Flag enumerations of matroid base polytopes

Sangwook Kim

George Mason University

FPSAC 2008

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- The cd-index of a matroid base polytope
- Question/Problem

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- The cd-index of a matroid base polytope
- Question/Problem

- Matroid base polytopes
- 2 Hyperplane splits of a matroid base polytope
- 3 The cd-index of a matroid base polytope
- Question/Problem

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- 3 The cd-index of a matroid base polytope
- Question/Problem

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- 3 The cd-index of a matroid base polytope
- Question/Problem

Definition

A matroid base polytope Q(M) for a matroid M on [n] is the polytope in \mathbb{R}^n whose vertices are the incidence vectors of the bases of M.

Example

Definition

A matroid base polytope Q(M) for a matroid M on [n] is the polytope in \mathbb{R}^n whose vertices are the incidence vectors of the bases of M.

Example

A matroid M on [4]

The matroid base polytope Q(M)

Definition

A matroid base polytope Q(M) for a matroid M on [n] is the polytope in \mathbb{R}^n whose vertices are the incidence vectors of the bases of M.

Definition

A matroid base polytope Q(M) for a matroid M on [n] is the polytope in \mathbb{R}^n whose vertices are the incidence vectors of the bases of M.

Example A matroid M on [4] The matroid base polytope Q(M)

Proposition(Ardila and Klivans, 2006)

For $\omega \in \mathbb{R}^n$, let $Q(M)_{\omega}$ be the face of Q(M) at which $\sum_{i=1}^n \omega_i x_i$ attains its minimum.

- $Q(M)_{\omega} = Q(M_{\omega})$ for some matroid M_{ω} .
- M_{ω} depends only on

$$\mathcal{F}(\omega) := \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\},\$$

where ω is constant on $S_i - S_{i-1}$ and $\omega|_{S_i - S_{i-1}} < \omega|_{S_{i+1} - S_i}$.

$$M_{\mathcal{F}} := M_{\omega} = \bigoplus_{i=1}^{k+1} (M|_{S_i})/S_{i-1}$$

Proposition(Ardila and Klivans, 2006)

For $\omega \in \mathbb{R}^n$, let $Q(M)_\omega$ be the face of Q(M) at which $\sum_{i=1}^n \omega_i x_i$ attains its minimum.

- $Q(M)_{\omega} = Q(M_{\omega})$ for some matroid M_{ω} .
- ullet M_{ω} depends only on

$$\mathcal{F} := \mathcal{F}(\omega) := \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\},\$$

where ω is constant on $S_i - S_{i-1}$ and $\omega|_{S_i - S_{i-1}} < \omega|_{S_{i+1} - S_i}$.

$$M_{\mathcal{F}} := M_{\omega} = \bigoplus_{i=1}^{k+1} (M|_{S_i})/S_{i-1}.$$

Proposition(Ardila and Klivans, 2006)

For $\omega \in \mathbb{R}^n$, let $Q(M)_{\omega}$ be the face of Q(M) at which $\sum_{i=1}^n \omega_i x_i$ attains its minimum.

- $Q(M)_{\omega} = Q(M_{\omega})$ for some matroid M_{ω} .
- M_{ω} depends only on

$$\mathcal{F} := \mathcal{F}(\omega) := \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\},\$$

where ω is constant on $S_i - S_{i-1}$ and $\omega|_{S_i - S_{i-1}} < \omega|_{S_{i+1} - S_i}$.

$$M_{\mathcal{F}} := M_{\omega} = \bigoplus_{i=1}^{k+1} (M|_{S_i})/S_{i-1}.$$

Proposition(Ardila and Klivans, 2006)

For $\omega \in \mathbb{R}^n$, let $Q(M)_\omega$ be the face of Q(M) at which $\sum_{i=1}^n \omega_i x_i$ attains its minimum.

- $Q(M)_{\omega} = Q(M_{\omega})$ for some matroid M_{ω} .
- M_{ω} depends only on

$$\mathcal{F} := \mathcal{F}(\omega) := \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\},\$$

where ω is constant on $S_i - S_{i-1}$ and $\omega|_{S_i - S_{i-1}} < \omega|_{S_{i+1} - S_i}$.

$$M_{\mathcal{F}} := M_{\omega} = \bigoplus_{i=1}^{k+1} (M|_{S_i})/S_{i-1}.$$

Definition

- $\alpha, \beta \in [n]$ are equivalent if there are bases B and B' of M such that $\alpha \in B$ and $B' = B \{\alpha\} \cup \{\beta\}$.
- The equivalence classes are called connected components
- A matroid M is connected if it has only one connected component

Definition

A flag $\mathcal{F} = \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\}$ is factor-connected if $(M|_{S_i})/S_{i-1}$ are connected for $i=1,\ldots,k+1$.

