New bijective links on planar maps

Éric Fusy

Dept. Math, Simon Fraser University (Vancouver)

Planar maps

 Planar map = graph drawn in the plane without edge-crossing, taken up to isotopy (continuous structure-preserving transformation)

Rooted map = map + root edge

Motivations: mesh compression, graph drawing
 + nice combinatorial properties

Families of planar maps

Planar map

Loopless map

Nonseparable map (no separating vertex)

Triangulation

Irreducible triangulation (no separating triangle) - p.3/26

Families of planar maps

separating vertex

Loopless map

Nonseparable map (no separating vertex)

Triangulation

Irreducible triangulation

(no separating triangle) - - p.3/26

Families of planar maps

separating vertex

Loopless map

Nonseparable map (no separating vertex)

Triangulation

Irreducible triangulation

(no separating triangle) - - p.3/26

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

Planar maps

$$\#(\mathbf{n} \text{ edges}) = \frac{2 \cdot 3^{\mathbf{n}} (2\mathbf{n})!}{(\mathbf{n} + 2)! \mathbf{n}!}$$

Eulerian

$$\#(\mathbf{n} \text{ edges}) = \frac{\mathbf{3} \cdot \mathbf{2}^{\mathbf{n} - 1}(\mathbf{2n})!}{(\mathbf{n} + \mathbf{2})! \mathbf{n}!}$$

Loopless

$$\#(\mathbf{n} \text{ edges}) = \frac{2(4\mathbf{n}+1)!}{(\mathbf{n}+1)!(3\mathbf{n}+2)!}$$

Nonseparable

$$\#(\mathbf{n} \text{ edges}) = \frac{4(3\mathbf{n}-3)!}{(\mathbf{n}-1)!(2\mathbf{n})!}$$

4-regular

$$\#(\mathbf{n} \text{ vert.}) = \frac{2 \cdot 3^{n}(2\mathbf{n})!}{(\mathbf{n}+2)!\mathbf{n}!}$$

Bicubic

$$\#(2n \text{ vert.}) = \frac{3 \cdot 2^{n-1}(2n)!}{(n+2)!n!}$$

Triangulations

$$\#(\mathbf{n}+3 \text{ vert.}) = \frac{2(4\mathbf{n}+1)!}{(\mathbf{n}+1)!(3\mathbf{n}+2)!}$$

Irreducible

$$\#(n+3 \text{ vert.}) = \frac{4(3n-3)!}{(n-1)!(2n)!}$$

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

Enumeration of planar maps

- Symbolic approach: Tutte, Brown
- Bijective approach: Cori, Schaeffer, Bouttier-Di Francesco-Guitter

- 1 , 2 well known bijections (Tutte)
- (3) recursive bijection (Wormald)
- This talk: new bijective construction for 3
 - first bijective construction for 4

Well known bijections

(2) Trinity mapping (Tutte)

Overview of the talk

1) Bijection nonseparable maps \simeq irreducible triang + new duality relation for bipolar orientations

2) Bijection loopless maps \simeq triangulations

3) Applications to random generation and encoding

Bijection between nonseparable maps and irreducible triangulations

Bipolar orientations

Bipolar orientation = acyclic orientation with a unique source and a unique sink

Bipolar orientations

Bipolar orientation = acyclic orientation with a unique source and a unique sink

A map admits a bipolar orientation iff there is no separating vertex (nonseparable)

Transversal structures

Transversal structure = partition of inner edges into a red and a blue bipolar orientations that are transversal (introduced by Xin He'93)

Transversal structures

Transversal structure = partition of inner edges into a red and a blue bipolar orientations that are transversal (introduced by Xin He'93)

A triangulation of the 4-gon admits a transversal structure iff
there is no separating triangle (irreducible)
.- p.9/26

Reformulating the bijection

Nonseparable

Reformulating the bijection

Reformulating the bijection

How the bijection works

How the bijection works

Start with a plane bipolar orientation

Double the root edge

Insert a white vertex in each edge

Triangulate the faces by red edges

A first bijection:

- 1) place a black vertex in each face
- 2) insert one black edge for each white vertex

A first bijection:

- 1) place a black vertex in each face
- 2) insert one black edge for each white vertex

Remark: These are counted by the Baxter number: $B_n = \frac{2}{n(n+1)^2} \sum_{k=0}^{n-1} \binom{n+1}{k} \binom{n+1}{k+1} \binom{n+1}{k+2}$

$$\mathbf{B_n} \! = \! rac{2}{\mathbf{n}(\mathbf{n} \! + \! 1)^2} \sum_{\mathbf{k} = 0}^{\mathbf{n} - 1} inom{\mathbf{n} \! + \! \mathbf{1}}{\mathbf{k}} inom{\mathbf{n} \! + \! \mathbf{1}}{\mathbf{k} \! + \! \mathbf{1}} inom{\mathbf{n} \! + \! \mathbf{1}}{\mathbf{k} \! + \! \mathbf{2}}$$

