Invariant and Coinvariant Spaces for Noncommutative Symmetric Polynomials

joint work with:

FPSAC 2008, Valparaiso, Chile

Table of Contents

$S^{\mathfrak{S}}$ – Symmetric Polynomials

- Coinvariant space / Motivation
- Chevalley

$T^{\mathfrak{S}}$ – Noncommutative Symmetric Polynomials

- Wolf
- N. Bergeron-Rosas-Reutenauer-Zabrocki

$S^{\mathfrak{S}}$ meets $(T^{\mathfrak{S}})^{\mathfrak{S}}$

- Coinvariant space inside $T^{\mathfrak{S}}$ / Motivation
- Main results
- Other directions (Blattner-Cohen-Montgomery)
- Questions

The Algebra $S^{\mathfrak{S}}$ of (Commutative) Symmetric Polynomials

Setup: Fix a field \mathbb{K} containing \mathbb{Q} and consider the polynomial ring $S = \mathbb{K}[\mathbf{x}]$ over the set of ordered variables $\mathbf{x} = \{x_1 < x_2 < \cdots \}$.

Give an $\mathfrak{S}_{|\mathbf{x}|}$ -module structure to S by extending $\sigma \cdot x_i := x_{\sigma(i)}$ linearly and multiplicatively.

Question: (An Invariant Theory classic)

What does the space $S^{\mathfrak{S}}$ of $\mathfrak{S}_{|\mathbf{x}|}$ invariants look like?

Answer: (You all know it...)

The Algebra $S^{\mathfrak{S}}$ of (Commutative) Symmetric Polynomials

Setup: Fix a field \mathbb{K} containing \mathbb{Q} and consider the polynomial ring $S = \mathbb{K}[\mathbf{x}]$ over the set of ordered variables $\mathbf{x} = \{x_1 < x_2 < \cdots \}$.

Give an $\mathfrak{S}_{|\mathbf{x}|}$ -module structure to S by extending $\sigma \cdot x_i := x_{\sigma(i)}$ linearly and multiplicatively.

Question: (An Invariant Theory classic)

What does the space $S^{\mathfrak{S}}$ of $\mathfrak{S}_{|\mathbf{x}|}$ invariants look like?

Answer: (You all know it, if not you should)

- $S^{\mathfrak{S}}$ is a polynomial ring isomorphic to S;
- A basis for $S^{\mathfrak{S}}$ in S is given by the **monomial symmetric** functions

 $\{m_{\lambda} : \lambda \text{ a partition with at most } |\mathbf{x}| \text{ parts}\}.$

The Coinvariant Space $S_{\mathfrak{S}}$

Let $S_+^{\mathfrak{S}}$ denote the space of symmetric polynomials without constant term and let $\langle S_+^{\mathfrak{S}} \rangle$ denote the corresponding ideal inside S.

Motivation: If V is an $\mathfrak{S}_{|\mathbf{x}|}$ -submodule of S, then $f(\mathbf{x})V \simeq V$ for each $f(\mathbf{x}) \in S^{\mathfrak{S}}$. Let's remove the redundancies:

The interesting part of S is the structure of the **coinvariant space**

$$S_{\mathfrak{S}} := S/\langle S_+^{\mathfrak{S}} \rangle.$$

The Coinvariant Space $S_{\mathfrak{S}}$

Let $S_+^{\mathfrak{S}}$ denote the space of symmetric polynomials without constant term and let $\langle S_+^{\mathfrak{S}} \rangle$ denote the corresponding ideal inside S.

Motivation: If V is an $\mathfrak{S}_{|\mathbf{x}|}$ -submodule of S, then $f(\mathbf{x})V \simeq V$ for each $f(\mathbf{x}) \in S^{\mathfrak{S}}$. Let's remove the redundancies:

The interesting part of S is the structure of the **coinvariant space**

$$S_{\mathfrak{S}} := S/\langle S_+^{\mathfrak{S}} \rangle.$$

Theorem (Chevalley): There is an $\mathfrak{S}_{|\mathbf{x}|}$ -module isomorphism

$$S \simeq S_{\mathfrak{S}} \otimes S^{\mathfrak{S}}.$$

Moreover, $S_{\mathfrak{S}}$ is isomorphic to the regular representation $\mathbb{KS}_{|\mathbf{x}|}$. Moreover, there is an explicit realization of $S_{\mathfrak{S}}$ inside S as $(S_{+}^{\mathfrak{S}})^{\perp}$ for a certain inner product (the "Harmonic Polynomials").