Definition

Two factor-connected flags $\mathcal F$ and $\mathcal F'$ of same length are equivalent if they are equal in all but rank j and $(M|_{S_{j+1}})/S_{j-1}$ has two connected components. Then take the transitive closure.

Definition

- $\alpha, \beta \in [n]$ are equivalent if there are bases B and B' of M such that $\alpha \in B$ and $B' = B \{\alpha\} \cup \{\beta\}$.
- The equivalence classes are called connected components.
- A matroid M is connected if it has only one connected component

Definition

A flag $\mathcal{F} = \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\}$ is factor-connected if $(M|_{S_i})/S_{i-1}$ are connected for $i = 1, \dots, k+1$.

Definition

Two factor-connected flags $\mathcal F$ and $\mathcal F'$ of same length are equivalent if they are equal in all but rank j and $(M|_{S_{j+1}})/S_{j-1}$ has two connected components. Then take the transitive closure.

Definition

- $\alpha, \beta \in [n]$ are equivalent if there are bases B and B' of M such that $\alpha \in B$ and $B' = B \{\alpha\} \cup \{\beta\}$.
- The equivalence classes are called connected components.
- A matroid *M* is connected if it has only one connected component.

Definition

A flag $\mathcal{F} = \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\}$ is factor-connected if $(M|_{S_i})/S_{i-1}$ are connected for $i = 1, \dots, k+1$.

Definition

Two factor-connected flags $\mathcal F$ and $\mathcal F'$ of same length are equivalent if they are equal in all but rank j and $(M|_{S_{j+1}})/S_{j-1}$ has two connected components. Then take the transitive closure.

FPSAC 2008

Definition

- $\alpha, \beta \in [n]$ are equivalent if there are bases B and B' of M such that $\alpha \in B$ and $B' = B - \{\alpha\} \cup \{\beta\}$.
- The equivalence classes are called connected components.
- A matroid M is connected if it has only one connected component.

Definition

A flag $\mathcal{F} = \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\}$ is factor-connected if $(M|_{S_i})/S_{i-1}$ are connected for $i=1,\ldots,k+1$.

Definition

- $\alpha, \beta \in [n]$ are equivalent if there are bases B and B' of M such that $\alpha \in B$ and $B' = B \{\alpha\} \cup \{\beta\}$.
- The equivalence classes are called connected components.
- A matroid *M* is connected if it has only one connected component.

Definition

A flag $\mathcal{F} = \{\emptyset = S_0 \subset S_1 \subset \cdots \subset S_k \subset S_{k+1} = [n]\}$ is factor-connected if $(M|_{S_i})/S_{i-1}$ are connected for $i = 1, \dots, k+1$.

Definition

Two factor-connected flags $\mathcal F$ and $\mathcal F'$ of same length are equivalent if they are equal in all but rank j and $(M|_{S_{j+1}})/S_{j-1}$ has two connected components. Then take the transitive closure.

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}}=M_{\mathcal{F}'}$.

Example

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}} = M_{\mathcal{F}'}$.

Example

A matroid M on [4]

$$\mathcal{F}_1$$
 and \mathcal{F}_2 are equivalent.

$$M_{\mathcal{F}_1} =$$

$$M_{\mathcal{F}_2} =$$

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}} = M_{\mathcal{F}'}$.

Example

A matroid M on [4]

$$\mathcal{F}_1 = \{\emptyset \subset \{2\} \subset \{1,2\} \subset [4]\}.$$

$$\mathcal{F}_2=\{\emptyset\subset\{2\}\subset\{2,3,4\}\subset[4]\}.$$

$$M_{\mathcal{F}_1} =$$

$$M_{\mathcal{F}_2} =$$

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}} = M_{\mathcal{F}'}$.

