Deodhar elements in Kazhdan-Lusztig theory

Brant Jones
brant@math.ucdavis.edu
University of California, Davis

June 25, 2008

Let W be a Coxeter group generated by $S = \{s_1, s_2, \dots, s_n\}$ with relations $s_i^2 = 1, (s_i s_j)^{m_{ij}} = 1$ for some m_{ij} .

Example

 $W = S_{n+1}$ generated by **adjacent transpositions** $s_i = (i, i+1)$.

If $w = s_{i_1} s_{i_2} \cdots s_{i_p}$ is an expression for w of minimal length, we say it is *reduced* and I(w) = p is the *length*.

Example

$$s_1 s_2 s_1 = 3$$
 2 1 = [321] = 3 2 1 = $s_2 s_1 s_2$

Fix a reduced expression $w = s_{i_1} \cdots s_{i_p}$. We call $\sigma \in \{0,1\}^{l(w)}$ a mask for w. Let w^{σ} be the result of multiplying all of the mask-value 1 entries of w together.

If there exists $\sigma \in \{0,1\}^{l(w)}$ such that $w^{\sigma} = x$ then we say $x \leq w$ in *Bruhat order*, a poset on the elements of W that is ranked by length.

Example

We say that $w = [w_1 \cdots w_n]$ contains the permutation pattern $p = [p_1 \cdots p_k]$ if there exists a subsequence $1 \le i_1 < i_2 < \cdots < i_k \le n$ such that the entries $w_{i_1} w_{i_2} \cdots w_{i_k}$ are in the same relative order as $p_1 p_2 \cdots p_k$. If w does not contain p then we say it *avoids* it.

Example

 $w = [\underline{3}4\underline{1}6\underline{57}2]$ contains the permutation pattern p = [2134] but avoids the permutation pattern p' = [12345].

This notion has been generalized by Billey, Postnikov and Braden to other types using root subsystems. Also, Woo and Yong have used *interval pattern avoidance* to study invariants of singularities in Schubert varieties.

The Hecke algebra H over $R = \mathbb{Z}[q^{1/2}, q^{-1/2}]$ has two bases. The standard basis $\{T_w : w \in W\}$ satisfies:

- $T_sT_w = T_{sw}$ if I(sw) > I(w), and
- $T_s^2 = (q-1)T_s + q$.

The *Kazhdan–Lusztig basis* $\{C'_w : w \in W\}$ satisfies:

- $\overline{C'_w}=C'_w$ (where $\overline{q}=q^{-1}$ and $\overline{T_w}=T_{w^{-1}}^{-1}$), and
- $C'_{w} = q^{-\frac{1}{2}I(w)} \sum_{x \leq w} P_{x,w}(q) T_{x}$.

Here, $P_{x,w} \in \mathbb{Z}[q]$, $P_{w,w} = 1$ and

degree
$$P_{x,w}(q) \leq \frac{1}{2}(I(w) - I(x) - 1)$$
.

Conjecture

Kazhdan–Lusztig, 1979 The coefficients of $P_{x,w}(q)$ are nonnegative in the Hecke algebra associated to any Coxeter group.

When W is the Weyl group of a semisimple algebraic group (like $SL_n(\mathbb{C})$), there exist **Schubert varieties** X_w for $w \in W$.

Theorem

Kazhdan–Lusztig, 1980 When W is a finite or affine Weyl group, we have

$$P_{x,w}(q) = \sum_{i>0} \dim IH^{2i}(X_w)_{xB} \ q^i.$$

Hence, we have nonnegativity in these cases.

Deodhar's result

Theorem

Deodhar, 1990 Let W be a Coxeter group such that $P_{x,w}(q)$ has nonnegative coefficients. Fix a reduced expression $w = s_{i_1} s_{i_2} \cdots s_{i_p}$. Then there exists a set $E_w \subset \{0,1\}^{l(w)}$ of masks such that

$$P_{x,w}(q) = \sum_{\sigma \in E_w, w^{\sigma} = x} q^{d(\sigma)}.$$

Here, w^{σ} is the result of multiplying the mask-value 1 entries of w together and $d(\sigma)$ is # positions j such that

$$s_{i_1}^{\sigma_1}\cdots s_{i_{j-1}}^{\sigma_{j-1}}s_{i_j}< s_{i_1}^{\sigma_1}\cdots s_{i_{j-1}}^{\sigma_{j-1}},$$

called defects.

Deodhar's result

Example

Theorem

Deodhar, Billey–Warrington Let W be the symmetric group. The following are equivalent:

- (1) $E_w = \{0, 1\}^{l(w)}$.
- (2) $C'_{w} = C'_{s_{i_1}} C'_{s_{i_2}} \cdots C'_{s_{i_p}}$ for $w = s_{i_1} \cdots s_{i_p}$.
- (3) The Bott–Samelson resolution $f_w : Z_w \to X_w$ is small (so $IH_*(X_w) \cong H_*(Z_w)$).
- (4) w is a 321-hexagon avoiding permutation (i.e. avoids [321], [46718235], [46781235], [56718234], [56781234]).

