Combinatorial interpretation and positivity of Kerov's polynomials

Valentin Féray
Laboratoire d'Informatique de l'Institut Gaspard-Monge
Université Paris-Est

Formal Power Series and Algebraic Combinatorics 2008 University of Talca (Chile), June 24th

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.
- Goal: prove that the coefficients are non-negative.

Introduction

- Let us denote by S_n the symmetric group of order n.
- Irreducible representations \simeq partitions $\lambda \vdash n$.
- Normalized character values $\chi_{\lambda}(\mu)$, for $\mu \in S(n)$?
- Here we are interested in an expression in terms of free cumulants.
- Goal: prove that the coefficients are non-negative.
- Tool: a combinatorial formula for character values using maps.

Plan

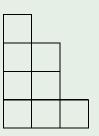
- Free cumulants and Kerov's polynomials
- 2 Combinatorial formula for characters
- Sketch of the proof

Irreducible representations of symmetric groups

• They are indexed by partitions $\lambda \vdash n$, or equivalently by Young diagrams.

Example

•
$$\lambda_1 = 3$$
; $\lambda_2 = \lambda_3 = 2$; $\lambda_4 = 1$: $\lambda_5 = \dots = 0$.

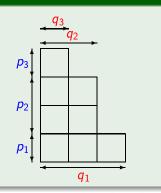


Irreducible representations of symmetric groups

- They are indexed by partitions $\lambda \vdash n$, or equivalently by Young diagrams.
- Other notation : $\lambda = \mathbf{p} \times \mathbf{q}$.

Example

- $\lambda_1 = 3$; $\lambda_2 = \lambda_3 = 2$; $\lambda_4 = 1$; $\lambda_5 = \dots = 0$,
- $\bullet \lambda = (1,2,1) \times (3,2,1)$



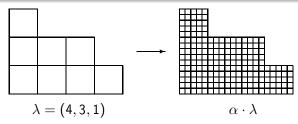
Free cumulants

Young diagram $\lambda \rightarrow \text{Transition measure}$ \rightarrow Free cumulants $(R_i(\lambda))_{i\geq 2}$

Properties (Biane, 1998)

Homogeneous R_i of degree i in \mathbf{p} and \mathbf{q}

Asymptotics
$$\chi^{\alpha \cdot \lambda}(1 \dots k) \sim_{\alpha \to \infty} R_{k+1}(\lambda) |\alpha \cdot \lambda|^{-(k-1)/2}$$



Kerov's polynomials

If
$$\mu \in S(k) \subset S(n)$$
 and $\lambda \vdash n$, let

$$\Sigma_{\mu}^{\lambda} = \mathit{n}(\mathit{n}-1)\ldots(\mathit{n}-\mathit{k}+1) \frac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(\mathit{Id}_{\mathit{n}})}$$

where χ^{λ} is the character of the irreducible representation indexed by λ .

Kerov's polynomials

If $\mu \in S(k) \subset S(n)$ and $\lambda \vdash n$, let

$$\Sigma_{\mu}^{\lambda} = n(n-1)\dots(n-k+1)\frac{\chi^{\lambda}(\mu)}{\chi^{\lambda}(ld_n)}$$

where χ^{λ} is the character of the irreducible representation indexed by λ .

Theorem: Existence of Kerov's polynomials (Kerov, Biane, 2001)

Let $k \geq 1$, there exists a **universal** polynomial K_k such that :

$$\Sigma_{(1...k)}^{\lambda} = K_k(R_2(\lambda), \ldots, R_{k+1}(\lambda))$$

 K_k does not depend on the diagram $\lambda! \iff$ equality as power series in \mathbf{p} and \mathbf{q}

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

$$K_k = R_{k+1} +$$
 lower degree terms

Moreover:

• K_k has integer coefficients.

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

$$K_k = R_{k+1} +$$
 lower degree terms

Moreover:

- K_k has integer coefficients.
- We prove here their positivity (conjectured by Kerov and Biane, 2001)

pair of permutations → bicolored edge-labeled map

Example

$$\tau = (14)(253), \qquad \sigma = (13)(254)$$

pair of permutations → bicolored edge-labeled map

Example
$$\tau = (14)(253), \qquad \sigma = (13)(254)$$

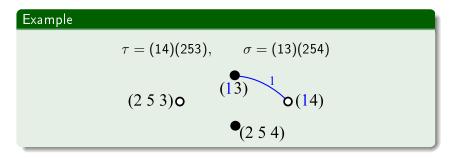
$$(2 5 3) 0 \qquad (1 3) \qquad 0 (1 4)$$

$$(2 5 4)$$

- $\circ \quad \leftrightarrow \quad \text{cycles of} \,\, \tau$
- \leftrightarrow cycles of σ