Example

A matroid M on [4]

$$\mathcal{F}_1 = \{\emptyset \subset \{2\} \subset \{1,2\} \subset [4]\}.$$

$$\mathcal{F}_2 = \{\emptyset \subset \{2\} \subset \{2,3,4\} \subset [4]\}.$$

$$M_{\mathcal{F}_1} =$$

$$M_{\mathcal{F}_2} =$$

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}} = M_{\mathcal{F}'}$.

Example

A matroid M on [4]

$$\mathcal{F}_1 = \{\emptyset \subset \{2\} \subset \{1,2\} \subset [4]\}.$$

$$\mathcal{F}_2=\{\emptyset\subset\{2\}\subset\{2,3,4\}\subset[4]\}.$$

$$f_{\mathcal{F}_2} = \bullet$$

$$\oplus$$

$$f_{\mathcal{F}_2} = {lack}$$

Proposition(K.)

Two factor-connected flags \mathcal{F} and \mathcal{F}' are equivalent if and only if $M_{\mathcal{F}} = M_{\mathcal{F}'}$.

Example

A matroid M on [4]

$$\mathcal{F}_1 = \{\emptyset \subset \{2\} \subset \{1,2\} \subset [4]\}.$$

$$\mathcal{F}_2=\{\emptyset\subset\{2\}\subset\{2,3,4\}\subset[4]\}.$$

$$\mathcal{F}_2 = \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{i=1}^{n} \bigoplus_{j=1}^{n} \bigoplus_{j=1}$$

Theorem (K.)

For a face σ of Q(M),

$$\mathsf{L}_{\sigma} := \bigcup_{\substack{\mathcal{F} \text{ factor connected,} \\ \mathsf{Q}(M_{\mathcal{F}}) = \sigma}} \mathcal{F}$$

•
$$L_{\sigma} \cong J(P_{\sigma})$$

FPSAC 2008

Theorem (K.)

For a face σ of Q(M),

$$ullet$$
 $L_{\sigma}:=igcup_{\mathcal{F}\ factor\ connected,\ Q(M_{\mathcal{F}})=\sigma}\mathcal{F}$ forms a distributive lattice.

$$\bullet$$
 $L_{\sigma} \cong J(P_{\sigma})$

Theorem (K.)

For a face σ of Q(M),

- ullet $L_{\sigma}:=igcup_{\mathcal{F}\ factor\ connected,\ \mathbb{Q}(M_{\mathcal{F}})=\sigma}\mathcal{F}$ forms a distributive lattice.
- $L_{\sigma} \cong J(P_{\sigma})$ where P_{σ} is the poset defined by
 - The elements of P_{σ} are the connected components C_i of M_{σ} .
 - ullet $C_1 < C_2$ if and only if

$$\sigma \subset \{x \in \mathbb{R}^n : \sum_{e \in S} x_e = r(S)\}$$
 and $C_2 \subset S \subset [n]$ implies $C_1 \subset S$

Theorem (K.)

For a face σ of Q(M),

- ullet $L_{\sigma}:=igcup_{\mathcal{F}\ factor\ connected,\ Q(M_{\mathcal{F}})=\sigma}\mathcal{F}$ forms a distributive lattice.
- $L_{\sigma} \cong J(P_{\sigma})$ where P_{σ} is the poset defined by
 - The elements of P_{σ} are the connected components C_i of M_{σ} .
 - \bullet $C_1 < C_2$ if and only if

$$\sigma \subset \{x \in \mathbb{R}^n : \sum_{e \in S} x_e = r(S)\} \text{ and } C_2 \subset S \subset [n] \text{ implies } C_1 \subset S$$

A matroid M on [4]

Q(M)

A matroid M on [4]

Q(M)

A matroid M on [4]

Q(M)

- Matroid base polytopes
- 2 Hyperplane splits of a matroid base polytope
- The cd-index of a matroid base polytope
- Question/Problem

Definition

A hyperplane split of Q(M) is a decomposition of Q(M) as $Q(M_1) \cup Q(M_2)$ where

- M₁ and M₂ are matroids,
- $Q(M_1) \cap Q(M_1)$ is a proper face of both $Q(M_1)$ and $Q(M_2)$.

Definition

A hyperplane split of Q(M) is a decomposition of Q(M) as $Q(M_1) \cup Q(M_2)$ where

- M₁ and M₂ are matroids,
- $Q(M_1) \cap Q(M_1)$ is a proper face of both $Q(M_1)$ and $Q(M_2)$.

