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Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, . . .

Are they random? Are they deterministic?
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Deterministic or random?

Two sequences of numbers in [0, 1]:

.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996,
.3612, .9230, .2844, .8141, .6054, . . .

.9129, .5257, .4475, .9815, .4134, .9930, .1576, .8825, .3391, .0659,
.1195, .5742, .1507, .5534, .0828, . . .

Are they random? Are they deterministic?

The first one is deterministic: taking f(x) = 4x(1 − x), we have

f(.6146) = .9198,

f(.9198) = .2951,

f(.2951) = .8320,

. . .
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , fn−1(x)].

For x = 0.8 and n = 4, [0.8,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

x

Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , fn−1(x)].

For x = 0.8 and n = 4, [0.8, 0.64,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , fn−1(x)].

For x = 0.8 and n = 4, [0.8, 0.64, 0.9216,
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , fn−1(x)].

For x = 0.8 and n = 4, [0.8, 0.64, 0.9216, 0.2890]
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Order patterns of a map

f : [0, 1] → [0, 1], f(x) = 4x(1 − x)
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Given x ∈ [0, 1], consider the sequence

[x, f(x), f(f(x)), . . . , fn−1(x)].

For x = 0.8 and n = 4, [0.8, 0.64, 0.9216, 0.2890]
We say that x defines the pattern [3, 2, 4, 1], and we write x 3241.
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What patterns can appear?

Let n = 3.
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x = 0.1  123
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x = 0.1  123
x = 0.3  132
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x = 0.1  123
x = 0.3  132
x = 0.6  231
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What patterns can appear?

Let n = 3.
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x

x = 0.1  123
x = 0.3  132
x = 0.6  231
x = 0.8  213
x = 0.95  312

How about the pattern 321?
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Forbidden patterns

The pattern 321 does not appear for any x.
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f(x) f(f(x))

123 132 231 213 312

We say that 321 is a forbidden pattern of f .
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Notation

I ⊂ R closed interval, f : I → I, π ∈ Sn.

Def. π is realized by f if there exists x ∈ I such that

[x, f(x), f(f(x)), . . . , fn−1(x)] ∼ [π1, π2, . . . , πn],

where [a1, . . . , an] ∼ [b1, . . . , bn] means that ai < aj iff bi < bj .
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Notation

I ⊂ R closed interval, f : I → I, π ∈ Sn.

Def. π is realized by f if there exists x ∈ I such that

[x, f(x), f(f(x)), . . . , fn−1(x)] ∼ [π1, π2, . . . , πn],

where [a1, . . . , an] ∼ [b1, . . . , bn] means that ai < aj iff bi < bj .

The permutations not realized by f are called forbidden patterns.

Allown(f) = {π ∈ Sn : π is realized by f} Forbn(f) = Sn\Allown(f)

Allow(f) =
⋃

n≥1

Allown(f) Forb(f) =
⋃

n≥1

Forbn(f)
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Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.
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Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.

FPSAC 2008, Chile – p.7



Maps have forbidden patterns

Theorem. If f : I → I is a piecewise monotone map, then

Forb(f) 6= ∅.

Piecewise monotone: there is a finite partition of I into intervals such
that f is continuous and strictly monotone on each interval.

This follows from a result of Bandt-Keller-Pompe that relates allowed
patterns of f with its topological entropy.

In fact,

|Allown(f)| < Cn ≪ n! = |Sn|

for some constant C.
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xm produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if m large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xm produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if m large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .

Besides, the number of missing patterns of length n is at least
n! − Cn, for some constant C.
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Comparison with random sequences

Consider a sequence x1, x2, . . . , xm produced by a black box, with
0 ≤ xi ≤ 1.

If the sequence is of the form xi+1 = f(xi), for some piecewise
monotone map f , then it must have missing patterns (if m large
enough).

For example, the pattern 321 is missing from
.6416, .9198, .2951, .8320, .5590, .9861, .0550, .2078, .6584, .8996, .3612,

.9230, .2844, .8141, .6054, . . . .

Besides, the number of missing patterns of length n is at least
n! − Cn, for some constant C.

On the other hand, if the sequence was generated by m i.i.d.
random variables, then the probability that any fixed pattern π is
missing goes to 0 exponentially as m grows.