Dimension Enumeration (1/2)

Definition: Given a graded vector space $V = \bigoplus_{d \geq 0} V_d$, let $\text{Hilb}_t(V)$ denote the formal series

$$\operatorname{Hilb}_{t}(V) = \sum_{d \ge 0} v_{d} t^{t} \qquad (v_{d} = \dim V_{d})$$

that enumerates the dimensions of the graded pieces of V.

Corollary: (Immediate from Chevalley). The formal series $Hilb_t(S)/Hilb_t(S^{\mathfrak{S}})$ has positive integer coefficients.

Dimension Enumeration (2/2)

No Need for Chevalley: In fact, the quotient is obviously positive:

It's easy to see that

$$\operatorname{Hilb}_{t}(S) = \prod_{x_{i} \in \mathbf{x}} \frac{1}{1 - t} \quad \text{and} \quad \operatorname{Hilb}_{t}(S^{\mathfrak{S}}) = \prod_{x_{i} \in \mathbf{x}} \frac{1}{1 - t^{i}},$$

so, the quotient is

$$\operatorname{Hilb}_{t}(S_{\mathfrak{S}}) = \prod_{x_{i} \in \mathbf{x}} \frac{1 - t^{i}}{1 - t} = \prod_{x_{i} \in \mathbf{x}} (1 + t^{1} + \dots + t^{i-1}).$$

This is the familiar $[n]_t!$ sum.

Dimension Enumeration (2/2)

No Need for Chevalley: In fact, the quotient is obviously positive:

It's easy to see that

$$\operatorname{Hilb}_{t}(S) = \prod_{x_{i} \in \mathbf{x}} \frac{1}{1 - t} \quad \text{and} \quad \operatorname{Hilb}_{t}(S^{\mathfrak{S}}) = \prod_{x_{i} \in \mathbf{x}} \frac{1}{1 - t^{i}},$$

so, the quotient is

$$\operatorname{Hilb}_{t}(S_{\mathfrak{S}}) = \prod_{x_{i} \in \mathbf{x}} \frac{1 - t^{i}}{1 - t} = \prod_{x_{i} \in \mathbf{x}} \left(1 + t^{1} + \dots + t^{i-1} \right).$$
(also nice for other finite refl. groups)

This is the familiar $[n]_t!$ sum.

(Not surprising since dim $\mathbb{K}\mathfrak{S}_n = n!$.)

(Things won't be so easy in what follows.)

(also classical)

The Algebra $T^{\mathfrak{S}}$ of (NonCommutative) Symmetric Polynomials

Setup: Now consider the noncommutative polynomial ring $T = \mathbb{K}\langle \mathbf{x} \rangle$ over the set of ordered variables $\mathbf{x} = \{x_1 < x_2 < \cdots \}$.

Give an $\mathfrak{S}_{|\mathbf{x}|}$ -module structure to T by extending $\sigma \cdot x_i := x_{\sigma(i)}$ linearly and multiplicatively.

Question: (M. C. Wolf (1936) asks)

What does the space $T^{\mathfrak{S}}$ of $\mathfrak{S}_{|\mathbf{x}|}$ invariants look like?

(also classical)

The Algebra $T^{\mathfrak{S}}$ of (NonCommutative) Symmetric Polynomials

Setup: Now consider the noncommutative polynomial ring $T = \mathbb{K}\langle \mathbf{x} \rangle$ over the set of ordered variables $\mathbf{x} = \{x_1 < x_2 < \cdots \}$.