Definition

A hyperplane split of Q(M) is a decomposition of Q(M) as $Q(M_1) \cup Q(M_2)$ where

- M₁ and M₂ are matroids,
- $Q(M_1) \cap Q(M_1)$ is a proper face of both $Q(M_1)$ and $Q(M_2)$.

Definition

A hyperplane split of Q(M) is a decomposition of Q(M) as $Q(M_1) \cup Q(M_2)$ where

- M₁ and M₂ are matroids,
- $Q(M_1) \cap Q(M_1)$ is a proper face of both $Q(M_1)$ and $Q(M_2)$.

Definition

A hyperplane split of Q(M) is a decomposition of Q(M) as $Q(M_1) \cup Q(M_2)$ where

- M₁ and M₂ are matroids,
- $Q(M_1) \cap Q(M_1)$ is a proper face of both $Q(M_1)$ and $Q(M_2)$.

Theorem (K.)

Let M be a rank r matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = k$. Then H gives a hyperplane split of Q(M) if and only if

- r(S) > k and $r(S^c) > r k$,
- if I_1 and I_2 are k-element independent subset of S such that $(M/I_1)|_{S^c}$ and $(M/I_2)|_{S^c}$ have rank r-k, then

$$(M/I_1)|_{S^c} = (M/I_2)|_{S^c}.$$

Theorem (K.)

Let M be a rank r matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = k$. Then H gives a hyperplane split of Q(M) if and only if

- r(S) > k and $r(S^c) > r k$,
- if I_1 and I_2 are k-element independent subset of S such that $(M/I_1)|_{S^c}$ and $(M/I_2)|_{S^c}$ have rank r-k, then

$$(M/I_1)|_{S^c} = (M/I_2)|_{S^c}.$$

$$\frac{\bullet}{1} = \{x \in \mathbb{R}^4 | x_1 + x_2 = 1\}
S = \{1, 2\}, k = 1$$

•
$$r(S) = 2 > 1, r(S^c) = 2 > 1$$

•
$$I_1 := \{1\} \to \mathcal{B}((M/I_1)|_{S^c}) = \{3,4\}$$

 $I_2 := \{2\} \to \mathcal{B}((M/I_2)|_{S^c}) = \{3,4\}$

Theorem (K.)

Let M be a rank r matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = k$. Then H gives a hyperplane split of Q(M) if and only if

- r(S) > k and $r(S^c) > r k$,
- if I_1 and I_2 are k-element independent subset of S such that $(M/I_1)|_{S^c}$ and $(M/I_2)|_{S^c}$ have rank r-k, then

$$(M/I_1)|_{S^c} = (M/I_2)|_{S^c}.$$

Example

$$\frac{1}{1} = \frac{1}{2} \frac{1}{3} \frac{1}{4} M$$

$$H = \{x \in \mathbb{R}^4 | x_1 + x_2 = 1\}$$

$$S = \{1, 2\}, k = 1$$

•
$$r(S) = 2 > 1, r(S^c) = 2 > 1$$

•
$$I_1 := \{1\} \rightarrow \mathcal{B}((M/I_1)|_{S^c}) = \{3,4\}$$

 $I_2 := \{2\} \rightarrow \mathcal{B}((M/I_2)|_{S^c}) = \{3,4\}$

12/21

Theorem (K.)

Let M be a rank r matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = k$. Then H gives a hyperplane split of Q(M) if and only if

- r(S) > k and $r(S^c) > r k$,
- if I_1 and I_2 are k-element independent subset of S such that $(M/I_1)|_{S^c}$ and $(M/I_2)|_{S^c}$ have rank r-k, then

$$(M/I_1)|_{S^c} = (M/I_2)|_{S^c}.$$

$$\frac{\bullet}{i} = \frac{\bullet}{2} \frac{\bullet}{3} \frac{\bullet}{4} M$$

$$H = \{x \in \mathbb{R}^4 | x_1 + x_2 = 1\}$$

$$S = \{1, 2\}, k = 1$$

•
$$r(S) = 2 > 1, r(S^c) = 2 > 1$$

Corollary

Let M be a rank 2 matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = 1$. Then H gives a hyperplane split of Q(M) if and only if S and S^c are both unions of at least two parallelism classes.

