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(classical)

The Algebra SS of (Commutative)

Symmetric Polynomials

Setup: Fix a field K containing Q and consider the polynomial ring

S = K[x] over the set of ordered variables x = {x1 < x2 < · · · }.

Give an S|x|-module structure to S by extending σ · xi := xσ(i)

linearly and multiplicatively.

Question: (An Invariant Theory classic)

What does the space SS of S|x| invariants look like?

Answer: (You all know it. . . )

• SS is a polynomial ring isomorphic to S;

• A basis for SS in S is given by the monomial symmetric

• functions
{

mλ : λ a partition with at most |x| parts
}

.
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The Algebra SS of (Commutative)

Symmetric Polynomials

Setup: Fix a field K containing Q and consider the polynomial ring

S = K[x] over the set of ordered variables x = {x1 < x2 < · · · }.

Give an S|x|-module structure to S by extending σ · xi := xσ(i)

linearly and multiplicatively.

Question: (An Invariant Theory classic)

What does the space SS of S|x| invariants look like?

Answer: (You all know it, if not you should)

• SS is a polynomial ring isomorphic to S;

• A basis for SS in S is given by the monomial symmetric

• functions
{

mλ : λ a partition with at most |x| parts
}

.
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(classical)

The Coinvariant Space SS

Let SS
+ denote the space of symmetric polynomials without

constant term and let
〈

SS
+

〉

denote the corresponding ideal inside S.

Motivation: If V is an S|x|-submodule of S, then f(x)V ≃ V for each

f(x) ∈ SS. Let’s remove the redundancies:

The interesting part of S is the structure of the coinvariant space

SS := S/
〈

SS

+

〉

.

Theorem (Chevalley): There is an S|x|-module isomorphism

S ≃ SS ⊗ SS.

Moreover, SS is isomorphic to the regular representation KS|x|.

Moreover, there is an explicit realization of SS inside S as (SS
+)

⊥
for a

certain inner product (the “Harmonic Polynomials”).
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(classical)

(1/2) Dimension Enumeration (1/2)

Definition: Given a graded vector space V =
⊕

d≥0 Vd, let Hilbt(V )

denote the formal series

Hilbt(V ) =
∑

d≥0

vdt
t (vd = dim Vd)

that enumerates the dimensions of the graded pieces of V .

Corollary: (Immediate from Chevalley). The formal series

Hilbt(S)/Hilbt(S
S) has positive integer coefficients.
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(classical)

(2/2) Dimension Enumeration (2/2)

No Need for Chevalley: In fact, the quotient is obviously positive:

It’s easy to see that

Hilbt(S) =
∏

xi∈x

1

1 − t
and Hilbt(S

S) =
∏

xi∈x

1

1 − ti
,

so, the quotient is

Hilbt(SS) =
∏

xi∈x

1 − ti

1 − t
=

∏

xi∈x

(

1 + t1 + · · · ti−1
)

.

(also nice for other finite refl. groups)

This is the familiar [n]t! sum.

(Not surprising since dim KSn = n!.)

(Things won’t be so easy in what follows.)
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(also classical)

The Algebra TS of (NonCommutative)

Symmetric Polynomials

Setup: Now consider the noncommutative polynomial ring T = K〈x〉

over the set of ordered variables x = {x1 < x2 < · · · }.

Give an S|x|-module structure to T by extending σ · xi := xσ(i) linearly

and multiplicatively.

Question: (M. C. Wolf (1936) asks)

What does the space TS of S|x| invariants look like?

Answer: (We might have expected it)

• TS is a polynomial ring (though not isomorphic to T );

• A basis for TS is given by the monomial symmetric functions

{

MA : A a set partition with at most |x| parts
}

.
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(also classical)

The Basis of TS (Set Partitions)

Notation: Given a set partition, e.g., of [5], drop the braces and order

the blocks by minimum elements to simplify/standardize notation:

{

{2, 3}, {1, 4}, {5}
}

 14.23.5.

The Basis: Set partitions define monomial symmetric functions by

recording which positions in a monomial carry the same variable:

M14.23.5 = x1x2x2x1x3 + x7x4x4x7x3 + · · ·
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(also classical)

A S|x|-Module Decomposition of T

Let TS
+ denote the symmetric polynomials without constant term,

and let
〈

TS
+

〉

denote the corresponding left ideal inside T .

As in the commutative case, define the coinvariant space by

TS := T/
〈

TS

+

〉

.

