc) > r − k,

if I1 and I2 are k-element independent subset of S such that
(M/I1)|Sc and (M/I2)|Sc have rank r − k, then

(M/I1)|Sc = (M/I2)|Sc .

Example

H = {x ∈ R
4|x1 + x2 = 1}

S = {1, 2}, k = 1

r(S) = 2 > 1, r(Sc) = 2 > 1

I1 := {1} → B((M/I1)|Sc ) = {3, 4}.
I2 := {2} → B((M/I2)|Sc ) = {3, 4}.
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Hyperplane splits of a matroid base polytope

Corollary

Let M be a rank 2 matroid on [n] and H be a hyperplane in R
n defined

by
∑

e∈S xe = 1. Then H gives a hyperplane split of Q(M) if and only if
S and Sc are both unions of at least two parallelism classes.

Example

H = {x ∈ R
4|x1 + x2 = 1}

S = {1, 2}

S = {1, 2} = {1} ∪ {2}

Sc = {3, 4} = {3} ∪ {4}.

Sangwook Kim George Mason University FPSAC 2008 13 / 21
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The cd-index of a polytope

Definition
The cd-index Ψ(Q) of a polytope Q, a polynomial in noncommutative
variables c and d, is a very compact encoding of the flag numbers of a
polytope.

Example

P

Ψ(P) =c3 + 3cd + 3dc

⇓ (c = a + b, d = ab + ba)

ab(P) =a3 + 4a2b + 7aba + 4ab2

+ 4ba2 + 7bab + 4b2a + b3

⇓ (a 7→ a + b, b 7→ b)

f (P) =a3 + 5a2b + 8aba + 16ab2

5ba2 + 16bab + 16b2a + 32b3

Sangwook Kim George Mason University FPSAC 2008 15 / 21
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The cd-index of a polytope

Theorem (Ehrenborg and Readdy, 1998)
Let Q be a polytope. Then

Ψ(Pyr(Q)) =
1
2

[
Ψ(Q) · c + c · Ψ(Q) +

∑

σ

Ψ(σ) · d · Ψ(Q/σ)

]
,

Ψ(Prism(Q)) = Ψ(Q) · c +
∑

σ

Ψ(σ) · d · Ψ(Q/σ),

Ψ(Bipyr(Q)) = c · Ψ(Q) +
∑

σ

Ψ(σ) · d · Ψ(Q/σ),

where the sum is over all proper faces σ of Q.

Theorem (Ehrenborg and Fox, 2003)

For polytopes P and Q, Ψ(P × Q) can be computed from Ψ(P) and
Ψ(Q).
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The cd-index of a polytope

Theorem (K.)

If Q is a polytope and H a hyperplane in R
n intersecting relint Q, then

Ψ(Q) = Ψ(Q+) + Ψ(Q−) − Ψ(Q̂) · c −
∑

σ

Ψ(σ̂) · d · Ψ(Q̂/σ̂),

where Q+ = Q ∩ H+, Q− = Q ∩ H−, Q̂ = Q ∩ H, σ̂ = σ ∩ H, and the
sum is over all proper faces σ of Q intersecting both open halfspaces
obtained by H nontrivially.

Example

Ψ(1234) =Ψ(125) + Ψ(1345)

− Ψ(15) · c

− Ψ(5) · d · Ψ(15/5)
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The cd-index of Q(M) for a rank 2 matroid M

Fact
A (loopless) rank 2 matroid on [n] is determined up to isomorphism by
the composition α(M) of [n] that gives the sizes αi of its parallelism
classes.

Proposition (K.)
The cd-index of Q(Mα) for a rank 2 matroid Mα can be expressed
using the cd-indices of matroid base polytopes for rank 2 matroids
corresponding to compositions with 3 or less parts.

Fact
If α has only one part, i.e., α = (α1), then Q(Mα) = ∆α1 .

If α has two parts, i.e., α = (α1, α2), then Q(Mα) = ∆α1 × ∆α2 .
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The cd-index of Q(M) for a rank 2 matroid M

Proposition (Precise version)

Let Mα be a rank 2 matroid corresponding to a composition α. Then

Ψ(Q(Mα)) =

l(α)−1∑

i=2

Ψ(Q(Mλ(α,i))) −




l(α)−2∑

i=2

Ψ(∆µ(α,i)1 × ∆µ(α,i)2)



 · c

−

∑

β<α

l(β̄)≥4

l(α)∏

j=1

(
αj

βj

)


l(β̄)−2∑

i=2

Ψ(∆µ(β̄,i)1
× ∆µ(β̄,i)2

)



 · d · Ψ(∆n−|β̄|).

Example

Ψ(M2,2,1,1) = Ψ(M2,2,2) + Ψ(M4,1,1) − Ψ(M4,2) · c

− 2Ψ(M3,2) · d · Ψ(∆1) − 2Ψ(M3,2) · d · Ψ(∆1)

− 4Ψ(M2,2) · d · Ψ(∆2)
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Outline

1 Matroid base polytopes

2 Hyperplane splits of a matroid base polytope

3 The cd-index of a matroid base polytope

4 Question/Problem
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Question/Problem

Find a matroidal formula for the cd-index of Q(M) for hyperplane
splits.

Find a simple formula for the cd-index of Q(Mα) for rank 2
matroids corresponding to compositions α with 3 parts.

Find an explicit CL-labeling for the face poset of Q(M).
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