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Introduction

Representations of the symmetric group

VZ@gyyu

vkn

where g, > 0 denotes the multiplicity of ., in V' (Schur’s lemma).

Plethysm problem Describe the decompositions:
® A\rn ® Surn as an S,-representation
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Introduction

Representations of the symmetric group

VZ@gyyu

vkn

where g, > 0 denotes the multiplicity of ., in V' (Schur’s lemma).

Plethysm problem Describe the decompositions:
@ n ® Sypn as an Sp-representation
e Kronecker coefficients

Definition

The problem of computing gy, for given A, ui, v I= n is denoted by
KRONCOEFF.
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Introduction

Representations of the symmetric group

VZ@gyyu

vkn

where g, > 0 denotes the multiplicity of ., in V' (Schur’s lemma).

Plethysm problem Describe the decompositions:
@ Sn ® Sypn as an Sp-representation
e Kronecker coefficients

Definition

The problem of computing gy, for given A, ui, v I= n is denoted by
KRONCOEFF.

o (rm® ywn)@:;nsn as an S,4p-representation
o Littlewood-Richardson coefficients
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Lower bound questions in computational complexity

@ Volker Strassen ([Str83])
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Introduction Motivation

Lower bound questions in computational complexity

@ Volker Strassen ([Str83])

@ Geometrical Complexity Theory by Ketan Mulmuley and Milind
Sohoni ([MS01, MS06])

o Need to check coefficients for positivity.
e Narayanan ([Nar06]): Computation of LR-coefficients is #P-hard
e Knutson and Tao ([KT99]), Mulmuley and Sohoni ([MS05]):

Positivity of LR-coefficients can be decided in polynomial time
(Saturation Conjecture).
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Introduction Motivation

Lower bound questions in computational complexity

@ Volker Strassen ([Str83])

@ Geometrical Complexity Theory by Ketan Mulmuley and Milind
Sohoni ([MS01, MS06])

o Need to check coefficients for positivity.
e Narayanan ([Nar06]): Computation of LR-coefficients is #P-hard

e Knutson and Tao ([KT99]), Mulmuley and Sohoni ([MS05]):
Positivity of LR-coefficients can be decided in polynomial time
(Saturation Conjecture).

@ We showed: Computation of Kronecker coefficients is #P-hard as well

@ Positivity of Kronecker coefficients easy to decide? Mulmuley
([Mul07]) conjectures yes.
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Introduction Definitions

Definition (#P)

The complexity class #P consists of the functions f: {0,1}* — N such
that there exists a nondeterministic polynomial-time Turing machine M
such that, for all w € {0,1}*,

f(w) = the number of accepting paths of M when started with input w

| A

Example

PERMANENT : {undirected bipartite graphs} — N,

G — |{perfect matchings in G}| € #P

M chooses nondeterministically a set of edges and checks whether it is a
perfect matching.

\
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Introduction Definitions

Definition (Reductions of function problems)

We say that g: {0,1}* — N reduces to f: {0,1}* — N if the following
holds: There are functions pre : {0,1}* — {0,1}*, post : N — N, both
computable in polynomial time, such that

posto f o pre = g.

If post = id, we call the reduction parsimonious.

June 24th, 2008 8 /30

Christian lkenmeyer (Univ. of Paderborn)  The complexity of comp. Kronecker coeff.



Introduction Definitions

Definition (#P-hardness)

f is denoted #P-hard, if each g € #P reduces to f.

Reductions are transitive.

Given
o f #P-hard

@ f reduces to h

then h is #P-hard as well

Theorem (Main result)
KRONCOEFF is #P-hard.
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Introduction Definitions

Definition (Kostka numbers K, )

The Kostka number K}, is defined to be number of semistandard Young
tableaux of shape \ and type pu.

Definition (The problem KOSTKASUB)

Given a two-row partition x = (x1,x2) - m and y = (y1, ..., yr) with
ly| = m, compute the Kostka number K,, .

@ Narayanan proved that KOSTKASUB is #P-hard.
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Introduction Definitions

Definition (Kostka numbers K, )

The Kostka number K}, is defined to be number of semistandard Young
tableaux of shape \ and type pu.