Example

 $H = \{x \in \mathbb{R}^4 | x_1 + x_2 = 1\}$ $S = \{1, 2\} = \{1\} \cup \{2\}$ $S = \{3, 4\} = \{3\} \cup \{4\}.$

Corollary

Let M be a rank 2 matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = 1$. Then H gives a hyperplane split of Q(M) if and only if S and S^c are both unions of at least two parallelism classes.

Corollary

Let M be a rank 2 matroid on [n] and H be a hyperplane in \mathbb{R}^n defined by $\sum_{e \in S} x_e = 1$. Then H gives a hyperplane split of Q(M) if and only if S and S^c are both unions of at least two parallelism classes.

$$H = \{x \in \mathbb{R}^4 | x_1 + x_2 = 1\}$$

S = \{1, 2\}

•
$$S = \{1, 2\} = \{1\} \cup \{2\}$$

•
$$S^c = \{3,4\} = \{3\} \cup \{4\}.$$

Outline

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- 3 The cd-index of a matroid base polytope
- Question/Problem

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$Ψ(P) = c^3 + 3cd + 3dc$$

 $ψ$ (c = a + b, d = ab + ba)

 $ab(P) = a^3 + 4a^2b + 7aba + 4ab^2$

$$f(P) = \mathbf{a}^3 + 5\mathbf{a}^2\mathbf{b} + 8\mathbf{a}\mathbf{b}\mathbf{a} + 16\mathbf{a}\mathbf{b}^2$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^3 + 3\mathbf{cd} + 3\mathbf{dc}$$

$$ab(D)$$
 $a^3 + 4a^2b + 7aba + 4ab^2$

$$ab(P) = a^{\circ} + 4a^{\circ}b + 7aba + 4ab^{\circ}$$

$$f(P) = a^3 + 5a^2b + 8aba + 16ab^2$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^3 + 3\mathbf{cd} + 3\mathbf{dc}$$

$$\downarrow \quad (\mathbf{c} = \mathbf{a} + \mathbf{b}, \mathbf{d} = \mathbf{ab} + \mathbf{ba})$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^{3} + 3\mathbf{cd} + 3\mathbf{dc}$$

$$\psi \quad (\mathbf{c} = \mathbf{a} + \mathbf{b}, \mathbf{d} = \mathbf{ab} + \mathbf{ba})$$

$$\mathbf{ab}(P) = \mathbf{a}^{3} + 4\mathbf{a}^{2}\mathbf{b} + 7\mathbf{aba} + 4\mathbf{ab}^{2}$$

$$+ 4\mathbf{ba}^{2} + 7\mathbf{bab} + 4\mathbf{b}^{2}\mathbf{a} + \mathbf{b}^{3}$$

$$\psi \quad (\mathbf{a} \mapsto \mathbf{a} + \mathbf{b}, \mathbf{b} \mapsto \mathbf{b})$$

$$f(P) = \mathbf{a}^{3} + 5\mathbf{a}^{2}\mathbf{b} + 8\mathbf{aba} + 16\mathbf{ab}^{2}$$

$$5\mathbf{ba}^{2} + 16\mathbf{bab} + 16\mathbf{b}^{2}\mathbf{a} + 32\mathbf{b}^{3}$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^{3} + 3\mathbf{cd} + 3\mathbf{dc}$$

$$\psi \quad (\mathbf{c} = \mathbf{a} + \mathbf{b}, \mathbf{d} = \mathbf{ab} + \mathbf{ba})$$

$$\mathbf{ab}(P) = \mathbf{a}^{3} + 4\mathbf{a}^{2}\mathbf{b} + 7\mathbf{aba} + 4\mathbf{ab}^{2}$$

$$+ 4\mathbf{ba}^{2} + 7\mathbf{bab} + 4\mathbf{b}^{2}\mathbf{a} + \mathbf{b}^{3}$$

$$\psi \quad (\mathbf{a} \mapsto \mathbf{a} + \mathbf{b}, \mathbf{b} \mapsto \mathbf{b})$$

$$f(P) = \mathbf{a}^{3} + 5\mathbf{a}^{2}\mathbf{b} + 8\mathbf{aba} + 16\mathbf{ab}^{2}$$

$$5\mathbf{ba}^{2} + 16\mathbf{bab} + 16\mathbf{b}^{2}\mathbf{a} + 32\mathbf{b}^{3}$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^{3} + 3\mathbf{cd} + 3\mathbf{dc}$$

$$\psi \quad (\mathbf{c} = \mathbf{a} + \mathbf{b}, \mathbf{d} = \mathbf{ab} + \mathbf{ba})$$

