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Introduction

Representations of the symmetric group

V =
⊕
ν`n

gνSν

where gν ≥ 0 denotes the multiplicity of Sν in V (Schur’s lemma).

Plethysm problem Describe the decompositions:
Sλ`n ⊗Sµ`n as an Sn-representation

Kronecker coefficients

Definition

The problem of computing gλ,µ,ν for given λ, µ, ν ` n is denoted by
KronCoeff.

(Sλ`m ⊗Sµ`n)↑Sm+n

Sm×Sn
as an Sm+n-representation

Littlewood-Richardson coefficients
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Introduction Motivation

Lower bound questions in computational complexity

Volker Strassen ([Str83])

Geometrical Complexity Theory by Ketan Mulmuley and Milind
Sohoni ([MS01, MS06])

Need to check coefficients for positivity.

Narayanan ([Nar06]): Computation of LR-coefficients is #P-hard

Knutson and Tao ([KT99]), Mulmuley and Sohoni ([MS05]):
Positivity of LR-coefficients can be decided in polynomial time
(Saturation Conjecture).

We showed: Computation of Kronecker coefficients is #P-hard as well

Positivity of Kronecker coefficients easy to decide? Mulmuley
([Mul07]) conjectures yes.
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Introduction Definitions

Definition (#P)

The complexity class #P consists of the functions f : {0, 1}∗ → N such
that there exists a nondeterministic polynomial-time Turing machine M
such that, for all w ∈ {0, 1}∗,

f (w) = the number of accepting paths of M when started with input w

Example

PERMANENT : {undirected bipartite graphs} → N,
G 7→ |{perfect matchings in G}| ∈ #P
M chooses nondeterministically a set of edges and checks whether it is a
perfect matching.
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Introduction Definitions

Definition (Reductions of function problems)

We say that g : {0, 1}∗ → N reduces to f : {0, 1}∗ → N if the following
holds: There are functions pre : {0, 1}∗ → {0, 1}∗, post : N → N, both
computable in polynomial time, such that

post ◦ f ◦ pre = g .

If post = id, we call the reduction parsimonious.
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Introduction Definitions

Definition (#P-hardness)

f is denoted #P-hard, if each g ∈ #P reduces to f .

Lemma

Reductions are transitive.

Corollary

Given

f #P-hard

f reduces to h

then h is #P-hard as well

Theorem (Main result)

KronCoeff is #P-hard.
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Introduction Definitions

Definition (Kostka numbers Kλµ)

The Kostka number Kλµ is defined to be number of semistandard Young
tableaux of shape λ and type µ.

Definition (The problem KostkaSub)

Given a two-row partition x = (x1, x2) ` m and y = (y1, . . . , y`) with
|y | = m, compute the Kostka number Kxy .

Narayanan proved that KostkaSub is #P-hard.

Our result: parsimonious reduction from KostkaSub to
KronCoeff

Purely combinatorial interpretation of some gλ,µ,ν from Ballantine
and Orellana ([BO07])
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The description from Ballantine and Orellana

The reverse reading word w← of a skew tableau T is the sequence of
entries in T obtained by reading the entries from right to left and top
to bottom, starting with the first row.

Example

1 2 3
2 2

2 3 3
4 has shape (5, 3, 3, 1)/(2, 1) and type (1, 4, 3, 1).
w← = (3, 2, 1, 2, 2, 3, 3, 2, 4).
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The description from Ballantine and Orellana

A lattice permutation is a sequence (a1, a2, · · · , an) such that in any
prefix segment (a1, a2, . . . , ap) the number of i ’s is at least as large as
the number of (i + 1)’s for all i .

Example

The word (1,1,2,2,3,1,1,3) is a lattice-permutation, because it codes a
standard-Tableau:

The concatenation of two lattice permutations is a lattice
permutation.
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The description from Ballantine and Orellana

Definition

Let α = (α1, α2, . . . , α`) be a partition. A sequence a = (a1, a2, . . . , an) is
called an α-lattice permutation if the concatenation (1α1 2α2 · · · nαna) is a
lattice permutation.