Start with an intransitive bipolar orientation

Triangulate the faces by blue edges

A second bijection:

Bijection between loopless maps and triangulations

Decomposing a loopless map

• Block decomposition

Decomposing a loopless map

• Block decomposition

• For rooted loopless maps:

Nonseparable core where each corner is possibly occupied by a loopless map

• Classical decomposition at separating triangles

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Here: the same after deleting an outer edge

• Classical decomposition at separating triangles

4-connected triangulation where each face is possibly occupied by a triangulation

• Here: the same after deleting an outer edge

Irreducible triangulation where each face is possibly occupied by a triangulation

The decompositions are parallel

i) the vertex-map •

or

ii) $|\mathbf{M}| \geq 1$

Nonseparable core C

2|C| loopless maps $M_1, \ldots, M_{2|C|}$

$$|\mathbf{M}| = |\mathbf{C}| + \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{2}|\mathbf{C}|} |\mathbf{M_i}|$$

A loopless map M (|M| = # edges) is A triangulation T (|T| = # vert. -3) is

i) the triangle-map \bigwedge

Irreducible core I

2|I| triangulations $T_1, \ldots, T_{2|I|}$

$$|\mathbf{T}| = |\mathbf{I}| + \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{2}|\mathbf{I}|} |\mathbf{T_i}|$$

The decompositions are parallel

A loopless map M (|M| = # edges) is A triangulation T (|T| = # vert. -3) is

i) the vertex-map •

or

ii) $|\mathbf{M}| \geq 1$

Nonseparable core C

2|C| loopless maps $M_1, \ldots, M_{2|C|}$

$$|\mathbf{M}| = |\mathbf{C}| + \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{2}|\mathbf{C}|} |\mathbf{M_i}|$$

i) the triangle-map

Irreducible core I

2|I| triangulations $T_1, \ldots, T_{2|I|}$

$$|\mathbf{T}| = |\mathbf{I}| + \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{2}|\mathbf{I}|} |\mathbf{T_i}|$$

Nonseparable maps n edges

bijection Irreducible triang. n+3 vertices

Loopless maps n edges

Triangulations n+3 vertices

Results obtained so far

rooted nonseparable maps with n edges

 $bipolar \ orientations$

rooted irreducible triangulations with n+3 vertices

rooted loopless maps with n edges

 $\begin{array}{c} parallel\\ decompositions \end{array}$

rooted triangulations with n+3 vertices

Results obtained so far

rooted nonseparable maps with *n* edges

rooted irreducible triangulations with n+3 vertices

$$|\mathcal{N}_{\mathbf{n}}| = |\mathcal{I}_{\mathbf{n}}|$$

rooted loopless maps with n edges

 $\begin{array}{c} parallel\\ decompositions \end{array}$

rooted triangulations with n+3 vertices

$$|\mathcal{L}_{\mathbf{n}}| = |\mathcal{T}_{\mathbf{n}}|$$

Results obtained so far

rooted nonseparable maps with n edges

 $bipolar \ orientations$

rooted irreducible triangulations with n+3 vertices

$$|\mathcal{N}_{\mathbf{n}}| = |\mathcal{I}_{\mathbf{n}}| =$$
 ?

rooted loopless maps with n edges

 $iggraph{ iggraph{ parallel \ decompositions } }$

rooted triangulations with n+3 vertices

$$|\mathcal{L}_{\mathbf{n}}| = |\mathcal{T}_{\mathbf{n}}| =$$

Counting the families

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

canonical transversal structure

Fusy'05: irreductible triangulations are in bijection with ternary trees

rooting

Enumerative Results

Enumerative Results

rooted nonseparable maps with n edges

rooted irreducible triangulations with n+3 vertices

rooted ternary trees with n-1 nodes

$$|\mathcal{N}_{\mathbf{n}}| = |\mathcal{T}_{\mathbf{n}}| = rac{4(3\mathbf{n}-3)!}{(\mathbf{n}-1)!(2\mathbf{n})!}$$

rooted loopless maps with n edges

rooted triangulations with n+3 vertices

rooted quaternary trees with *n* nodes

$$|\mathcal{L}_{\mathbf{n}}| = |\mathcal{I}_{\mathbf{n}}| = \frac{\mathbf{2}(\mathbf{4n+1})!}{(\mathbf{n+1})!(\mathbf{3n+2})!}$$

Enumerative Results

Applications

• General scheme: (Schaeffer'99, Poulalhon-Schaeffer'03)

Applies here to :

 irreducible triangulations
 triangulations

• General scheme: (Schaeffer'99, Poulalhon-Schaeffer'03)

Applies here to: ■ irreducible triangulations
■ triangulations
as well as: ■ loopless maps
■ nonseparable maps