Give an $\mathfrak{S}_{|\mathbf{x}|}$ -module structure to T by extending $\sigma \cdot x_i := x_{\sigma(i)}$ linearly and multiplicatively.

Question: (M. C. Wolf (1936) asks)

What does the space $T^{\mathfrak{S}}$ of $\mathfrak{S}_{|\mathbf{x}|}$ invariants look like?

Answer: (We might have expected it)

- $T^{\mathfrak{S}}$ is a polynomial ring (though not isomorphic to T);
- A basis for $T^{\mathfrak{S}}$ is given by the **monomial symmetric functions**

 $\{M_{\mathbf{A}}: \mathbf{A} \text{ a set partition with at most } |\mathbf{x}| \text{ parts}\}.$

Notation: Given a set partition, e.g., of [5], drop the braces and order the blocks by minimum elements to simplify/standardize notation:

$$\{\{2,3\},\{1,4\},\{5\}\} \rightsquigarrow \mathbf{14.23.5}.$$

$$M_{14.23.5} = x_1 x_2 x_2 x_1 x_3 + x_7 x_4 x_4 x_7 x_3 + \cdots$$

Notation: Given a set partition, e.g., of [5], drop the braces and order the blocks by minimum elements to simplify/standardize notation:

$$\{\{2,3\},\{1,4\},\{5\}\} \rightsquigarrow \mathbf{14.23.5}.$$

$$M_{14.23.5} = x_1 x_2 x_2 x_1 x_3 + x_7 x_4 x_4 x_7 x_3 + \cdots$$

Notation: Given a set partition, e.g., of [5], drop the braces and order the blocks by minimum elements to simplify/standardize notation:

$$\{\{2,3\},\{1,4\},\{5\}\} \rightsquigarrow \mathbf{14.23.5}.$$

$$M_{14.23.5} = x_1 x_2 x_2 x_1 x_3 + x_7 x_4 x_4 x_7 x_3 + \cdots$$

Notation: Given a set partition, e.g., of [5], drop the braces and order the blocks by minimum elements to simplify/standardize notation:

$$\{\{2,3\},\{1,4\},\{5\}\} \rightsquigarrow \mathbf{14.23.5}.$$

$$M_{14.23.5} = x_1 x_2 x_2 x_1 x_3 + x_7 x_4 x_4 x_7 x_3 + \cdots$$

A $\mathfrak{S}_{|\mathbf{x}|}$ -Module Decomposition of T

Let $T_+^{\mathfrak{S}}$ denote the symmetric polynomials without constant term, and let $\langle T_+^{\mathfrak{S}} \rangle$ denote the corresponding **left ideal** inside T.

As in the commutative case, define the **coinvariant space** by

$$T_{\mathfrak{S}} := T/\langle T_+^{\mathfrak{S}} \rangle.$$

Theorem (N. Bergeron-Reutenauer-Rosas-Zabrocki): There is an $\mathfrak{S}_{|\mathbf{x}|}$ -module isomorphism

$$T \simeq T_{\mathfrak{S}} \otimes T^{\mathfrak{S}}.$$

Moreover, $T_{\mathfrak{S}}$ is isomorphic to the $\mathfrak{S}_{|\mathbf{x}|}$ -submodule of T given by the "Noncommutative Harmonic Polynomials" inside T (i.e., $(T_+^{\mathfrak{S}})^{\perp}$ for a certain bilinear form on T).

How Common is This Decomposition?

Setup: Return to S for a moment. Fix a finite group G and a multiplicative G-action on S, i.e.,

$$\sigma(ab) = \sigma(a)\sigma(b) \qquad (\forall a, b \in S) (\forall \sigma \in G).$$

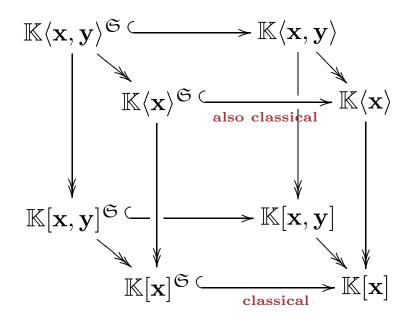
Then:

Theorem (Shephard-Todd): The ring S decomposes as

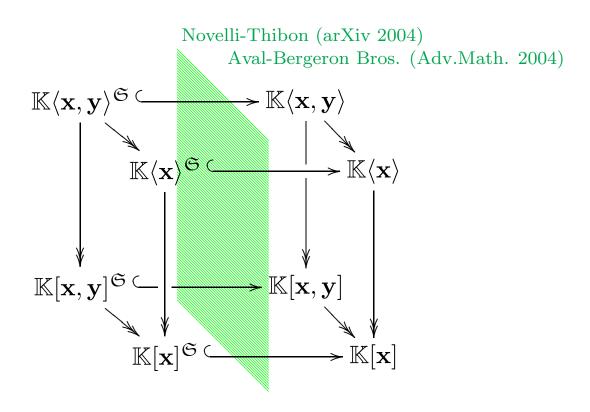
$$S \simeq S_G \otimes S^G$$

if and only if G is a (pseudo-) reflection group and the action on S_1 is the action of G on its defining vector space.

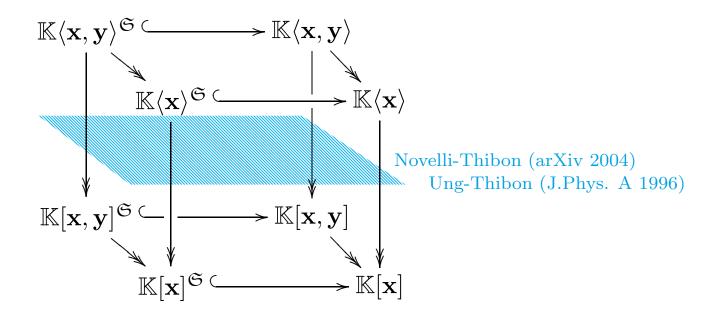
A Cube of Hopf Algebras: François once showed me this:



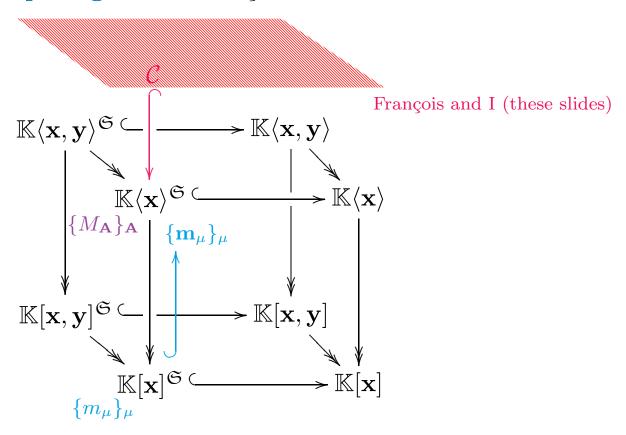
A Cube of Hopf Algebras: François once showed me this:



A Cube of Hopf Algebras: François once showed me this:



A Cube of Hopf Algebras: François once showed me this:



 $(less\ classical)$

Main Question

Is there a subspace C within the invariants $T^{\mathfrak{S}}$ so that

$$T^{\mathfrak{S}} \simeq {\color{red}\mathcal{C}} \otimes S^{\mathfrak{S}}$$
?

(less classical)

Main Question

Is there a subspace C within the invariants $T^{\mathfrak{S}}$ so that

$$T^{\mathfrak{S}}\simeq \mathcal{C}\otimes S^{\mathfrak{S}}$$
?

and if so, what interpretation should be given to this symbol?

(also classical)

The "Place Action" on T

Definition: Let T_d denote the homogeneous degree d polynomials in T. Define an \mathfrak{S}_d action on T_d by permuting "places."

Examples: (in cycle notation)

$$(23) * x_1 x_4 x_7 x_2 = x_1 x_7 x_4 x_2$$

$$\uparrow \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$(1324) * x_1 x_4 x_7 x_2 = x_2 x_7 x_1 x_4.$$

Fact (Rosas-Sagan): Under the place action, the $M_{\mathbf{A}}$'s satisfy

$$\rho * M_{\mathbf{A}} = M_{\rho \cdot \mathbf{A}},$$

with $\rho \cdot \mathbf{A}$ the usual permutation action on set partitions.