$$\mathbf{ab}(P) = \mathbf{a}^{3} + 4\mathbf{a}^{2}\mathbf{b} + 7\mathbf{aba} + 4\mathbf{ab}^{2}$$

$$+ 4\mathbf{ba}^{2} + 7\mathbf{bab} + 4\mathbf{b}^{2}\mathbf{a} + \mathbf{b}^{3}$$

$$\psi \quad (\mathbf{a} \mapsto \mathbf{a} + \mathbf{b}, \mathbf{b} \mapsto \mathbf{b})$$

$$f(P) = \mathbf{a}^{3} + 5\mathbf{a}^{2}\mathbf{b} + 8\mathbf{aba} + 16\mathbf{ab}^{2}$$

$$5\mathbf{ba}^{2} + 16\mathbf{bab} + 16\mathbf{b}^{2}\mathbf{a} + 32\mathbf{b}^{3}$$

Definition

The **cd**-index $\Psi(Q)$ of a polytope Q, a polynomial in noncommutative variables **c** and **d**, is a very compact encoding of the flag numbers of a polytope.

$$\Psi(P) = \mathbf{c}^{3} + 3\mathbf{cd} + 3\mathbf{dc}$$

$$\psi \quad (\mathbf{c} = \mathbf{a} + \mathbf{b}, \mathbf{d} = \mathbf{ab} + \mathbf{ba})$$

$$\mathbf{ab}(P) = \mathbf{a}^{3} + 4\mathbf{a}^{2}\mathbf{b} + 7\mathbf{aba} + 4\mathbf{ab}^{2}$$

$$+ 4\mathbf{ba}^{2} + 7\mathbf{bab} + 4\mathbf{b}^{2}\mathbf{a} + \mathbf{b}^{3}$$

$$\psi \quad (\mathbf{a} \mapsto \mathbf{a} + \mathbf{b}, \mathbf{b} \mapsto \mathbf{b})$$

$$f(P) = \mathbf{a}^{3} + 5\mathbf{a}^{2}\mathbf{b} + 8\mathbf{aba} + 16\mathbf{ab}^{2}$$

$$5\mathbf{ba}^{2} + 16\mathbf{bab} + 16\mathbf{b}^{2}\mathbf{a} + 32\mathbf{b}^{3}$$

Theorem (Ehrenborg and Readdy, 1998)

Let Q be a polytope. Then

$$\begin{split} &\Psi(\operatorname{Pyr}(Q)) = \frac{1}{2} \left[\Psi(Q) \cdot \mathbf{c} + \mathbf{c} \cdot \Psi(Q) + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma) \right], \\ &\Psi(\operatorname{Prism}(Q)) = \Psi(Q) \cdot \mathbf{c} + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma), \\ &\Psi(\operatorname{Bipyr}(Q)) = \mathbf{c} \cdot \Psi(Q) + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma), \end{split}$$

where the sum is over all proper faces σ of Q.

Theorem (Ehrenborg and Fox, 2003)

For polytopes P and Q, $\Psi(P \times Q)$ can be computed from $\Psi(P)$ and $\Psi(Q)$.

Theorem (Ehrenborg and Readdy, 1998)

Let Q be a polytope. Then

$$\begin{split} &\Psi(\operatorname{Pyr}(Q)) = \frac{1}{2} \left[\Psi(Q) \cdot \mathbf{c} + \mathbf{c} \cdot \Psi(Q) + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma) \right], \\ &\Psi(\operatorname{Prism}(Q)) = \Psi(Q) \cdot \mathbf{c} + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma), \\ &\Psi(\operatorname{Bipyr}(Q)) = \mathbf{c} \cdot \Psi(Q) + \sum_{\sigma} \Psi(\sigma) \cdot \mathbf{d} \cdot \Psi(Q/\sigma), \end{split}$$

where the sum is over all proper faces σ of Q.

Theorem (Ehrenborg and Fox, 2003)

For polytopes P and Q, $\Psi(P \times Q)$ can be computed from $\Psi(P)$ and $\Psi(Q)$.

Theorem (K.)