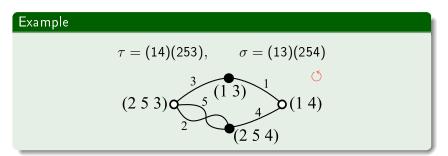
Valentin Féray

pair of permutations → bicolored edge-labeled map



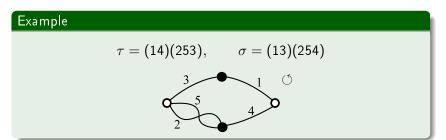
The edge labeled 1 links the two vertices corresponding to cycles containing 1.

pair of permutations → bicolored edge-labeled map



Same thing for the integers between 2 and k. The cyclic order at vertices is given by the cycle on the node.

pair of permutations $\stackrel{\sim}{\mapsto}$ bicolored edge-labeled map



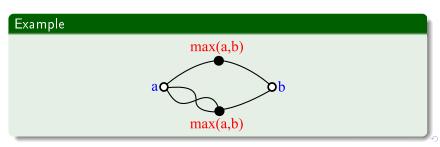
Even if we forget the node labels, we can recover easily the permutations

Colourings of a bicolored map

A colouring of the white vertices of M is :

$$\varphi: V_{\circ}(M) \to \mathbb{N}^{\star}$$

We associate the following colouring for the black vertices:



Power series associated to a bicolored map

We define the power series in indeterminates \mathbf{p} and \mathbf{q} :

$$N(M) = \sum_{\substack{arphi \ ext{colouring of} \ ext{the white vertices}}} \left(\prod_{w \in V_{\circ}(M)} p_{arphi(w)} \prod_{b \in V_{ullet}(M)} q_{\psi(b)}
ight)$$

N(M) is homogeneous of degree $V_{\circ}(M) + V_{\bullet}(M)$ in ${f p}$ and ${f q}!$

Example

$$N(M^{\tau,\sigma}) = \sum_{\substack{a \geq 1 \\ b > 1}} p_a \cdot p_b \cdot q_{\mathsf{max}(a,b)}^2$$

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\sum_{\substack{\mu \\ \tau \cdot \sigma = \mu}}^{\mathbf{p} \times \mathbf{q}} = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = \mu}} (-1)^{|C(\sigma)| + |C(\mu)|} N(M^{\tau, \sigma})(\mathbf{p}, \mathbf{q})$$

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\sum_{\substack{\mu \\ \tau \cdot \sigma = \mu}}^{\mathbf{p} \times \mathbf{q}} = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = \mu}} (-1)^{|C(\sigma)| + |C(\mu)|} N(M^{\tau, \sigma})(\mathbf{p}, \mathbf{q})$$

The homogeneous component of degree k + 1 is:

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (1...k) \\ |C(\tau)| + |C(\sigma)| = k+1}} (-1)^{|C(\sigma)|+1} N(M^{\tau,\sigma})(\mathbf{p}, \mathbf{q})$$

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Śniady, 2006)

With these notations, the character value is:

$$\sum_{\substack{\mu \\ \tau \cdot \sigma = \mu}}^{\mathbf{p} \times \mathbf{q}} = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = \mu}} (-1)^{|C(\sigma)| + |C(\mu)|} N(M^{\tau, \sigma})(\mathbf{p}, \mathbf{q})$$

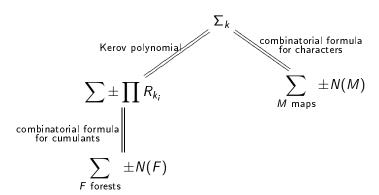
The homogeneous component of degree k + 1 is:

$$R_{k+1}(\mathbf{p} \times \mathbf{q}) = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (1...k) \\ |C(\tau)| + |C(\sigma)| = k+1}} (-1)^{|C(\sigma)| + 1} N(M^{\tau,\sigma})(\mathbf{p}, \mathbf{q})$$

The maps of the pairs of permutations in the second equation are planar trees.

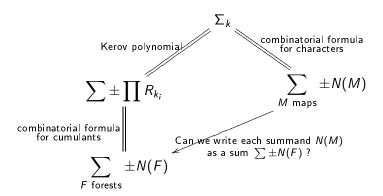
Idea

As power series in \mathbf{p} and \mathbf{q} ,

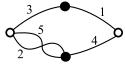


Idea

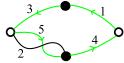
As power series in \mathbf{p} and \mathbf{q} ,



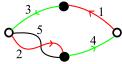
Description on our favorite example



We choose an oriented loop \vec{L} (here dotted)

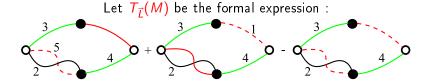


Call erasable its white-to-black directed edges



Let $T_{\vec{l}}(M)$ be the formal expression :

where the dotted edges have been erased.