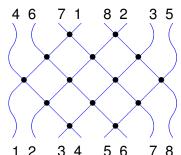
Definition

For any finite Weyl group, we say w is Deodhar if any of (1)-(3) hold.

Theorem

(Billey–Warrington, 2001) A permutation is Deodhar if and only if it is fully-commutative (no $s_i s_{i+1} s_i$ factors) and it heap-avoids the hexagon pattern:

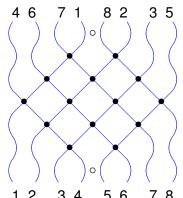
 $w = s_5 s_6 s_7 s_3 s_4 s_5 s_6 s_2 s_3 s_4 s_5 s_1 s_2 s_3$



Theorem

(Billey–Warrington, 2001) A permutation is Deodhar if and only if it is fully-commutative (no $s_i s_{i+1} s_i$ factors) and it heap-avoids the hexagon pattern:

 $w = s_5 s_6 s_7 s_3 s_4 s_5 s_6 s_2 s_3 s_4 s_5 s_1 s_2 s_3$



Theorem

Billey–Jones, Billey–Warrington Let W be a finite Weyl group. The following are equivalent:

- (1) w is Deodhar.
- (2) w avoids a list of embedded factor patterns. These patterns appear as factors of a fixed reduced expression for w, up to a Coxeter graph embedding of the generators that appear in the pattern.

Theorem

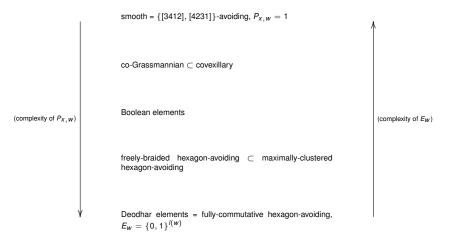
If W is a finite Weyl group and w is a Deodhar element of W then $\mu(x, w) \in \{0, 1\}$ for all $x \in W$.

Minimal Non-Deodhar Embedded Factors for Weyl Groups

Type	Coxeter Graph	Embedded Factor Patterns
A_2	•1 — •2	121, 212 (short-braids)
A ₇	•1 — •2 — •3 — •4 — •5 — •6 — •7	56734562345123 (Hexagon)
D ₆	•1	34512341̃231 (<i>HEX</i> ₅)
	• ₁ — • ₂ — • ₃ — • ₄ — • ₅	
D ₇	• 1	345623451234123 (HEX ₂)
	'_	45623451234121 (HEX3a)
		14562345123412 (HEX _{3b})
	• ₁ — • ₂ — • ₃ — • ₄ — • ₅ — • ₆	(GD)
E ₆	•5	0125342312501
		5123012543210
		1253423125012
	• ₀ — • ₁ — • ₂ — • ₃ — • ₄	2512301254321
E ₇	•6	012346523412301
	-0	346123012543210
		123465234123012
	•0 — •1 — •2 — •3 — •4 — •5	234612301254321
	-0 - 1 - 2 - 3 - 4 - 5	5234612534230125

Also, for each $n \ge 8$, there is one additional embedded factor pattern in D_n denoted $FLHEX_n$. These all contain the 1-line pattern $[\bar{1}, 6, 7, 8, \bar{5}, 2, 3, 4]$.

Some K–L polynomials for permutations



fully-commutative \subset freely-braided \subset maximally-clustered

Let W be simply-laced and let $w \in W$. Every reduced expression $s_{i_1} \cdots s_{i_p}$ for w determines a *root sequence*. (The **set** of vectors in the root sequence is the *inversion set* of w.)

Example

[321] =
$$s_1 s_2 s_1 = \{\alpha_1, s_1(\alpha_2) = \alpha_2 + \alpha_1, s_1 s_2(\alpha_1) = \alpha_2\}.$$

A consecutive subsequence $\alpha, \alpha + \beta, \beta$ of a root sequence is called a *contractible triple*.

We say w is:

- fully-commutative there are no contractible triples.
- freely-braided
 all contractible triples are pairwise disjoint.
- maximally-clustered
 whenever T and T' are
 contractible triples with non-empty intersection, then the
 highest (i.e. middle) roots of T and T' agree.