(still classical?)

The "Place Action" on \mathcal{N}

Notation: Each set partition has an underlying **shape:** an integer partition gotten by recording the set sizes $(14.23.5 \mapsto \lambda(14.23.5) = 221)$.

An Invariant Function: Let $\mathcal{N} = T^{\mathfrak{S}}$ and \mathcal{N}_{μ} be the subspace of monomial functions of shape μ . The sum

$$\mathbf{m}_{\mu} := \sum_{\lambda(\mathbf{A}) = \mu} M_{\mathbf{A}}$$

is a symmetric function (under the place action) inside \mathcal{N}_{μ} .

Fact: These are the only invariants, i.e., the place invariants $\mathcal{N}^{\mathfrak{S}}$ are in 1-1 correspondence with $S^{\mathfrak{S}}$.

(probably classical)

The "Place Action" on \mathcal{N}_{μ}

Definition: The **Frobenius characteristic** of an \mathfrak{S}_d -module \mathcal{V} is the symmetric function

$$Frob(\mathcal{V}) = \sum_{\mu \vdash d} v_{\mu} s_{\mu},$$

where s_{μ} is the usual Schur function and v_{μ} is the multiplicity of the irreducible \mathfrak{S}_d module $\mathcal{V}(\mu)$ inside \mathcal{V} .

Proposition: In light of the action $\rho * M_{\mathbf{A}} = M_{\rho \cdot \mathbf{A}}$, we deduce that

Frob
$$(\mathcal{N}_{\mu}) = h_{d_1}[h_1] h_{d_2}[h_2] \cdots h_{d_k}[h_k],$$

 $\mu = 1^{d_1} 2^{d_2} \cdots k^{d_k}$, where f[g] denotes the **plethysm** of two symmetric functions and h_j is the j-th complete symmetric function.

Existence of \mathcal{C} , Case $|\mathbf{x}| = \infty$

Facts (R-S, B-R-R-Z): The map $\iota : S^{\mathfrak{S}} \to \mathcal{N} \ (m_{\mu} \mapsto \mathbf{m}_{\mu})$ satisfies: $\mathbf{ab} \circ \iota = \mathrm{id} \quad \mathrm{and} \quad \Delta \circ \iota = (\iota \otimes \iota) \circ \Delta.$

That is, ι is a "coalgebra splitting" of the exact sequence of Hopf algebras $\mathcal{N} \to S^{\mathfrak{S}} \to 0$.

Theorem (Blattner-Cohen-Montgomery): In such a case, the subspace

$$\mathcal{C} = \{ h : (\mathrm{id} \otimes \mathbf{ab}) \circ \Delta(h) = h \otimes 1 \}$$

yields an isomorphism of vector spaces

$$\mathcal{N} \simeq \mathcal{C} \otimes S^{\mathfrak{S}}$$
.

Existence of \mathcal{C} , Case $|\mathbf{x}| = \infty$

Facts (R-S, B-R-R-Z): The map
$$\iota : S^{\mathfrak{S}} \to \mathcal{N} \ (m_{\mu} \mapsto \mathbf{m}_{\mu})$$
 satisfies: $\mathbf{ab} \circ \iota = \mathrm{id} \quad \mathrm{and} \quad \Delta \circ \iota = (\iota \otimes \iota) \circ \Delta.$

That is, ι is a "coalgebra splitting" of the exact sequence of Hopf algebras $\mathcal{N} \to S^{\mathfrak{S}} \to 0$.