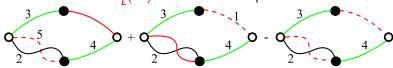


Proposition

$$N(T_{\vec{L}}(M)) = N(M)$$

Proof. Inclusion/exclusion!

Let $T_{\vec{l}}(M)$ be the formal expression :



Proposition

$$N(T_{\vec{l}}(M)) = N(M)$$

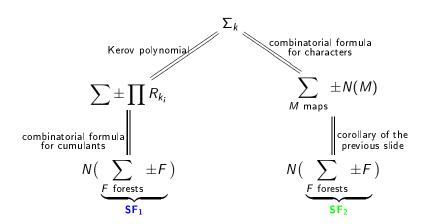
Corollary

For any map M, N(M) can be written (not in a unique way!) as

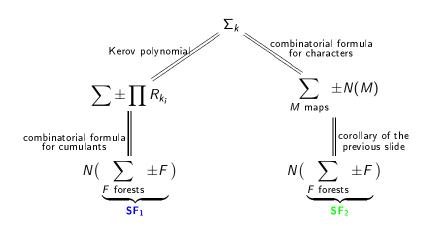
$$N(M) = \sum \pm N(F).$$

Valentin Féray

Return to our general picture



Return to our general picture



Question: $SF_1 = SF_2$? (N is not injective on $\mathbb{Z}[forests]$)

Answer

It depends! (there are several ways to write N(M) as $\sum \pm N(F)$)

Answer

It depends! (there are several ways to write N(M) as $\sum \pm N(F)$)

Theorem

There exists $D: \{ \textit{bic. edge-labeled maps} \} \to \mathbb{Z}[\textit{forests}] \; \textit{such that} \; :$

$$N(M) = N(D(M))$$

 $\mathsf{SF_1} = \mathsf{SF_2} = \sum_{\substack{ au, \sigma \in S(k) \\ au \cdot \sigma = (12...k)}} (-1)^{|C(\sigma)|+1} D(M^{ au, \sigma})$

We will explain how to compute D later.

Consequences on Kerov polynomials

Let
$$T_j = \underbrace{\int_{j-1}^{\infty} white vertices}$$

The combinatorial expression for cumulants give:

$$\prod_{i} R_{j_{i}} = \bigsqcup T_{j_{i}} + \begin{array}{c} \text{forests with at least 1 tree} \\ \text{with more than 1 black vertex} \end{array}$$

$$\begin{array}{c} \text{coefficients} \\ \text{of } \prod R_{j_{i}} \\ \text{in } K_{k} \end{array} = \begin{array}{c} \text{of } \bigsqcup T_{j_{i}} \\ \text{in } \mathbf{SF}_{1} \end{array} = \begin{array}{c} \text{of } \bigsqcup T_{j_{i}} \\ \text{in } \mathbf{SF}_{2} \end{array}$$

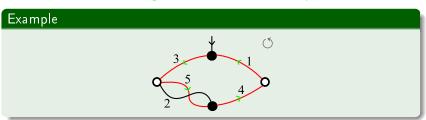
Construction of D(M)

• Add an external half-edge to the map . extremity the black extremity \star of the edge e_1 of smallest label

where in the cyclic order of \star ? just after e_1 .

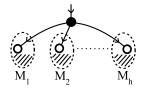
Construction of D(M)

- Add an external half-edge to the map.
- ② Define as admissible the loops :
 - passing through ★ if there are any
 - oriented from left to right (it has a sense if we draw the external half-edge on the top of the picture)



Construction of D(M)

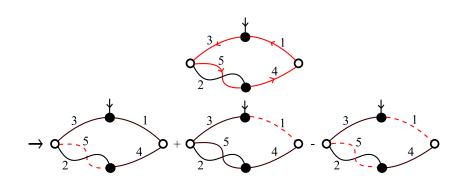
- Add an external half-edge to the map.
- 2 Define as admissible the loops :
 - ullet an admissible loop in one of the M_i (inductive definition)
 - oriented from left to right (it has a sense if we draw the external half-edge on the top of the picture)



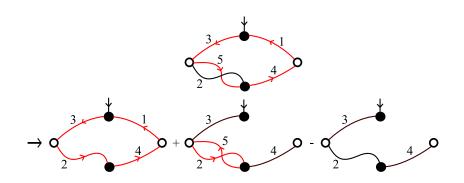
Construction of D(M)

- Add an external half-edge to the map if necessary.
- Define the admissible loops
- Apply a T-transformation with respect to an admissible loop, without erasing the external half-edge
- Go back to step 1 with each connected component of each graph of the result.