If Q is a polytope and H a hyperplane in \mathbb{R}^n intersecting relint Q, then

$$\Psi(\textbf{Q}) = \Psi(\textbf{Q}^+) + \Psi(\textbf{Q}^-) - \Psi(\widehat{\textbf{Q}}) \cdot \textbf{c} - \sum_{\sigma} \Psi(\hat{\sigma}) \cdot \textbf{d} \cdot \Psi(\widehat{\textbf{Q}}/\hat{\sigma}),$$

where $Q^+ = Q \cap H^+$, $Q^- = Q \cap H^-$, $\widehat{Q} = Q \cap H$, $\widehat{\sigma} = \sigma \cap H$, and the sum is over all proper faces σ of Q intersecting both open halfspaces obtained by H nontrivially.

Theorem (K.)

If Q is a polytope and H a hyperplane in \mathbb{R}^n intersecting relint Q, then

$$\Psi(\textbf{Q}) = \Psi(\textbf{Q}^+) + \Psi(\textbf{Q}^-) - \Psi(\widehat{\textbf{Q}}) \cdot \textbf{c} - \sum_{\sigma} \Psi(\hat{\sigma}) \cdot \textbf{d} \cdot \Psi(\widehat{\textbf{Q}}/\hat{\sigma}),$$

where $Q^+ = Q \cap H^+$, $Q^- = Q \cap H^-$, $\widehat{Q} = Q \cap H$, $\widehat{\sigma} = \sigma \cap H$, and the sum is over all proper faces σ of Q intersecting both open halfspaces obtained by H nontrivially.

$$Ψ(1234) = Ψ(125) + Ψ(1345)$$
 $- Ψ(15) \cdot \mathbf{c}$
 $- Ψ(5) \cdot \mathbf{d} \cdot Ψ(15/5)$

Theorem (K.)

If Q is a polytope and H a hyperplane in \mathbb{R}^n intersecting relint Q, then

$$\Psi(\textbf{Q}) = \Psi(\textbf{Q}^+) + \Psi(\textbf{Q}^-) - \Psi(\widehat{\textbf{Q}}) \cdot \textbf{c} - \sum_{\sigma} \Psi(\hat{\sigma}) \cdot \textbf{d} \cdot \Psi(\widehat{\textbf{Q}}/\hat{\sigma}),$$

where $Q^+ = Q \cap H^+$, $Q^- = Q \cap H^-$, $\widehat{Q} = Q \cap H$, $\widehat{\sigma} = \sigma \cap H$, and the sum is over all proper faces σ of Q intersecting both open halfspaces obtained by H nontrivially.

$$Ψ(1234) = Ψ(125) + Ψ(1345)$$
 $- Ψ(15) \cdot \mathbf{c}$
 $- Ψ(5) \cdot \mathbf{d} \cdot Ψ(15/5)$

Fact

A (loopless) rank 2 matroid on [n] is determined up to isomorphism by the composition $\alpha(M)$ of [n] that gives the sizes α_i of its parallelism classes.

Proposition (K.)

The **cd**-index of $Q(M_{\alpha})$ for a rank 2 matroid M_{α} can be expressed using the **cd**-indices of matroid base polytopes for rank 2 matroids corresponding to compositions with 3 or less parts.

- If α has only one part, i.e., $\alpha = (\alpha_1)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1}$
- If α has two parts, i.e., $\alpha=(\alpha_1,\alpha_2)$, then $Q(M_\alpha)=\Delta_{\alpha_1}\times\Delta_{\alpha_2}$.

Fact

A (loopless) rank 2 matroid on [n] is determined up to isomorphism by the composition $\alpha(M)$ of [n] that gives the sizes α_i of its parallelism classes.

Proposition (K.)

The **cd**-index of $Q(M_{\alpha})$ for a rank 2 matroid M_{α} can be expressed using the **cd**-indices of matroid base polytopes for rank 2 matroids corresponding to compositions with 3 or less parts.

- If α has only one part, i.e., $\alpha = (\alpha_1)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1}$.
- If α has two parts, i.e., $\alpha = (\alpha_1, \alpha_2)$, then $Q(M_\alpha) = \Delta_{\alpha_1} \times \Delta_{\alpha_2}$.

Fact

A (loopless) rank 2 matroid on [n] is determined up to isomorphism by the composition $\alpha(M)$ of [n] that gives the sizes α_i of its parallelism classes.

Proposition (K.)

The **cd**-index of $Q(M_{\alpha})$ for a rank 2 matroid M_{α} can be expressed using the **cd**-indices of matroid base polytopes for rank 2 matroids corresponding to compositions with 3 or less parts.