Example

w = [4231] is maximally-clustered but not freely-braided. Consider

$$\mathbf{W} = \mathbf{S}_{3}\mathbf{S}_{2}\mathbf{S}_{1}\mathbf{S}_{2}\mathbf{S}_{3} \leftrightarrow \{\alpha_{3}, \alpha_{2} + \alpha_{3}, \alpha_{1} + \alpha_{2} + \alpha_{3}, \alpha_{1}, \alpha_{1} + \alpha_{2}\}$$

versus

$$\mathbf{W} = \mathbf{S}_{1} \mathbf{S}_{3} \mathbf{S}_{2} \mathbf{S}_{3} \mathbf{S}_{1} \leftrightarrow \{\alpha_{1}, \alpha_{3}, \alpha_{1} + \alpha_{2} + \alpha_{3}, \alpha_{1} + \alpha_{2}, \alpha_{2} + \alpha_{3}\}$$

There are also pattern-avoidance criteria.

- fully-commutative \iff [321]-avoiding \iff avoids $s_1 s_2 s_1$ as embedded factor.
- freely-braided \iff {[3421], [4231], [4312], [4321]}-avoiding \iff avoids $s_3s_1s_2s_1s_3$ and $s_2s_3s_2s_1s_2$.
- maximally-clustered \iff {[3421], [4312], [4321]}-avoiding \iff avoids $s_2s_3s_2s_1s_2$.

Theorem

(Green, Losonczy, 2004) Let w be a freely-braided (or maximally-clustered) permutation. Then, there exists a reduced expression for w of the form

$$w = u_0 b_1 u_1 \cdots b_{N(w)} u_{N(w)}$$

where u_i are fully-commutative, and b_i are braids $s_i s_{i+1} s_i$ (or braid-clusters $s_i s_{i+1} \cdots s_{i+j-1} s_{i+j} s_{i+j-1} \cdots s_{i+1} s_i$, respectively).

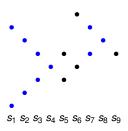
We call such a reduced expression contracted.

Example

For example, suppose w is given by the contracted reduced expression

$$(s_5)(s_1s_2s_3s_4s_3s_2s_1)(s_6s_5s_9)(s_7s_8s_7)(s_6).$$

Then the heap of *w* is drawn below. The braid clusters are shown in blue.



Definition

Let w be a contracted expression for a **maximally-clustered hexagon-avoiding permutation**, where every braid cluster is consecutive. We say that a mask σ on w has a 10*-instance if it has the values

$$\begin{bmatrix} \dots & s_i & s_{i+1} & s_i & \dots \\ * & 1 & 0 & * & * \end{bmatrix}$$

on any **central braid instance** $s_i s_{i+1} s_i$ of any **braid cluster** in w, where * denotes an arbitrary mask value. Otherwise, we say that σ is a 10*-avoiding mask for w.

Theorem

For any $x \in S_n$,

$$P_{{\scriptscriptstyle X},{\scriptscriptstyle W}}(q) = \sum_{{\scriptscriptstyle 1\,0\,\star ext{-avoiding masks }\sigma}} q^{d(\sigma)}$$

Axioms for Deodhar's formula

We say that a set of masks E_w is admissible for w if:

- E_w contains $(1, 1, \dots, 1)$.
- E_{w} contains $(\sigma_{1}, \sigma_{2}, \dots, 1 \sigma_{k})$ whenever E_{w} contains $(\sigma_{1}, \sigma_{2}, \dots, \sigma_{k})$.
- $C'(E_w)$ is invariant under the Hecke algebra involution.

The set of masks E_w is bounded for w if:

degree
$$P_x(E_w) \leq \frac{1}{2}(I(w) - I(x) - 1)$$
 for all $x < w$.

Proposition

 E_w computes $P_{x,w}$ in Deodhar's formula if and only if E_w is admissible and bounded.

Proof

The main difficulty is to show $C'(E_w)$ is **invariant** under the Hecke algebra involution. Use that

$$C'(E_w) = \overline{C'(E_w)} \iff C'(\{0,1\}^{\mathit{l(w)}} \setminus E_w) = \overline{C'(\{0,1\}^{\mathit{l(w)}} \setminus E_w)}$$

Induct on the number of **short-braid instances** in the contracted expression w.

Miraculously,

$$C'\left(egin{bmatrix} \ldots & s_i & s_{i\pm 1} & s_i & \ldots \ 1 & 0 & * & \ldots \end{bmatrix}
ight) = C'\left(egin{bmatrix} \ldots & s_i & \ldots \ 1 & -* \end{pmatrix}
ight).$$

References

- Embedded factor patterns for Deodhar elements in Kazhdan-Lusztig theory (with Sara Billey) (Ann. Combin. 11 (3/4) (2007) 285-333. arXiv:math/0612043)
- Kazhdan-Lusztig polynomials for maximally-clustered hexagon-avoiding permutations (arXiv:0704.3067)
- Leading coefficients of Kazhdan–Lusztig polynomials for Deodhar elements (to appear in J. Algebraic Combin. arXiv:0711.1391)