Theorem (N. Bergeron-Reutenauer-Rosas-Zabrocki): There is an

S|x|-module isomorphism

T ≃ TS ⊗ TS.

Moreover, TS is isomorphic to the S|x|-submodule of T given by the

“Noncommutative Harmonic Polynomials” inside T

(i.e., (TS
+ )

⊥
for a certain bilinear form on T ).
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(classical)

How Common is This Decomposition?

Setup: Return to S for a moment. Fix a finite group G and a

multiplicative G-action on S, i.e.,

σ(ab) = σ(a)σ(b) (∀ a, b ∈ S) (∀σ ∈ G).

Then:

Theorem (Shephard-Todd): The ring S decomposes as

S ≃ SG ⊗ SG

if and only if G is a (pseudo-) reflection group and the action on S1 is

the action of G on its defining vector space.
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(less classical)

A Motivating Picture

A Cube of Hopf Algebras: François once showed me this:

K〈x,y〉S

����

"" ""E
E

E

E

� � // K〈x,y〉

����

�� ��>
>

>

>

K〈x〉S

����

� � // K〈x〉

����

K[x,y]S

"" ""E
E

E

E

� � // K[x,y]

�� ��>
>

>

>

K[x]S
� � // K[x]

also classical

classical

Adding Layers: I asked, “can we add some layers to that picture?”
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(less classical)

A Motivating Picture
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Novelli-Thibon (arXiv 2004)
Aval-Bergeron Bros. (Adv.Math. 2004)

K〈x,y〉S

����

"" ""E
E

E

E

� � // K〈x,y〉

����

�� ��>
>

>

>

K〈x〉S

����

� � // K〈x〉

����

K[x,y]S

"" ""E
E

E

E

� � // K[x,y]

�� ��>
>

>

>

K[x]S
� � // K[x]

Adding Layers: I asked, “can we add some layers to that picture?”

10



(less classical)

A Motivating Picture

A Cube of Hopf Algebras: François once showed me this:

Novelli-Thibon (arXiv 2004)
Ung-Thibon (J.Phys. A 1996)
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(less classical)

A Motivating Picture

A Cube of Hopf Algebras: François once showed me this:

François and I (these slides)

K〈x,y〉S

����

"" ""E
E

E

E

� � // K〈x,y〉

����

�� ��>
>

>

>

K〈x〉S
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K[x,y]S

"" ""E
E
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� � // K[x,y]
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>

>

>
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� � // K[x]

C
� _

��

{mµ}µ

?�

OO

{mµ}µ

{MA}A

Adding Layers: I asked, “can we add some layers to that picture?”
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(less classical)

Main Question

Is there a subspace C within the invariants TS so that

T
S ≃ C ⊗ S

S?

and if so, what interpretation should be given to this symbol?
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(also classical)

The “Place Action” on T

Definition: Let Td denote the homogeneous degree d polynomials in T .

Define an Sd action on Td by permuting “places.”

Examples: (in cycle notation)

(23) ∗ x1x4x7x2 = x1x7x4x2

(1324) ∗ x1x4x7x2 = x2x7x1x4.

Fact (Rosas-Sagan): Under the place action, the MA’s satisfy

ρ ∗ MA = Mρ ·A,

with ρ · A the usual permutation action on set partitions.
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(still classical?)

The “Place Action” on N

Notation: Each set partition has an underlying shape: an integer

partition gotten by recording the set sizes (14.23.5 7→ λ(14.23.5) = 221).

An Invariant Function: Let N = TS and Nµ be the subspace of

monomial functions of shape µ. The sum

mµ :=
∑

λ(A)=µ

MA

is a symmetric function (under the place action) inside Nµ.

Fact: These are the only invariants, i.e., the place invariants NS

are in 1-1 correspondence with SS.
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(probably classical)

The “Place Action” on Nµ

Definition: The Frobenius characteristic of an Sd-module V is the

symmetric function

Frob(V) =
∑

µ⊢d

vµsµ,

where sµ is the usual Schur function and vµ is the multiplicity of the

irreducible Sd module V(µ) inside V.

Proposition: In light of the action ρ ∗ MA = Mρ ·A, we deduce that

Frob(Nµ) = hd1
[h1] hd2

[h2] · · ·hdk
[hk],

µ = 1d12d2 · · · kdk , where f [g] denotes the plethysm of two symmetric

functions and hj is the j-th complete symmetric function.
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(less classical)

Existence of C, Case |x| = ∞

Facts (R-S, B-R-R-Z): The map ι : SS → N (mµ 7→ mµ) satisfies:

ab ◦ ι = id and ∆ ◦ ι = (ι ⊗ ι) ◦ ∆.

