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Introduction

@ Let us denote by S, the symmetric group of order n.

(]

Irreducible representations ~ partitions A - n.

Normalized character values x,(u), for p € S(n)?

Here we are interested in an expression in terms of free
cumulants.
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Introduction

@ Let us denote by S, the symmetric group of order n.

(]

Irreducible representations ~ partitions A - n.

Normalized character values x,(u), for p € S(n)?

Here we are interested in an expression in terms of free
cumulants.

Goal : prove that the coefficients are non-negative.

@ Tool : a combinatorial formula for character values using maps.
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@ Free cumulants and Kerov's polynomials

© Combinatorial formula for characters

© Sketch of the proof
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Free cumulants and Kerov's polynomials

Irreducible representations of symmetric groups

@ They are indexed by partitions A F n, or equivalently by Young
diagrams.

0)\1:3;)\2:)\3:2;
)\4:1;)\5:...:0,
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Free cumulants and Kerov's polynomials

Irreducible representations of symmetric groups

@ They are indexed by partitions A F n, or equivalently by Young
diagrams.
@ Other notation : A =p x q.

q3

92
P3
0)\1:3;)\2:)\3:2; y
)\4:1;)\5:...:0,
P2
° A=(1,2,1) x (3,2,1)
p1

qi

Valentin Féray Positivity of Kerov's polynomials



Free cumulants and Kerov's polynomials

Free cumulants

Young diagram A — Transition measure
—  Free cumulants (Ri(\))i>2

Properties (Biane, 1998)

Homogeneous R; of degree i in p and q
Asymptotics X**(1... k) ~asoo Riq1(N)]a - A|=(k=1)/2

A= (4,3,1) a- A
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Free cumulants and Kerov's polynomials

Kerov's polynomials

If w e S(k) C S(n) and AF n, let

A
Yh=n(n—1)...(n—k+ 1)XXA((’53)

where " is the character of the irreducible representation indexed
by A.
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Free cumulants and Kerov's polynomials

Kerov's polynomials

If w e S(k) C S(n) and AF n, let

A
Yh=n(n—1)...(n—k+ 1)XXA((’53)

where " is the character of the irreducible representation indexed
by A.

Theorem : Existence of Kerov's polynomials (Kerov, Biane, 2001)

Let kK > 1, there exists a universal polynomial such that :

4k = Ke(Ra(A), - -, Rip1(A)

does not depend on the diagram A\! <= equality as power
series in p and q
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Free cumulants and Kerov's polynomials

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

= Riky1 + lower degree terms

Moreover :

° has integer coefficients.
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Free cumulants and Kerov's polynomials

Description of the coefficients

Asymptotic property of the free cumulants implies:

Proposition

= Riky1 + lower degree terms

Moreover :
° has integer coefficients.

@ We prove here their positivity (conjectured by Kerov and
Biane, 2001)
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Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

T = (14)(253), o = (13)(254)
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Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

T =(14)(253), o = (13)(254)
e

(253)o (13) o(14)
®2 54

o <« cyclesof 7

e «— cyclesof o
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Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

7= (14)(253), o= (13)(254)

(253)o (.\0(14)

%2 54)

The edge labeled 1 links the two vertices corresponding to cycles
containing 1.
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Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

7= (14)(253), o = (13)(254)

Same thing for the integers between 2 and k. The cyclic order at
vertices is given by the cycle on the node.
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Combinatorial formula for characters

Map of a pair of permutations

pair of permutations — bicolored edge-labeled map

7= (14)(253), o = (13)(254)

Even if we forget the node labels, we can recover easily the
permutations
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Combinatorial formula for characters

Colourings of a bicolored map

A colouring of the white vertices of M is :

¢ Vo(M) — N*
We associate the following colouring for the black vertices :
- V(M) — N*
Y b max o(w)

w neighbour of b

max(a,b)

max(a,b)
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Combinatorial formula for characters

Power series associated to a bicolored map

We define the power series in indeterminates p and q :

N(M) = Z H Po(w H dy(b)

¢ colouring of we Vo (M) be Ve (M)
the white vertices

N(M) is homogeneous of degree V(M) + V4(M) in p and q!