FPSAC 2008, Chile – p.8



Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk

Example. 4153726 contains 3241, but it avoids 123.
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk

Example. 4153726 contains 3241, but it avoids 123.

Contn(π) = {σ ∈ Sn : σ contains π as a consecutive pattern}

Avn(π) = {σ ∈ Sn : σ avoids π as a consecutive pattern}

Av(π) =
⋃

n≥1

Avn(π)
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Consecutive patterns in permutations

σ = σ1σ2 · · ·σn ∈ Sn, π1π2 · · ·πk ∈ Sk

Definition. σ contains π as a consecutive pattern if there exists i such that

σiσi+1 . . . σi+k−1 ∼ π1π2 . . . πk

Example. 4153726 contains 3241, but it avoids 123.

Contn(π) = {σ ∈ Sn : σ contains π as a consecutive pattern}

Avn(π) = {σ ∈ Sn : σ avoids π as a consecutive pattern}

Av(π) =
⋃

n≥1

Avn(π)

Theorem (E., Noy). For any π ∈ Sk with k ≥ 3 , there exist constants
0 < c, d < 1 such that

cnn! ≤ |Avn(π)| ≤ dnn! for all n ≥ k.
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Basic forbidden patterns

If σ contains π as a consecutive pattern, then

π ∈ Forb(f) ⇒ σ ∈ Forb(f).
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Basic forbidden patterns

If σ contains π as a consecutive pattern, then

π ∈ Forb(f) ⇒ σ ∈ Forb(f).

The minimal patterns in Forb(f) are called basic (forbidden) patterns.

BF(f) := all basic patterns, BFn(f) := basic patterns of length n.
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Basic forbidden patterns
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The minimal patterns in Forb(f) are called basic (forbidden) patterns.

BF(f) := all basic patterns, BFn(f) := basic patterns of length n.
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Basic forbidden patterns

If σ contains π as a consecutive pattern, then

π ∈ Forb(f) ⇒ σ ∈ Forb(f).

The minimal patterns in Forb(f) are called basic (forbidden) patterns.

BF(f) := all basic patterns, BFn(f) := basic patterns of length n.

Allow(f) = Av(BF(f)).

Example: For f(x) = 4x(1 − x),

BF2(f) = ∅ BF3(f) = {321}

BF4(f) = {1423,2134,2143,3142,4231}
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Basic forbidden patterns

If σ contains π as a consecutive pattern, then

π ∈ Forb(f) ⇒ σ ∈ Forb(f).

The minimal patterns in Forb(f) are called basic (forbidden) patterns.

BF(f) := all basic patterns, BFn(f) := basic patterns of length n.

Allow(f) = Av(BF(f)).

Example: For f(x) = 4x(1 − x),

BF2(f) = ∅ BF3(f) = {321}

BF4(f) = {1423,2134,2143,3142,4231}

Forb4(f) =
{1423, 1432,2134,2143, 2431,3142, 3214, 3421, 4213,4231, 4312, 4321}
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
π ≤ σ ⇔ σ contains π as a consecutive pattern.

4231

1

12 21

123 132 213 231 312 321

1234 1243 1324 1342 1423 1432 2134 2143 2314 243124132341 3124 3214 3412 4123 4213 4312 43213142 3241 3421 4132
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Poset of permutations under consec. pattern containment

We can consider the infinite poset of all permutations where
π ≤ σ ⇔ σ contains π as a consecutive pattern.
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Example

g(x) = 1 − x2
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Example

g(x) = 1 − x2
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BF(g) = {123,132,312,321}

Allow3(g) = {213, 231}

Allow4(g) = {3241, 2314}

Allow5(g) = {32415, 34251}
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Example

g(x) = 1 − x2
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BF(g) = {123,132,312,321}

Allow3(g) = {213, 231}

Allow4(g) = {3241, 2314}

Allow5(g) = {32415, 34251}
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One-sided shifts

h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .
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One-sided shifts

h10 : [0, 1] −→ [0, 1]

x 7→ 10x mod 1

0.a1a2a3 . . . 7→ 0.a2a3a4 . . .

For example, h10(0.837435 . . . ) = 0.37435 . . .

This is a piecewise linear map, so it has forbidden order patterns.
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One-sided shift on N symbols

For N ≥ 2, let WN = {0, 1, . . . , N − 1}N, and let

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . .

ΣN is called the (one-sided) shift on N symbols.
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One-sided shift on N symbols

For N ≥ 2, let WN = {0, 1, . . . , N − 1}N, and let

ΣN : WN −→ WN

w1w2w3 . . . 7→ w2w3w4 . . .

ΣN is called the (one-sided) shift on N symbols.

Order patterns are defined using the lexicographic order in WN .

Example. The word w = 2102212210 · · · ∈ W3 defines the pattern 4217536:

2102212210 . . . 4

102212210 . . . 2

02212210 . . . 1

2212210 . . . 7

212210 . . . 5

12210 . . . 3

2210 . . . 6
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Forbidden patterns in shifts

Theorem (Amigó, E., Kennel).

Forbn(ΣN) = ∅ for every n ≤ N + 1.
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Forbn(ΣN) 6= ∅ for every n ≥ N + 2.
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Forbidden patterns in shifts

Theorem (Amigó, E., Kennel).

Forbn(ΣN) = ∅ for every n ≤ N + 1.

Forbn(ΣN) 6= ∅ for every n ≥ N + 2. In fact, BFn(ΣN) 6= ∅.

Example. The smallest forbidden patterns of Σ4 are

{615243, 324156, 342516, 162534, 453621, 435261}.
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The number of permutations realized by a shift

Let an,N = |Allown(ΣN ) \ Allown(ΣN−1)|,
the # of permutations in Sn that require N symbols to be realized.

n\N 2 3 4 5 6 7

2 2

3 6

4 18 6

5 48 66 6

6 126 402 186 6

7 306 2028 2232 468 6

8 738 8790 19426 10212 1098 6
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The number of permutations realized by a shift

Let an,N = |Allown(ΣN ) \ Allown(ΣN−1)|,
the # of permutations in Sn that require N symbols to be realized.

n\N 2 3 4 5 6 7

2 2

3 6

4 18 6

5 48 66 6

6 126 402 186 6

7 306 2028 2232 468 6

8 738 8790 19426 10212 1098 6

Theorem (E.). For n ≥ N + 2,

an,N =
N−2
∑

i=0

(−1)i

(

n

i

)

(

(N − i− 2)(N − i)n−2 +
n−1
∑

t=1

ψN−i(t)(N − i)n−t−1

)

,

where ψM (k) is the number of primitive words of length k over an M -letter alphabet.
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Maps without forbidden patterns

The condition of piecewise monotonicity is essential:

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.

Proof:

Decompose [0, 1] into infinitely many intervals, e.g.,

[0, 1] =
⋃

m≥2

Im, where Im =

[

1

2m−1
,

1

2m−2

)

.
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Maps without forbidden patterns

Proposition. There are maps f : [0, 1] → [0, 1] with no forbidden patterns.

Proof:

Decompose [0, 1] into infinitely many intervals, e.g.,

[0, 1] =
⋃

m≥2

Im, where Im =

[

1

2m−1
,

1

2m−2

)

.

Define on each Im a properly scaled version of hm from Im to Im.
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Open questions

Understand how Allow(f) and BF(f) depend on f .
For example, for which maps f is BF(f) finite?
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particular f .
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Understand how Allow(f) and BF(f) depend on f .
For example, for which maps f is BF(f) finite?

Describe and/or enumerate Allow(f), Forb(f), or BF(f) for a
particular f .
For example, f(x) = 4x(1 − x).

Is there an efficient algorithm to find BF(f), given f in some
suitable class?

How about to find the length of the smallest forbidden pattern?

For what sets Σ of patterns does there exist a map f such that
BF(f) = Σ?
(A necessary condition is that |Avn(Σ)| < Cn for some constant.)
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Open questions

Understand how Allow(f) and BF(f) depend on f .
For example, for which maps f is BF(f) finite?

Describe and/or enumerate Allow(f), Forb(f), or BF(f) for a
particular f .
For example, f(x) = 4x(1 − x).

Is there an efficient algorithm to find BF(f), given f in some
suitable class?

How about to find the length of the smallest forbidden pattern?

For what sets Σ of patterns does there exist a map f such that
BF(f) = Σ?
(A necessary condition is that |Avn(Σ)| < Cn for some constant.)

What else can we say about the structure or the asymptotic
growth of Allow(f) or Forb(f)?

FPSAC 2008, Chile – p.18
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