Back to our favorite example : the loop in the previous example is admissible!

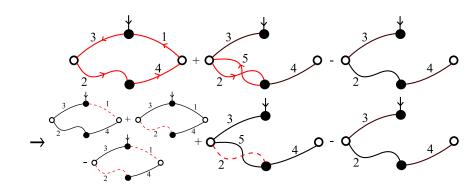


In each one of the resulting maps, there is at most one admissible loop (in red)

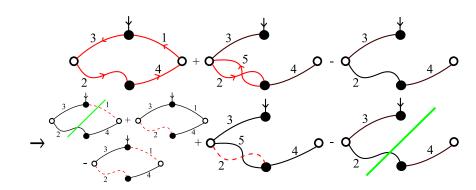


Valentin Féray

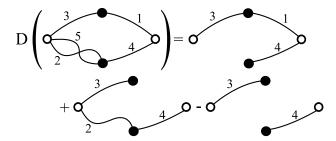
We again apply T-transformations.



There is a simplification. Note that the trees have coefficient +1and the forest with two components -1.



Final result:



Valentin Féray

Invariance of the result

There are still some choices to do, but :

Proposition

If we choose only admissible loops, we always obtain the **same** sum of forests denoted D(M).

D(M) has interesting properties:

Proposition

$$N(D(M)) = N(M)$$
 (obtained by iterating T -transformations)

D(M) is an alternate sum of subforests F of M: the sign of the coefficient of F is $(-1)^{\# \text{ c.c. of } F-\# \text{ c.c. of } M}$

D is the decomposition we were looking for!

Theorem

$$\mathsf{SF}_1 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12...k)}} (-1)^{|C(\sigma)|+1} D(M^{\tau,\sigma})$$

Sketch of proof:

- We gather terms coming from permutations in a given interval of the symmetric group.
- As intervals are products of non-crossing partions sets, products of free cumulants appear.
- Both sides are decompositions of cumulants.
- Algebraic independance of cumulants finishes the proof.

Proof of Kerov's positivity conjecture

Recall : the coefficient of $\prod_{i=1}^{\epsilon} Rj_i$ is the coefficient of $\coprod T_{j_i}$ in

$$\mathsf{SF}_2 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12...k)}} (-1)^{|\mathcal{C}(\sigma)| + 1} D(M^{\tau, \sigma})$$

Proof of Kerov's positivity conjecture

Recall : the coefficient of $\prod_{i=1}^{c} Rj_i$ is the coefficient of $\coprod \mathcal{T}_{j_i}$ in

$$\mathsf{SF}_2 = \sum_{\substack{\tau, \sigma \in S(k) \\ \tau \cdot \sigma = (12...k)}} (-1)^{|\mathcal{C}(\sigma)|+1} \mathcal{D}(M^{\tau,\sigma})$$

Note that the sum is over connected maps and that the map with a non-zero contribution have ℓ black vertices.

All the contributions have the following sign

$$\underbrace{(-1)^{\ell+1}}_{\substack{\text{due to the sign in } \mathsf{SF}_2}} \cdot \underbrace{(-1)^{\ell-1}}_{\substack{\text{sign of } \bigsqcup \mathsf{T}_{j_i} \\ \text{in } D(M^{\tau,\sigma})}} = 1$$

Computation of some coefficients

This method gives more information on coefficients than their positivity :

- We have found a new proof of the compact formula for the highest graduate degree terms in K_k (already computed by I.P. Goulden and A. Ratten and, separately, P. Śniady).
- We can compute the highest degree term in a generalisation about character values on more complex permutations than cycles.

Computation of some coefficients

This method gives more information on coefficients than their positivity:

- Compact expression for highest graduate degree terms.
- We recover the combinatorial interpretation of linear monomials.
- We give a simple combinatorial interpretation for the coefficients of quadratic monomials, which counts permutations.

Computation of some coefficients

This method gives more information on coefficients than their positivity :

- Compact expression for highest graduate degree terms.
- Simple combinatorial interpretations.
- We can give bounds for all the coefficients and link high order cumulants and character values on quite long permutations.

End

```
Many thanks !,
     ¡ Gracias !, Merci !
Any questions ?,
     ¿ Preguntas ?, Questions ?
```