N(Mﬁa) = Z Pa - Pb - qr?nax(a,b)

a>1
b>1
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Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Sniady, 2006)

With these notations, the character value is:

A= 3 (~D)IC@ORCWINMT)(p, q)

7,0€S(k)
T o=
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Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Sniady, 2006)

With these notations, the character value is:

A= 3 (~D)IC@ORCWINMT)(p, q)

7,0€S(k)
T o=p

The homogeneous component of degree k + 1 is:

Ris1(p x q) = > ()N (p, q)
T,0€S(k)
7-0=(1...k)
|C(T)I+]C(o)|=k+1
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Combinatorial formula for characters

Combinatorial formulas for character values and cumulants

We will use the following result

Theorem (Stanley, Féray, Sniady, 2006)

With these notations, the character value is:

A= 3 (~D)IC@ORCWINMT)(p, q)

7,0€S(k)
T o=

The homogeneous component of degree k + 1 is:

Ris1(p x q) = > ()N (p, q)
T,0€S(k)
7-0=(1...k)
|C(T)I+]C(o)|=k+1

The maps of the pairs of permutations in the second equation are
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Sketch of the proof

As power series in p and q,

2

. combinatorial formula
Kerov polynomi for characters

ST PR

combinatorial formula
for cumulants

> EN(F)

F forests
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Sketch of the proof

As power series in p and q,

2

. combinatorial formula
Kerov polynomi for characters

ZiHRk; Z +N(M)

M maps

combinatorial formula
for cumulants Ca

> EN(F)

F forests

write each summand N(M)
asasum Y EN(F)?
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Sketch of the proof

T -transformation

Description on our favorite example
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Sketch of the proof

T -transformation

We choose an oriented loop L (here dotted)
3 ® 1

5
4 0]
2
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Sketch of the proof

T -transformation

Call erasable its white-to-black directed edges
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Sketch of the proof

T -transformation

Let 7;(M) be the formal expression :
3 .\() 3 ‘-‘\\1 3 “~\\
_ ‘5 N AN - \O

where the dotted edges have been erased.
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Sketch of the proof

T -transformation

Let 7;(M) be the formal expression :

3 0\ 3 @& - 3 @&~
_‘5 N ) . N

X 4 D7 4 O . 4 °
27~ 2 2 -

Proposition

N(Tp(M)) = N(M)

Proof. Inclusion/exclusion!
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Sketch of the proof

T -transformation

Let 7;(M) be the formal expression :

3 .\ 3 ’—‘\\1 3 “~\\
_5 N N \O

N(T(M)) = N(M)

V.
Corollary

For any map M, N(M) can be written (not in a unique way!) as

N(M) = " £N(F).

\
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Sketch of the proof

Return to our general picture

2y

. combinatorial formula
Kerov polynomi for characters

ZiHRk: Z +N(M)

M maps

corollary of the
previous slide

combinatorial formula
for cumulants

N( > +F) N( > +F)

F forests F forests

SFy
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Sketch of the proof

Return to our general picture

2y

. combinatorial formula
Kerov polynomi for characters

ZiHRk: Z +N(M)

M maps

corollary of the
previous slide

combinatorial formula
for cumulants

N( > +F) N( > +F)

F forests F forests

SFy

Question : SF; = 7 (N is not injective on Z[forests])
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Sketch of the proof

Answer

It depends! (there are several ways to write N(M) as > £N(F))
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Sketch of the proof

Answer

It depends! (there are several ways to write N(M) as > £N(F))

There exists D : { bic. edge-labeled maps} — Z[forests| such that :

N(M) = N(D(M))
SF; =

We will explain how to compute D later.
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Sketch of the proof

Consequences on Kerov polynomials

————

Jj—1 white vertices

The combinatorial expression for cumulants give :

forests with at least 1 tree
H Rip = u Tji + with more than 1 black vertex
1

coefficients coefficients coefficients
of [[R; = of |7, = of[]|T]
in Ky in SFy in
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Sketch of the proof