Concatenation:
Let a be an α-lattice permutation, b be a lattice permutation.
Then a b is an α-lattice permutation.
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The description from Ballantine and Orellana

Definition (Kronecker-Tableaux definition from [BO07])

λ, α, ν partitions with α ⊆ λ ∩ ν.

shape λ/α, type ν − α

semistandard

w← is an α-lattice permutation

α1 = α2 or one of two other technical restrictions

We denote by kλ
αν the number of Kronecker-Tableaux of shape λ/α and

type ν − α.

Example

· · · 3 3
· · · 4

is a Kronecker-Tableau of shape λ/α and type ν − α for λ = (5, 4),
ν = (3, 3, 2, 1) and α = (3, 3). w← = (3, 3, 4) is an α-lattice permutation.
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The description from Ballantine and Orellana

Theorem (Key theorem from [BO07])

Suppose µ = (n − p, p), λ ` n, ν ` n such that n ≥ 2p and λ1 ≥ 2p − 1.
Then we have

gλ,µ,ν = gλ,(n−p,p),ν =
∑
β`p

β⊆λ∩ν

kλ
βν .

Parsimonious reduction from KostkaSub to KronCoeff:
Given:

a two-row partition x = (x1, x2) ` m

y = (y1, . . . , y`) with |y | = m

we search for

n, p ∈ N,

λ, ν ` n with

Kxy = gλ,(n−p,p),ν .
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Proof of the lower bound

If we choose λ, ν, n, p correctly, then we have

gλ,(n−p,p),ν =
∑
β`p

β⊆λ∩ν

kλ
βν .

Assume for a moment that we could choose and fix α ` p, α ∈ λ ∩ ν
and have only one summand:

gλ,(n−p,p),ν = kλ
αν .

Then we only have to find λ, ν ` n, α ` p such that there is a bijection

Young tableaux of shape x , type y

l

Kronecker tableaux of shape λ/α, type ν − α.
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Proof of the lower bound

Example

m = 10, shape x = (7, 3) ` m, type y = (3, 2, 2, 3), |y | = m.

1 1 1 2 3 4 4
2 3 4

Try
λ := x , ν := y , α := ().

But for α = (), w← is not an α-lattice permutation.
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

Lemma

Given any word w of type y = (y1, . . . y`). Then w is an α-lattice
permutation for α = (

∑
i>1 yi ,

∑
i>2 yi , . . . , y`).

Example

Here: y = (3, 2, 2, 3) ⇒ α = (2 + 2 + 3 = 7, 2 + 3 = 5, 3) = (7, 5, 3).

· · · · · · ·
· · · · ·
· · ·
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1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

Lemma

Given any word w of type y = (y1, . . . y`). Then w is an α-lattice
permutation for α = (

∑
i>1 yi ,

∑
i>2 yi , . . . , y`).

Example

Here: y = (3, 2, 2, 3) ⇒ α = (2 + 2 + 3 = 7, 2 + 3 = 5, 3) = (7, 5, 3).

· · · · · · · 5 6 7
· · · · · 4
· · · 3
1 2
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

Lemma

Given any word w of type y = (y1, . . . y`). Then w is an α-lattice
permutation for α = (

∑
i>1 yi ,

∑
i>2 yi , . . . , y`).

Example

Here: y = (3, 2, 2, 3) ⇒ α = (2 + 2 + 3 = 7, 2 + 3 = 5, 3) = (7, 5, 3).

· · · · · · · 5 6 7
· · · · · 4
· · · 3
1 2 8
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

Lemma

Given any word w of type y = (y1, . . . y`). Then w is an α-lattice
permutation for α = (

∑
i>1 yi ,

∑
i>2 yi , . . . , y`).

Example

Here: y = (3, 2, 2, 3) ⇒ α = (2 + 2 + 3 = 7, 2 + 3 = 5, 3) = (7, 5, 3).

· · · · · · · 5 6 7
· · · · · 4
· · · 3 9
1 2 8
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

Lemma

Given any word w of type y = (y1, . . . y`). Then w is an α-lattice
permutation for α = (

∑
i>1 yi ,

∑
i>2 yi , . . . , y`).

Example

Here: y = (3, 2, 2, 3) ⇒ α = (2 + 2 + 3 = 7, 2 + 3 = 5, 3) = (7, 5, 3).

