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(classical)

The Algebra S® of (Commutative)

Symmetric Polynomials

Setup: Fix a field K containing (Q and consider the polynomial ring
S = K[x] over the set of ordered variables x = {x] < xy < ---}.

Give an G| -module structure to S by extending o - T; 1= X (4)

linearly and multiplicatively.

Question: (An Invariant Theory classic)
What does the space S€ of &y invariants look like?

Answer: (You all know it...)
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The Algebra S° of (Commutative)

Symmetric Polynomials

Setup: Fix a field K containing (Q and consider the polynomial ring
S = K[x] over the set of ordered variables x = {x] < xy < ---}.

Give an G| -module structure to S by extending o - T; 1= X (4)

linearly and multiplicatively.

Question: (An Invariant Theory classic)
What does the space S€ of &y invariants look like?

Answer: (You all know it, if not you should)

e S% is a polynomial ring isomorphic to S;
e A basis for S® in S is given by the monomial symmetric
functions

{my : X a partition with at most |x| parts}.



(classical)

The Coinvariant Space Sg

Let Sf denote the space of symmetric polynomials without

constant term and let <Sf> denote the corresponding ideal inside S.

Motivation: If V' is an & -submodule of S, then f(x)V =~V for each

f(x) € S©. Let’s remove the redundancies:

The interesting part of S is the structure of the coinvariant space

Se = S5/{SE).



(classical)

The Coinvariant Space Sg

Let Sf denote the space of symmetric polynomials without

constant term and let <Sf> denote the corresponding ideal inside S.

Motivation: If V' is an & -submodule of S, then f(x)V =~V for each

f(x) € S©. Let’s remove the redundancies:

The interesting part of S is the structure of the coinvariant space
Se = S5/{SE).
Theorem (Chevalley): There is an & x-module isomorphism

S~ Ss®S°.

Moreover, Sg is isomorphic to the regular representation K& .

Moreover, there is an explicit realization of Sg inside S as (S_CE)J' for a

certain inner product (the “Harmonic Polynomials™).



(classical)

Dimension Enumeration (1/2)

Definition: Given a graded vector space V' = P 5 Vy, let Hilb¢(V')

denote the formal series

Hilb, (V) =) vgt’  (vg = dimV})

d>0

that enumerates the dimensions of the graded pieces of V.

Corollary: (Immediate from Chevalley). The formal series
Hilb; (S) /Hilbs(S®) has positive integer coefficients.



(classical)

Dimension Enumeration (2/2)

No Need for Chevalley: In fact, the quotient is obviously positive:

It’s easy to see that

. 1 . 1
Hllbt(S) — 1——t and Hllbt(SGS) = H 1 _ ti,
T, EX r; €X
so, the quotient is
11—t .
Hilb(Se) = [ [ 7— =[] 0+ 2"+ 17
r;EX r;EX

This is the familiar [n];! sum.



(classical)

Dimension Enumeration (2/2)

No Need for Chevalley: In fact, the quotient is obviously positive:

It’s easy to see that

. 1 . 1
Hllbt(S) — 1——t and Hllbt(SGS) = H 1 _ ti,
T, EX r; €X
so, the quotient is
-t .
Hilb(Se) = [ [ 7— =[] 0+ 2"+ 17
TiEX Ti€X  (also nice for other finite refl. groups)

This is the familiar [n];! sum.
(Not surprising since dimK&,, = n!.)

(Things won’t be so easy in what follows.)



(also classical)

The Algebra T° of (NonCommutative)

Symmetric Polynomials

Setup: Now consider the noncommutative polynomial ring 7" = K(x)

over the set of ordered variables x = {z] < z9 < ---}.

Give an G| -module structure to T" by extending o - x; := x4 (;) linearly

and multiplicatively.

Question: (M. C. Wolf (1936) asks)

What does the space T® of S\x| tnvariants look like?



(also classical)

The Algebra T° of (NonCommutative)

Symmetric Polynomials

Setup: Now consider the noncommutative polynomial ring 7" = K(x)

over the set of ordered variables x = {z] < z9 < ---}.

Give an G| -module structure to T" by extending o - x; := x4 (;) linearly

and multiplicatively.

Question: (M. C. Wolf (1936) asks)
What does the space T® of S\x| tnvariants look like?