Construction of

© Add an external half-edge to the map .

extremity the black extremity * of the edge ¢; of smallest
label
where in the cyclic order of %7 just after
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Sketch of the proof

Construction of

© Add an external half-edge to the map .
@ Define as admissible the loops :

@ passing through * if there are any

]
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Sketch of the proof

Construction of

© Add an external half-edge to the map .
@ Define as admissible the loops :

o an admissible loop in one of the M; (inductive definition)
]

o g ) o)
M, M, M,
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Sketch of the proof

Construction of

© Add an external half-edge to the map if necessary.
@ Define the admissible loops

© Apply a T—transformation with respect to an admissible loop,
without erasing the external half-edge

© Go back to step 1 with each connected component of each
graph of the result.
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Sketch of the proof

SEmE

Back to our favorite example :
the loop in the previous example is admissible!
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Sketch of the proof

SEmE

In each one of the resulting maps, there is at most one admissible
loop (in red)
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Sketch of the proof

SEmE

We again apply T-transformations.
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Sketch of the proof

SEmE

There is a . Note that the trees have coefficient +1
and the forest with two components —1.
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Sketch of the proof

SEmE

Final result :
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Sketch of the proof

Invariance of the result

There are still some choices to do, but :

Proposition

If we choose only admissible loops, we always obtain the same sum
of forests denoted D(M).

D(M) has interesting properties :

Proposition

N(D(M)) = N(M)(obtained by iterating T-transformations)

D(M) is an alternate sum of subforests F of M : the sign of the
coefficient of F is (—1)# ©¢ of F=# c.c. of M
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Sketch of the proof

D is the decomposition we were looking for!

SF; = Z (_1)\C(a)|+1D(MT,a)

T,0€S(k)
7-0=(12...k)

Sketch of proof :

@ We gather terms coming from permutations in a given interval
of the symmetric group.

@ As intervals are products of non-crossing partions sets,
products of free cumulants appear.

@ Both sides are decompositions of cumulants.

@ Algebraic independance of cumulants finishes the proof.
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Sketch of the proof

Proof of Kerov's positivity conjecture

¢
Recall : the coefficient of [] Rj; is the coefficient of | | 7}, in
i=1

= Z (1)@ p(pmo)

T,0€5(k)
T-0=(12...k)
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Sketch of the proof

Proof of Kerov's positivity conjecture

Recall : the coefficient of [] Rj; is the coefficient of | | 7}, in
i=1

SFy = Z (_1)\C(0)|+1D(Mr,cr)

T,0€5(k)
T-0=(12...k)

Note that the sum is over connected maps and that the map with
a non-zero contribution have / black vertices.

All the contributions have the following sign

(_1)f+1 . (_1) -1 — 1
—_—  N——

due to the sign of | | 7;.

sign in SF» in D(MT*")I
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Sketch of the proof

Computation of some coefficients

This method gives more information on coefficients than their
positivity :

@ We have found a new proof of the compact formula for the
highest graduate degree terms in K (already computed by I.P.
Goulden and A. Ratten and, separately, P. Sniady).

@ We can compute the highest degree term in a generalisation
about character values on more complex permutations than
cycles.
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Sketch of the proof

Computation of some coefficients

This method gives more information on coefficients than their
positivity :

@ Compact expression for highest graduate degree terms.

@ We recover the combinatorial interpretation of linear
monomials.

@ We give a simple combinatorial interpretation for the
coefficients of quadratic monomials, which counts
permutations.
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Sketch of the proof

Computation of some coefficients

This method gives more information on coefficients than their
positivity :

@ Compact expression for highest graduate degree terms.
@ Simple combinatorial interpretations.

@ We can give bounds for all the coefficients and link high order
cumulants and character values on quite long permutations.
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Sketch of the proof

Many thanks !,

i Gracias !, Merci !

Any questions 7,

i Preguntas 7, Questions 7

Valentin Féray Positivity of Kerov's polynomials



	Free cumulants and Kerov's polynomials
	Combinatorial formula for characters
	Sketch of the proof