That is, ι is a “coalgebra splitting” of the exact sequence of Hopf

algebras N → SS → 0.

Theorem (Blattner-Cohen-Montgomery): In such a case, the

subspace

C = {h : (id ⊗ ab) ◦ ∆(h) = h ⊗ 1}

yields an isomorphism of vector spaces

N ≃ C ⊗ SS.
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(less classical)
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algebras N → SS → 0.

Theorem (Blattner-Cohen-Montgomery): In such a case, the

subspace

C = {h : (id ⊗ ab) ◦ ∆(h) = h ⊗ 1}

yields a “shape graded” isomorphism of vector spaces

N ≃ C ⊗ S
S.
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(less classical)

(1/2) The (Shape Graded) Isomorphism (1/2)

Decomposing N :

Hilbt(N ) = 1 + (1)t + (2)t2 + (5)t3 + (15)t4 + (52)t5 + · · ·

+ (z4 + 4z1z3 + 3z2
2 + 6z2z

2
1 + z4

1)t
4

+ (z5 + 5z1z4 + 10z3z2 + 10z3z
2
1 + 15z1z

2
2 + 10z2z

3
1 + z5

1)t
5 + · · ·

=

[

1 + 2z1z2t
3 + (2z2

2 + 3z1z3 + 3z2z12)t4 + · · ·

]

×

[

1 + z1t + (z2 + z2
1)t

2 + (z13 + z1z2 + z3)t
3 · · ·

]
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(less classical)

(2/2) The (Shape Graded) Isomorphism (2/2)

Decomposing N :

1 ↔ 1

12 ↔ 12

1.2 ↔ 1.2

123 ↔ 123

12.3 ↔ 12.3

13.2 ↔ 13.2

1.23 ↔ 1.23

1.2.3 ↔ 1.2.3

1234 ↔ 1234

123.4 ↔ 123.4

12.34 ↔ 12.34

· · ·

134.2 ↔ 134.2

1.234 ↔ 1.234

14.23 ↔ 14.23

14.2.3 ↔ 14.2.3

13.24 ↔ 13.24

124.3 ↔ 124.3

1.2.34 ↔ 1.2.34

1.24.3 ↔ 1.24.3

13.2.4 ↔ 13.2.4

1.23.4 ↔ 1.23.4

12345 ↔ 12345

1234.5 ↔ 1234.5

123.45 ↔ 12.34.5

· · ·

1235.4 ↔ 15.23.4

1245.3 ↔ 1245.3

1.2345 ↔ 1.24.35

· · ·

13.2.45 ↔ 13.2.45

1.23.45 ↔ 1.23.45

134.2.5 ↔ 134.2.5

1.234.5 ↔ 1.234.5

· · ·
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(less classical)

Algebraic Description of C

Definition: Denote by A the atomic set partitions: those partitions

A � [d] that cannot be split into two partitions, A′
� {1, 2, . . . , k} and

A′′
� {k+1, . . . , d}.

Examples: (of atomic set partitions)

14.25.3 (YES) 13.24.7.5.6 (YES) 13.245 | 58.7 (NO)

Theorem (Hivert-Novelli-Thibon): N is isomorphic to the universal

enveloping algebra of the free Lie algebra on A, N ≃ U(Lie(A)).

Theorem: There is a map from Lie(A) so that C is isomorphic to the

universal enveloping algebra of its kernel K, C ≃ U(K).
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(less classical)

Case |x| < ∞

• no Hopf structure to guide us,

• no shape graded isomorphism, but

• our calculations still suggested a vector space isomorphism . . .

19



(less classical)

(1/5) Combinatorial Description of C (1/5)

Definition: A rhyme-scheme word is a word on N \ {0} which sees no

“2” before the first “1”, sees no “3” before the first “2”, and so on.

Examples: (of rhyme-scheme words)

1221 (YES) 12123 (YES) 12413 (NO)

Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 ↔ 12213
1

1 1 1 1 1

Theorem (Wolf, 1936): N is freely generated by “non-splittable”

rhyme-scheme words (verses).