Theorem (Blattner-Cohen-Montgomery): In such a case, the subspace

$$\mathcal{C} = \{ h : (\mathrm{id} \otimes \mathbf{ab}) \circ \Delta(h) = h \otimes 1 \}$$

yields a "shape graded" isomorphism of vector spaces

$$\mathcal{N}\simeq\mathcal{C}\otimes S^{\mathfrak{S}}.$$

The (Shape Graded) Isomorphism (1/2)

$$Hilb_t(\mathcal{N}) = 1 + (1)t + (2)t^2 + (5)t^3 + (15)t^4 + (52)t^5 + \cdots$$

The (Shape Graded) Isomorphism (1/2)

$$Hilb_{t}(\mathcal{N}) = 1 + (z_{1})t + (z_{2} + z_{1}^{2})t^{2} + (z_{3} + 3z_{1}z_{2} + z_{1}^{3})t^{3}$$

$$+ (z_{4} + 4z_{1}z_{3} + 3z_{2}^{2} + 6z_{2}z_{1}^{2} + z_{1}^{4})t^{4}$$

$$+ (z_{5} + 5z_{1}z_{4} + 10z_{3}z_{2} + 10z_{3}z_{1}^{2} + 15z_{1}z_{2}^{2} + 10z_{2}z_{1}^{3} + z_{1}^{5})t^{5} + \cdots$$

The (Shape Graded) Isomorphism (1/2)

$$\begin{aligned} \operatorname{Hilb}_{t}(\mathcal{N}) &= 1 + (z_{1})t + (z_{2} + z_{1}^{2})t^{2} + (z_{3} + 3z_{1}z_{2} + z_{1}^{3})t^{3} \\ &+ (z_{4} + 4z_{1}z_{3} + 3z_{2}^{2} + 6z_{2}z_{1}^{2} + z_{1}^{4})t^{4} \\ &+ (z_{5} + 5z_{1}z_{4} + 10z_{3}z_{2} + 10z_{3}z_{1}^{2} + 15z_{1}z_{2}^{2} + 10z_{2}z_{1}^{3} + z_{1}^{5})t^{5} + \cdots \\ &= \left[1 + (2z_{1}z_{2})t^{3} + (2z_{2}^{2} + 3z_{1}z_{3} + 3z_{2}z_{1}^{2})t^{4} + \cdots \right] \\ &\times \left[1 + (z_{1})t + (z_{2} + z_{1}^{2})t^{2} + (z_{13} + z_{1}z_{2} + z_{3})t^{3} \cdots \right] \end{aligned}$$

The (Shape Graded) Isomorphism (2/2)

1	\longleftrightarrow	1	12.34	\longleftrightarrow	12.34	12345	\longleftrightarrow	12345
12	\longleftrightarrow	12				1234.5	\longleftrightarrow	1234.5
1.2	\longleftrightarrow	1.2	134.2	\longleftrightarrow	134.2	123.45	\longleftrightarrow	12.34.5
			1.234	\longleftrightarrow	1.234			
123	\longleftrightarrow	123	14.23	\longleftrightarrow	14.23	1235.4	\longleftrightarrow	15.23.4
12.3	\longleftrightarrow	12.3	14.2.3	\longleftrightarrow	14.2.3	1245.3	\longleftrightarrow	1245.3
13.2	\longleftrightarrow	13.2	13.24	\longleftrightarrow	13.24	1.2345	\longleftrightarrow	1.24.35
1.23	\longleftrightarrow	1.23	124.3	\longleftrightarrow	124.3			
1.2.3	\longleftrightarrow	1.2.3	1.2.34	\longleftrightarrow	1.2.34	13.2.45	\longleftrightarrow	13.2.45
			1.24.3	\longleftrightarrow	1.24.3	1.23.45	\longleftrightarrow	1.23.45
1234	\longleftrightarrow	1234	13.2.4	\longleftrightarrow	13.2.4	134.2.5	\longleftrightarrow	134.2.5
123.4	\longleftrightarrow	123.4	1.23.4	\longleftrightarrow	1.23.4	1.234.5	\longleftrightarrow	1.234.5

Algebraic Description of $\mathcal C$

Definition: Denote by \mathbb{A} the **atomic set partitions:** those partitions $\mathbf{A} \vDash [d]$ that cannot be split into two partitions, $\mathbf{A}' \vDash \{1, 2, \dots, k\}$ and $\mathbf{A}'' \vDash \{k+1, \dots, d\}$.