Answer: (We might have expected it)

e T° is a polynomial ring (though not isomorphic to T');

e A basis for T° is given by the monomial symmetric functions

{Ma : A aset partition with at most |x| parts}.



The Basis of T° (Set Partitions)

Notation: Given a set partition, e.g., of [5], drop the braces and order

the blocks by minimum elements to simplify /standardize notation:

{{2,3},{1,4},{5}} ~» 14.23.5.

The Basis: Set partitions define monomial symmetric functions by

recording which positions in a monomial carry the same variable:

Mi4935 = T1ToX2T 13 + T7X4T4T7T3
¥
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The Basis of T° (Set Partitions)

Notation: Given a set partition, e.g., of [5], drop the braces and order

the blocks by minimum elements to simplify /standardize notation:

{{2,3},{1,4},{5}} ~» 14.23.5.

The Basis: Set partitions define monomial symmetric functions by

recording which positions in a monomial carry the same variable:

Mi4935 = T1ToX2T 13 + T7X4T4T7T3



A Gy-Module Decomposition of T’

Let Tf denote the symmetric polynomials without constant term,
and let <Tf> denote the corresponding left ideal inside T

As in the commutative case, define the coinvariant space by

Te :=T/{T?).

Theorem (N. Bergeron-Reutenauer-Rosas-Zabrocki): There is an

S x|-module isomorphism
T~Ts®TC.

Moreover, T is isomorphic to the G| -submodule of T" given by the
“Noncommutative Harmonic Polynomials” inside T

(i.e., (Tf)L for a certain bilinear form on T').



(classical)

How Common is This Decomposition?

Setup: Return to S for a moment. Fix a finite group G and a

multiplicative GG-action on S, i.e.,
o(ab) = o(a)o(b) Va,be S) (Vo € G).

Then:

Theorem (Shephard-Todd): The ring S decomposes as
S~ Sq® S

if and only if G is a (pseudo-) reflection group and the action on Sy is

the action of G on ils defining vector space.



A Motivating Picture

A Cube of Hopf Algebras: Francois once showed me this:

K(x,y)S ¢ K(x,y)
N N
K(x)® g™ K3
Kx,y]® & K[x, y]
N N
K([x]® ¢ K[x]

classical

Adding Layers: I asked, “can we add some layers to that picture?”

10



A Motivating Picture

A Cube of Hopf Algebras: Francois once showed me this:

Novelli-Thibon (arXiv 2004)
Aval-Bergeron Bros. (Adv.Math. 2004)

(x,y)° K{x,y)
,¥] | = Kx,y]
K Y\Km y\Km

Adding Layers: I asked, “can we add some layers to that picture?”

10



A Motivating Picture

A Cube of Hopf Algebras: Francois once showed me this:

Adding Layers: I asked, “can we add some layers to that picture?”
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A Motivating Picture

A Cube of Hopf Algebras: Francois once showed me this:

Francois and I (these slides)

(x,y)°® < K(x,y)
N N
K(x)® ¢ K(x)
WMATA | (),
K[x,y]® —|—K[x,y]
RN N
K([x]® ¢ K|[x]

{mutu



(less classical)

Main Question

Is there a subspace C within the invariants T® so that

TS ~C® S°?

11



(less classical)

Main Question

Is there a subspace C within the invariants T® so that

TS ~C® S°?

and if so, what interpretation should be given to this symbol?

11



(also classical)

The “Place Action” on T

Definition: Let T,; denote the homogeneous degree d polynomials in 7.

Define an &, action on 7 by permuting “places.”

Examples: (in cycle notation)

(23) * T1X4T709 = T1X7T4To
" (I (I

(1324) « 1242772 = ToT7X124.

Fact (Rosas-Sagan): Under the place action, the My ’s satisfy

P * MA — Mp-A;

with p - A the usual permutation action on set partitions.

12



(still classical?)

The “Place Action” on N

Notation: Each set partition has an underlying shape: an integer
partition gotten by recording the set sizes (14.23.5 — A\(14.23.5) = 221).

An Invariant Function: Let N'=T® and NV, be the subspace of

monomial functions of shape u. The sum
m, ‘= Z MA
A(A)=p

is a symmetric function (under the place action) inside N,.

Fact: These are the only invariants, i.e., the place invariants N'©
are in 1-1 correspondence with S©.