Examples: (of verses)

123214 (YES) 122| (NO) 12|123 (NO)
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Fact: The set partitions are rhyme-scheme words (and vice versa):

14.23.5 ↔ 12213

Theorem (Wolf, 1936): N is freely generated by “non-splittable”

rhyme-scheme words (verses).

Examples: (of verses)

123214 (YES) 122|1 (NO) 12|123 (NO)

20



(less classical)

(2/5) Combinatorial Description of C (2/5)

Definition: Given a polynomial p =
∑

w αwMw ∈ N , define the leading

term of p to be the unique Mw0
with w0 lexicographically least among all

rhyme-scheme words w satisfying αw 6= 0.

Fact: Given two rhyme scheme words u, v, the leading term of the

product Mu · Mv is Mu v (where u v is the concatenation of the two

words).

Example: (in case |x| = 3).

M121 · M12 = M12112 + M12113 + M12121

+ M12123 + M12131 + M12132 . (1)

21



(less classical)

(3/5) Combinatorial Description of C (3/5)

Descending Rhymes: (Identifying SS). Given a partition

µ = µ1 ≥ µ2 ≥ · · · ≥ µk, define the descending rhyme-scheme word w(µ)

by

w(µ) = 1µ12µ2 · · · kµk .

(Conveniently, the leading term of mµ is M
w (µ)).

Vexillary Rhymes: (Identifying C). A vexillary rhyme is a maximal

(possibly empty) descending rhyme, followed by one extra verse.

Examples: (of vexillary rhymes)

11223 1223 (YES) 111 1232 (YES) 1232 (YES)

1122 112 (NO) (since 112 is not a single verse)
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(less classical)

(4/5) Combinatorial Description of C (4/5)

Vexillary Decomposition: The vexillary decomposition of a

rhyme-scheme word: first write w as a product of verses; then combine,

left to right, into vexillary rhymes; you may end with a descending tail.

Examples:

112212 7→ 1|122|12 7→ 1 122 12

1231231411122311 7→ 123|12314|1|1|1223|1|1 7→ 123 12314 1 1 1223 1 1.

1231231411123311 7→ 123|12314|1|1|1233|1|1 7→ 123 12314 1 1 1223 1 1.
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(less classical)

(5/5) Combinatorial Description of C (5/5)

Let C be the subalgebra generated by {Mw : w is a vexillary rhyme}.

Theorem: There is an isomorphism of vector spaces

N ≃ C ⊗ S
S

given by multiplying Mv1
Mv2

· · ·Mvr and m
w(µ) in N .
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(less classical)

Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.

K〈x,y〉S

����

    B
B

B

B

� � // K〈x,y〉∼S

����

## ##G
G

G

G

K〈x〉S

����

� � // K〈x〉∼S

����

K[x,y]S

    B
B

B

B

� � // K[x,y]∼S

## ##G
G

G

G

K[x]S
� � // K[x]∼S

Sometimes, you find obviously positive things, like

Hilbt(K[x,y]S)

Hilbt(K[x]S)
=

∏

xi∈x
1
/

(1 − ti)i+1

∏

xi∈x 1
/

(1 − ti)

where the quotient
∏

xi∈x(1 − ti)−i enumerates planar partitions.
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(less classical)

Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.

K〈x,y〉S

����

    B
B

B

B

� � // K〈x,y〉∼S

����

## ##G
G

G

G

K〈x〉S

����

� � // K〈x〉∼S

����

K[x,y]S

    B
B

B

B

� � // K[x,y]∼S

## ##G
G

G

G

K[x]S
� � // K[x]∼S

Sometimes, you find obviously positive quotients, like

Hilbt(K[x,y]S)

Hilbt(K[x]S)
=

∏

xi∈x
1
/

(1 − ti)i+1

∏

xi∈x 1
/

(1 − ti)

where the result
∏

xi∈x(1 − ti)−i enumerates planar partitions.
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(less classical)

Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.

K〈x,y〉S

����

    B
B

B

B

� � // K〈x,y〉∼S

����

## ##G
G

G

G

K〈x〉S

����

� � // K〈x〉∼S

����

K[x,y]S

    B
B

B

B

� � // K[x,y]∼S

## ##G
G

G

G

K[x]S
� � // K[x]∼S

Sometimes, you find not-so-obviously positive quotients, like

Hilbt(set compositions)

Hilbt(compositions)
=

∑

d

(ℓd) td,

where ℓd is the number of “L-convex polyominoes” with d cells.
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Muchas Gracias
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