Examples: (of atomic set partitions)

Theorem (Hivert-Novelli-Thibon): \mathcal{N} is isomorphic to the universal enveloping algebra of the free Lie algebra on \mathbb{A} , $\mathcal{N} \simeq \mathcal{U}(\text{Lie}(\mathbb{A}))$.

Theorem: There is a map from $\text{Lie}(\mathbb{A})$ so that \mathcal{C} is isomorphic to the universal enveloping algebra of its kernel K, $\mathcal{C} \simeq \mathcal{U}(K)$.

Case $|\mathbf{x}| < \infty$

- no Hopf structure to guide us,
- no shape graded isomorphism, but
- our calculations still suggested a vector space isomorphism . . .

Combinatorial Description of C (1/5)

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

Fact: The set partitions are rhyme-scheme words (and vice versa):

$$14.23.5 \leftrightarrow ____$$

Combinatorial Description of C (1/5)

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

Fact: The set partitions are rhyme-scheme words (and vice versa):

$$14.23.5 \leftrightarrow 1$$

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

$$14.23.5 \leftrightarrow 12$$

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

$$14.23.5 \leftrightarrow 122$$

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

$$14.23.5 \leftrightarrow 1221$$

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

$$14.23.\overset{5}{\overset{}{\overset{}{\overset{}}{\overset{}}{\overset{}}}} \leftrightarrow 12213$$

Combinatorial Description of \mathcal{C} (1/5)

Definition: A **rhyme-scheme word** is a word on $\mathbb{N} \setminus \{0\}$ which sees no "2" before the first "1", sees no "3" before the first "2", and so on.

Examples: (of rhyme-scheme words)

Fact: The set partitions are rhyme-scheme words (and vice versa):

$$14.23.5 \leftrightarrow 12213$$

Theorem (Wolf, 1936): \mathcal{N} is freely generated by "non-splittable" rhyme-scheme words (verses).

Examples: (of verses)

$$123214 \text{ (YES)}$$

Definition: Given a polynomial $p = \sum_{w} \alpha_{w} M_{w} \in \mathcal{N}$, define the **leading term** of p to be the unique M_{w_0} with w_0 lexicographically least among all rhyme-scheme words w satisfying $\alpha_{w} \neq 0$.

Fact: Given two rhyme scheme words u, v, the leading term of the product $M_u \cdot M_v$ is M_{uv} (where uv is the concatenation of the two words).

Example: (in case $|\mathbf{x}| = 3$).

$$M_{121} \cdot M_{12} = \underline{M_{12112}} + M_{12113} + M_{12121} + M_{12121} + M_{12123} + M_{12131} + M_{12132}.$$
 (1)

Descending Rhymes: (Identifying $S^{\mathfrak{S}}$). Given a partition $\mu = \mu_1 \geq \mu_2 \geq \cdots \geq \mu_k$, define the **descending** rhyme-scheme word $w(\mu)$ by

$$w(\mu) = 1^{\mu_1} 2^{\mu_2} \cdots k^{\mu_k}$$
.

(Conveniently, the leading term of \mathbf{m}_{μ} is $M_{\mathbf{W}(\mu)}$).

Vexillary Rhymes: (Identifying C). A vexillary rhyme is a maximal (possibly empty) descending rhyme, followed by one extra verse.

Examples: (of vexillary rhymes)

$$112231223$$
 (YES) 1111232 (YES) 1232 (YES)

1122 112 (NO) (since 112 is not a single verse)

Vexillary Decomposition: The vexillary decomposition of a rhyme-scheme word: first write w as a product of verses; then combine, left to right, into vexillary rhymes; you may end with a descending tail.

Examples:

$$112212 \mapsto 1|122|12 \mapsto 112212$$

$$1231231411122311 \mapsto 123|12314|1|1|1223|1|1 \mapsto 123|12314|1|1223|1|$$

$$1231231411123311 \mapsto 123|12314|1|1|1233|1|1 \mapsto 123|12314|1|1223|1|1$$

Let \mathcal{C} be the subalgebra generated by $\{M_w : w \text{ is a vexillary rhyme}\}$.