13



(probably classical)

The “Place Action” on N,

Definition: The Frobenius characteristic of an G ;-module V is the
symmetric function
Frob(V) = Zvﬂsﬂ,
pd

where s, is the usual Schur function and v, is the multiplicity of the
irreducible &; module V() inside V.

Proposition: In light of the action p « Ma = M, A, we deduce that
FrOb(NM> — hdl [hl] hdz [h2] T hdk [hk]v

p=1492% ... kd ywhere flg] denotes the plethysm of two symmetric

Junctions and h; is the j-th complete symmetric function.

14



(less classical)

Existence of C, Case |x| = o

Facts (R-S, B-R-R-Z): The map ¢:S° — N (m, — m,,) satisfies:
abor=id and Aor=(t®t)oA.

That is, ¢ is a “coalgebra splitting” of the exact sequence of Hopf
algebras N — S© — 0.

Theorem (Blattner-Cohen-Montgomery): In such a case, the

subspace
C={h: (id®ab)oA(h)=h®1}
yields an isomorphism of vector spaces

N ~C®S°.

15



(less classical)

Existence of C, Case |x| = o

Facts (R-S, B-R-R-Z): The map ¢:S° — N (m, — m,,) satisfies:
abor=id and Aor=(t®t)oA.

That is, ¢ is a “coalgebra splitting” of the exact sequence of Hopf
algebras N — S© — 0.

Theorem (Blattner-Cohen-Montgomery): In such a case, the

subspace
C={h: (id®ab)oA(h)=h®1}
yields a “shape graded” isomorphism of vector spaces

N~Cx®S°.

15



The (Shape Graded) Isomorphism (/2

Decomposing N:

Hilb;(N) = 1+ (1)t + (2)t* + (5)t° + (15)t* + (52)t° + - --

16



The (Shape Graded) Isomorphism (/2

Decomposing N:
Hilby(N) = 14 (21)t + (20 + 29)t2 4 (23 + 32120 + 27)t°
+ (24 + 42125 + 325 + 62927 + 2t

+ (25 4+ 52124 + 102329 + 102327 + 152125 4+ 102927 + 2))8° + - - -

16



The (Shape Graded) Isomorphism (/2

Decomposing N:
Hilby(N) = 14 (21)t + (20 + 29)t2 4 (23 + 32120 + 27)t°

+ (24 + 42125 + 325 + 62927 + 2t

+ (25 4+ 52124 + 102329 + 102327 + 152125 4+ 102927 + 2))8° + - - -

= [1 + (22120)t° + (225 + 32123 + 3202 )t + - - ]

X [1 + (2t + (2o 4+ 202 + (205 4 2120 + 23)E2 - ]

16



The (Shape Graded) Isomorphism

Decomposing N:

1
12
1.2

123
12.3
13.2
1.23

1.2.3

1234
123.4

<

!

r1 111 1

!

!

1
12
1.2

123
12.3
13.2
1.23
1.2.3

1234
123.4

12.34

134.2
1.234
14.23
14.2.3
13.24
124.3
1.2.34
1.24.3
13.2.4
1.23.4

)

L

12.34

134.2
1.234
14.23
14.2.3
13.24
124.3
1.2.34
1.24.3
13.2.4
1.23.4

12345
1234.5
123.45

1235.4
1245.3
1.2345

13.2.45
1.23.45
134.2.5
1.234.5

!

U1

!

r 1 11

(2/2)

12345
1234.5
12.34.5

15.23.4
1245.3
1.24.35

13.2.45
1.23.45
134.2.5
1.234.5



Algebraic Description of C

Definition: Denote by A the atomic set partitions: those partitions
A E [d] that cannot be split into two partitions, A’ F {1,2,...,k} and
A" E{k+1,...,d}.

Examples: (of atomic set partitions)

14.25.3 (YES)  13.24.7.5.6 (YES)  13.245|58.7 (NO)

Theorem (Hivert-Novelli-Thibon): N is isomorphic to the universal
enveloping algebra of the free Lie algebra on A, N ~U(Lie(A)).

Theorem: There is a map from Lie(A) so that C is isomorphic to the

universal enveloping algebra of its kernel K, C ~U(K).

18



Case |x| < o0

e no Hopf structure to guide us,
e no shape graded isomorphism, but

e our calculations still suggested a vector space isomorphism ...