· · · · · · · 5 6 7
· · · · · 4 10
· · · 3 9
1 2 8
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

For an aligned embedding, we choose α = (m,m, 7, 5, 3)
and shift the type by 2.
· · · · · · · · · · 3 3 3 4 5 6 6
· · · · · · · · · · 4 5 6
· · · · · · ·
· · · · ·
· · ·

We have λ = (m + x1,m + x2, 7, 5, 3) and
µ = (0, 0, 3, 2, 2, 3) + (m,m, 7, 5, 3) = (10, 10, 10, 7, 5, 3).
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

To meet all technical restrictions, we have to add another row:
· · · · · · · · · · 1 1 1 1 1 1 1 1 1 . . .. . .. . . 1 1 1
· · · · · · · · · · 4 4 4 5 6 7 7
· · · · · · · · · · 5 6 7
· · · · · · ·
· · · · ·
· · ·

We have α = (m,m,m, 7, 5, 3), λ = (m + M,m + x1,m + x2, 7, 5, 3)
and
µ = (M, 0, 0, 3, 2, 2, 3)+(m,m,m, 7, 5, 3) = (M +m,m,m, 10, 7, 5, 3).

Kxy = kλ
αν
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

We have
gλ,(n−p,p),ν =

∑
β`p

β⊆λ∩ν

kλ
βν .

How can we fix α ` p such that only one summand contributes to the
sum?

gλ,(n−p,p),ν = kλ
αν .

By adjusting λ, µ and choosing the appropriate p.
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

· · · · · · · · · · 1 1 1 1 1 1 1 1 . . .. . .. . . 1 1 1
· · · · · · · · · · 4 4 4 5 6 7 7
· · · · · · · · · · 5 6 7
· · · · · · · 1 1 1
· · · · · 1 1 2 2 2
· · · 1 1 2 2 3 3 3
1 1 1 2 2 3 3 4 4 4
2 2 2 3 3 4 4 5 5 5
3 3 3 4 4 5 5 6 6 6
4 4 4 5 5 6 6 7 7 7
5 5 5 6 6 7 7
6 6 6 7 7
7 7 7

For semistandardness, each left column can contain at most 7 entries. α ` p
has to cover the other 45 boxes. Set p := 45 to fix α ` 45.
We now have for such λ ` n, ν ` n, p that gλ,(n−p,p),ν =

∑
β`p

β⊆λ∩ν
kλ

βν = kλ
αν .
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Proof of the lower bound

1 1 1 2 3 4 4
2 3 4 has shape (x1 = 7, x2 = 3) ` m, type y = (3, 2, 2, 3) for m=10.

· · · · · · · · · · 1 1 1 1 1 1 1 1 . . .. . .. . . 1 1 1
· · · · · · · · · · 4 4 4 5 6 7 7
· · · · · · · · · · 5 6 7
· · · · · · · 1 1 1
· · · · · 1 1 2 2 2
· · · 1 1 2 2 3 3 3
1 1 1 2 2 3 3 4 4 4
2 2 2 3 3 4 4 5 5 5
3 3 3 4 4 5 5 6 6 6
4 4 4 5 5 6 6 7 7 7
5 5 5 6 6 7 7
6 6 6 7 7
7 7 7

w← is still an α-lattice permutation as it is the concatenation of an α-lattice
permutation and a lattice permutation.
So this is a Kronecker tableau and Kxy = kλ

αν = gλ,(n−p,p),ν .
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Proof of the lower bound

Proposition (Reduction formally)

Let x = (x1, x2) ` m and y = (y1, . . . , y`) with |y | = m > 0 be given. We
define

α := (m,m,m,
∑
j>1

yj , . . . ,
∑

j>`−1

yj)

and we set p := |α| and M := 2p − 1−m. Consider

λ := (M + m,m + x1,m + x2,m,m, . . . ,m︸ ︷︷ ︸
` times

) α

ν := (M + m,m,m,m + y1,m + y2, . . . ,m + y`−1,m + y`) + α.

and write n := |λ|. Then we have Kxy = gλ,(n−p,p),ν .

This proves the #P-hardness of KronCoeff.
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Thank you.
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