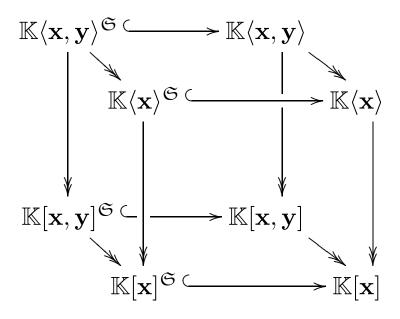
Theorem: There is an isomorphism of vector spaces

$$\mathcal{N}\simeq\mathcal{C}\otimes S^{\mathfrak{S}}$$

given by multiplying $M_{v_1}M_{v_2}\cdots M_{v_r}$ and $\mathbf{m}_{\mathbf{W}(\mu)}$ in \mathcal{N} .

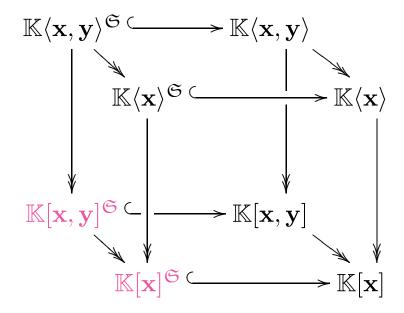
Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.



Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.



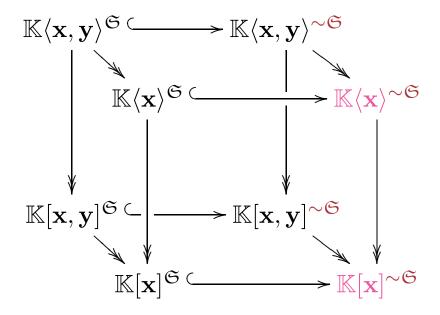
Sometimes, you find obviously positive quotients, like

$$\frac{\operatorname{Hilb}_{t}(\mathbb{K}[\mathbf{x},\mathbf{y}]^{\mathfrak{S}})}{\operatorname{Hilb}_{t}(\mathbb{K}[\mathbf{x}]^{\mathfrak{S}})} = \frac{\prod_{x_{i} \in \mathbf{x}} \frac{1}{(1-t^{i})^{i+1}}}{\prod_{x_{i} \in \mathbf{x}} \frac{1}{(1-t^{i})}}$$

where the result $\prod_{x_i \in \mathbf{x}} (1 - t^i)^{-i}$ enumerates planar partitions.

Further Along Our Point of View

This technique is applicable elsewhere in the Hopf cube.



Sometimes, you find not-so-obviously positive quotients, like

$$\frac{\text{Hilb}_t(\text{set compositions})}{\text{Hilb}_t(\text{compositions})} = \sum_d (\ell_d) t^d,$$

where ℓ_d is the number of "L-convex polyominoes" with d cells.

FIN

Muchas Gracias

FIN

Muchas Gracias

References

- Aval-B-B, Ideals of quasi-symmetric functions and super-covariant polynomials for S_n , Adv. Math., 2004.
- **B-R-R-Z**, Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables, *Canadian Math. J.*, 2008.
- N. Bergeron-Zabrocki, The Hopf algebras of symmetric functions and ... are free and cofree, arXiv:math.CO/0509265, 2005.
- Chevalley/Shephard-Todd, Humphreys, Reflection Groups and Coxeter Groups, Cambridge Univ. Press, 1990.
- Rosas-Sagan, Symmetric functions in noncommuting variables, *Trans. Amer. Math. Soc.*, 2006.
- **Thibon-Ung,** Quantum quasisymmetric functions & Hecke algebras, J. Phys. A, 1996.
- **Novelli-Thibon,** Free quasisymmetric functions of arbitrary level, arXiv:math. CO/0405597, 2004.
- Wolf, Symmetric functions of non-commutative elements, Duke Math. J., 1936.