19



Combinatorial Description of C /5

Definition: A rhyme-scheme word is a word on N\ {0} which sees no

“2” before the first “1”, sees no “3” before the first “2”, and so on.

Examples: (of rhyme-scheme words)
1221 (YES) 12123 (YES) 12413 (NO)

Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 <«

20
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Combinatorial Description of C /5

Definition: A rhyme-scheme word is a word on N\ {0} which sees no

“2” before the first “1”, sees no “3” before the first “2”, and so on.

Examples: (of rhyme-scheme words)
1221 (YES) 12123 (YES) 12413 (NO)

Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 <+ 1221
1
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Combinatorial Description of C /5

Definition: A rhyme-scheme word is a word on N\ {0} which sees no

“2” before the first “1”, sees no “3” before the first “2”, and so on.

Examples: (of rhyme-scheme words)
1221 (YES) 12123 (YES) 12413 (NO)

Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 <« 12213
3

20



Combinatorial Description of C /5

Definition: A rhyme-scheme word is a word on N\ {0} which sees no

“2” before the first “1”, sees no “3” before the first “2”, and so on.

Examples: (of rhyme-scheme words)
1221 (YES) 12123 (YES) 12413 (NO)

Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 «— 12213

Theorem (Wolf, 1936): N is freely generated by “non-splittable”

rhyme-scheme words (verses).

Examples: (of verses)

123214 (YES)  122]1 (NO) 12123 (NO)

20



Combinatorial Description of C (/5

Definition: Given a polynomial p = > ., M, € N, define the leading
term of p to be the unique M,,, with wy lexicographically least among all

rhyme-scheme words w satisfying «,, # 0.

Fact: Given two rhyme scheme words u, v, the leading term of the
product M,, - M, is M,,, (where uv is the concatenation of the two

words).

Example: (in case |x| = 3).

Moy « Myo = Moo + Mio113 + Mio191
+ Mio193 + Mio131 + Mio132 . (1)

21



Combinatorial Description of C  /5)

Descending Rhymes: (Identifying S®). Given a partition
= ft1 > fo > - > g, define the descending rhyme-scheme word w(u)
by

w(pl) = 141202 .
(Conveniently, the leading term of my, is My(,))-

Vexillary Rhymes: (Identifying C). A vexillary rhyme is a maximal

(possibly empty) descending rhyme, followed by one extra verse.

Examples: (of vexillary rhymes)

112231223 (YES) 1111232 (YES) 1232 (YES)

1122112 (NO) (since 112 is not a single verse)

22



Combinatorial Description of C  (4/5)

Vexillary Decomposition: The vexillary decomposition of a
rhyme-scheme word: first write w as a product of verses; then combine,

left to right, into vexillary rhymes; you may end with a descending tail.

Examples:

_
112212 — 1]122[12 — 112212

1231231411122311 — 123[12314/1(1]1223[1[1 — 123123141112231 1

1231231411123311 +— 123|12314|1|1]1233|1|1 — 123123141112231 1

23



Combinatorial Description of C  (5/5)

Let C be the subalgebra generated by {/,, : w is a vexillary rhyme}.

Theorem: There is an isomorphism of vector spaces
N~C®S°

given by multiplying M, M., --- M, and my,,, in N.

24



(less classical)

Further Along Our Point of View
This technique is applicable elsewhere in the Hopf cube.

K<X7 Y>6 — K<X7 Y>
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(less classical)

Further Along Our Point of View
This technique is applicable elsewhere in the Hopf cube.

K<X7 Y>6 — K<X7 Y>

Sometimes, you find obviously positive quotients, like

Hllbt(K[Xa Y]G) _ :I: €xX 1/ tz o
Hilb(K[x]®) [, ex1 /(1 — #)

where the result ] . (1 —t")~" enumerates planar partitions.

Tr;eX

25



(less classical)

Further Along Our Point of View
This technique is applicable elsewhere in the Hopf cube.

K<X7 Y>6 — K<X7 Y>N6

K(x)® ¢ K(x)~®

K[x,y]® < |——K[x,y]"©

N N

K[x]© ¢ K[x]™~®

Sometimes, you find not-so-obviously positive quotients, like

Hilb, (set compositions) Z d
=Y (ly)t%,

Hilb; (compositions) y

where /4 is the number of “L-convex polyominoes” with d cells.

25



FIN

Muchas Gracias
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