Definition (The problem KOSTKASUB)

Given a two-row partition x = (x1,x2) - m and y = (y1, ..., yr) with
ly| = m, compute the Kostka number K,, .

@ Narayanan proved that KOSTKASUB is #P-hard.

@ Our result: parsimonious reduction from KOSTKASUB to
KRONCOEFF

@ Purely combinatorial interpretation of some gy ,, from Ballantine
and Orellana ([BO07])
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The description from Ballantine and Orellana

@ The reverse reading word w™ of a skew tableau T is the sequence of
entries in T obtained by reading the entries from right to left and top
to bottom, starting with the first row.

1]2]3]
2|2
2(3|3
14] has shape (5,3,3,1)/(2,1) and type (1,4,3,1).
we =(3,2,1,2,2,3,3,2,4).
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as
the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as
the number of (i + 1)'s for all /.
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standard-Tableau:
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as

the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

2
4

‘U‘le—l
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as

the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

2[6]
4

‘U‘le—l
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as

the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

2[6]7]
4

‘U‘le—l
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as
the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

617]

w

2
4
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The description from Ballantine and Orellana

@ A lattice permutation is a sequence (ai, ap, - -+ ,a,) such that in any
prefix segment (a1, a2, ..., ap) the number of i's is at least as large as
the number of (i + 1)'s for all /.

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

617]

w

2
4
8

@ The concatenation of two lattice permutations is a lattice
permutation.
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The description from Ballantine and Orellana

Definition

Let o = (o, g, ..., ay) be a partition. A sequence a = (a1, a2,...,an) is
called an «-lattice permutation if the concatenation (1% 2%2...n%3) is a
lattice permutation.

o Concatenation:
Let a be an a-lattice permutation, b be a lattice permutation.
Then ab is an a-lattice permutation.
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The description from Ballantine and Orellana

Definition (Kronecker-Tableaux definition from [BO07])

A, o, v partitions with a C A N v.
shape \/a, type v — «
semistandard

w is an a-lattice permutation

a1 = ap or one of two other technical restrictions

We denote by k2, the number of Kronecker-Tableaux of shape A/a and
type v — a.

3

3]

4

is a Kronecker-Tableau of shape A/« and type v — « for A\ = (5, 4),
v=(3,3,2,1) and « = (3,3). w™ = (3,3,4) is an a-lattice permutation.
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The description from Ballantine and Orellana

Theorem (Key theorem from [BOO07])
Suppose = (n— p,p),\ = n,v F n such that n > 2p and \; > 2p — 1.
Then we have

A
gAa/J'aV = g)\’(n—MP):V = Z kﬁl/‘
Bkp
BCANY

Parsimonious reduction from KOSTKASUB to KRONCOEFF:
Given:

@ a two-row partition x = (x1,x2) = m

° y=(y1,...,y) with [y| =m
we search for

e npeN,

@ A\, vk nwith

° ny = 8\, (n—p,p),v-

June 24th, 2008
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Proof of the lower bound

o If we choose A, v, n, p correctly, then we have

A
gA:(n_p7p)7V = Z kﬁy'

Bkp
BCANY

@ Assume for a moment that we could choose and fix a - p,aa € ANv
and have only one summand:
A
&x(n—p,p)v = Kaw-

Then we only have to find A\, v - n,a  p such that there is a bijection

Young tableaux of shape x, type y

!

Kronecker tableaux of shape \/a, type v — a.
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Proof of the lower bound

m = 10, shape x = (7,3) F m, type y = (3,2,2,3), ly| = m.

[y
=
[y

2[3[4]4]

o Try
A=x,vi=y,a:=().

But for @ = (), w™ is not an a-lattice permutation.
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

Given any word w of type y = (y1,...y¢). Then w is an a-lattice
permutation for o = (D ;o1 Vis D isp Yis -5 Ye)-

Example
Here: y = (3,2,2,3) = a=(2+2+3=7,2+3=5,3) = (7,5,3).
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

Given any word w of type y = (y1,...y¢). Then w is an a-lattice
permutation for o = (D ;o1 Vis D isp Yis -5 Ye)-

Example
Here: y = (3,2,2,3) = a=(2+2+3=7,2+3=5,3) = (7,5,3).