- If α has only one part, i.e., $\alpha = (\alpha_1)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1}$
- If α has two parts, i.e., $\alpha = (\alpha_1, \alpha_2)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1} \times \Delta_{\alpha_2}$.

Fact

A (loopless) rank 2 matroid on [n] is determined up to isomorphism by the composition $\alpha(M)$ of [n] that gives the sizes α_i of its parallelism classes.

Proposition (K.)

The **cd**-index of $Q(M_{\alpha})$ for a rank 2 matroid M_{α} can be expressed using the **cd**-indices of matroid base polytopes for rank 2 matroids corresponding to compositions with 3 or less parts.

- If α has only one part, i.e., $\alpha = (\alpha_1)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1}$.
- If α has two parts, i.e., $\alpha = (\alpha_1, \alpha_2)$, then $Q(M_{\alpha}) = \Delta_{\alpha_1} \times \Delta_{\alpha_2}$.

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(M_{\alpha})) &= \sum_{i=2}^{l(\alpha)-1} \Psi(Q(M_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{l(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \mathbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ l(\bar{\beta}) \geq 4}} \prod_{j=1}^{l(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{l(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \mathbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

Example

 $\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) \cdot$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(M_{\alpha})) &= \sum_{i=2}^{l(\alpha)-1} \Psi(Q(M_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{l(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}})\right) \cdot \mathbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ l(\bar{\beta}) \geq 4}} \prod_{j=1}^{l(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{l(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}})\right) \cdot \mathbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$
$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$
$$-4\Psi(M_{2,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_2)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$
$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$
$$-4\Psi(M_{2,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_2)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$

$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$

$$-4\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_2)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$
$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$
$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c} \\ - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$

Proposition (Precise version)

Let M_{α} be a rank 2 matroid corresponding to a composition α . Then

$$\begin{split} \Psi(Q(\textit{M}_{\alpha})) &= \sum_{i=2}^{\textit{I}(\alpha)-1} \Psi(Q(\textit{M}_{\lambda(\alpha,i)})) - \left(\sum_{i=2}^{\textit{I}(\alpha)-2} \Psi(\Delta_{\mu(\alpha,i)_{1}} \times \Delta_{\mu(\alpha,i)_{2}}) \right) \cdot \textbf{c} \\ &- \sum_{\substack{\beta < \alpha \\ \textit{I}(\bar{\beta}) \geq 4}} \prod_{j=1}^{\textit{I}(\alpha)} \binom{\alpha_{j}}{\beta_{j}} \left(\sum_{i=2}^{\textit{I}(\bar{\beta})-2} \Psi(\Delta_{\mu(\bar{\beta},i)_{1}} \times \Delta_{\mu(\bar{\beta},i)_{2}}) \right) \cdot \textbf{d} \cdot \Psi(\Delta_{n-|\bar{\beta}|}). \end{split}$$

$$\Psi(M_{2,2,1,1}) = \Psi(M_{2,2,2}) + \Psi(M_{4,1,1}) - \Psi(M_{4,2}) \cdot \mathbf{c}$$

$$-2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1) - 2\Psi(M_{3,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_1)$$

$$-4\Psi(M_{2,2}) \cdot \mathbf{d} \cdot \Psi(\Delta_2)$$

Outline

- Matroid base polytopes
- Hyperplane splits of a matroid base polytope
- 3 The cd-index of a matroid base polytope
- Question/Problem

Question/Problem

- Find a matroidal formula for the cd-index of Q(M) for hyperplane splits.
- Find a simple formula for the **cd**-index of $Q(M_{\alpha})$ for rank 2 matroids corresponding to compositions α with 3 parts.
- Find an explicit CL-labeling for the face poset of Q(M).

Question/Problem

- Find a matroidal formula for the cd-index of Q(M) for hyperplane splits.
- Find a simple formula for the **cd**-index of $Q(M_{\alpha})$ for rank 2 matroids corresponding to compositions α with 3 parts.
- Find an explicit CL-labeling for the face poset of Q(M).

Question/Problem

- Find a matroidal formula for the cd-index of Q(M) for hyperplane splits.
- Find a simple formula for the **cd**-index of $Q(M_{\alpha})$ for rank 2 matroids corresponding to compositions α with 3 parts.
- Find an explicit CL-labeling for the face poset of Q(M).