-15]
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

Given any word w of type y = (y1,...y¢). Then w is an a-lattice
permutation for o = (D ;o1 Vis D isp Yis -5 Ye)-

Example
Here: y = (3,2,2,3) = a=(2+2+3=7,2+3=5,3) = (7,5,3).

-|5][6]
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Proof of the lower bound
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

Given any word w of type y = (y1,...y¢). Then w is an a-lattice
permutation for o = (D ;o1 Vis D isp Yis -5 Ye)-

Example
Here: y = (3,2,2,3) = a=(2+2+3=7,2+3=5,3) = (7,5,3).

5]6[7]

4110
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

e For an aligned embedding, we choose o = (m, m, 7,5, 3)
and shift the type by 2.

3/13[3/4]5/6]6]

e We have A = (m+ xy, m+ x2,7,5,3) and
1= (0,0,3,2,2,3) + (m,m,7,5,3) = (10,10, 10,7,5, 3).
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

@ To meet all technical restrictions, we have to add another row:

tlafafafafalafafaf. L. L J1]1]1]
4141415/6|7|7
5/6|7

@ We have a = (m,m,m,7,5,3), A\=(m+ M, m+ x;,m+ x2,7,5,3)
and
=(M,0,0,3,2,2,3)+(m,m,m,7,5,3) = (M+m, m,m,10,7,5, 3).
° KXy— k>‘
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

o We have
_ A
gA:(n_p7p)7V - Z kﬁy'

B-p
BCANY

@ How can we fix « = p such that only one summand contributes to the
sum?

A
gA?(n_P7p)7V = kal/'

@ By adjusting A, u and choosing the appropriate p.
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Proof of the lower bound

has shape (x1 =7,% = 3) F m, type y = (3,2, 2,3) for m=10.

tlafafafafafafal L L Ja]1]1]
41414|5]6]7]7
-] [5]6]7
1
S 1f1]2]2]2
-] [1]1]2]2]3]3]3
1/1]1]2]2[3]3]4]4]4
2[2]2[3[3]4]4][5|5]5
313[3]4/4]5[5[6]/6]6
414]4]5|5]6]6]7][7]7
5/5/5|6/6]7]7
616/6/7]7
7]17]7

@ For semistandardness, each left column can contain at most 7 entries. a - p
has to cover the other 45 boxes. Set p := 45 to fix a - 45.
We now have for such A= n,v = n, p that g\ (n—p.p) = D 5o kﬁy =k,

BCANY
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Proof of the lower bound

tlafafafafafafal L. Ja]1]1]
41414|5]6]7]7
-]-15]6]7
IERRR
S 1f1]2]2]2
S[-[1]1]2[2]3][3]3
1/1]1]2[2[3]/3]4]4]4
2[2]2[3[3]4]4][5]|5]5
313[3]4/4]5[5]6]6]6
4/414|5]5]6]6]7]|7]7
5/5/5]6/6]7]7
6166|717
717]7

@ w is still an a-lattice permutation as it is the concatenation of an a-lattice
permutation and a lattice permutation.
So this is a Kronecker tableau and Ky, = k2, = g\ (n—p.p),v-
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Proof of the lower bound

Proposition (Reduction formally)
Let x = (x1,x2) = m and y = (y1,...,ye) with |y| = m > 0 be given. We

define
o= (m,m,m,Zyj,..., Z i)
J>1 j>0-1
and we set p .= |a| and M :=2p — 1 — m. Consider
A=(M+mm+xy,m+xy,mm,..., m)«
—_——
£ times

V= (M+mamamam+y17m+y27"'7m+y€flam+yf)+a-

and write n := |\|. Then we have K., = g\ (n—p p).-

@ This proves the #P-hardness of KRONCOEFF.
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Thank you.
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