
Combinatorial

Gelfand Models

Ron Adin

Bar-Ilan University

Alexander Postnikov

MIT

Yuval Roichman

Bar-Ilan University

FPSAC ’08

Valparaiso, Chile

FPSAC June 2008



1. Gelfand Models

A Gelfand model for a group G is

ψ ∼=
⊕

ρ∈Irr(G)

ρ,

the multiplicity-free direct sum of all
irreducible G-representations.

Problem. [Bernstein-Gelfand-Gelfand ’75]
Given a group G, construct a Gefand model for G.

History:

BGG, Klyachko, Saxl, Verma and others:

Gow, Inglis-Richardson-Saxl, Baddeley, Kawanaka-Matsuyama, Ryan,
Aguado-Araujo-Bigeón, Bump-Ginzburg, Kodiyalam-Verma, Sayag ...
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2. The Symmetric Group Sn

Let
In := {w ∈ Sn : w2 = 1}.

Folklore: RSK =⇒

#In =
∑

ρ∈Irr(Sn)

dim(ρ).

Goal:
Determine a simple combinatorial action on In

which gives a model for Sn and for related groups
and algebras.
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Preliminaries

Let Sn be the symmetric group on n letters.

The Coxeter generating set of Sn is

S = {si : 1 ≤ i < n},

where si := (i, i + 1).

The descent set of π ∈ Sn is

Des(π) := {0 ≤ i < n : π(i) > π(i + 1)}

= {0 ≤ i < n : `(πsi) < `(π)}.
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3. Signed Conjugation

Let Vn := spanQ{Cw : w ∈ In }.

Define ρ : S −→ GL(Vn) by

ρ(si)Cw :=




−Csiwsi , siwsi = w ∧ i ∈ Des(w) ;

Csiwsi , otherwise.

Theorem 1.
ρ determines a Gelfand model for Sn.
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Restricting ρ to a Conjugacy Class

Let

ρ|2k1n−2k - the restriction of ρ to the conjugacy
class of cycle type 2k1n−2k ;

Sλ - the irreducible Sn-representation indexed by
the partition λ .

Proposition 2:

Sλ appears in ρ|2k1n−2k ⇐⇒
λ has n− 2k odd columns .

Corollary 3:

#{w ∈ In : fix(w) = m}

= #SYT(n) with m odd columns.
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Proof of Theorem 1:

Part 1: ρ determines a representation.

For π ∈ Sn and w ∈ In let

Pair(w) := {2− cycles of w}

and

invw(π) := #{(i, j) ∈ Pair(w) : i < j, π(i) > π(j)}.

Example. w = (1, 4)(3, 5), π = [2, 5, 3, 4, 1]. Then
invw(π) = 1.

Lemma

ρ(π)Cw = (−1)invw(π) · Cπwπ−1 .
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Proof of Theorem 1:

Part 2: ρ determines a model.

Frobenius-Schur Theorem Let G be a finite
group, all of whose representations are real.

Then for every w ∈ G
∑

χ∈Irr(G)

χ(w) = #{u ∈ G | u2 = w},

Lemma For every π ∈ Sn

∑

w∈In

(−1)invw(π) = #{u ∈ G | u2 = w}.
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4. Wreath Products

Consider G = Zr o Sn.

For r > 2, Zr o Sn is not real.

Let ω := e2πi/r.
For v ∈ Zr o Sn let v̄ be its complex conjugate.

Example

v =




ω2 0 0

0 0 ω0

0 ω1 0


 v̄ =




ω−2 0 0

0 0 ω0

0 ω−1 0




Theorem 4. For any π ∈ G = Zr o Sn,
∑

χ∈Irr(G)

χ(π) = #{v ∈ G | v · v̄ = π},
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Let

Ir,n - the set of symmetric elements in Zr o Sn,

i.e., {v ∈ Zr o Sn : v · v̄ = 1}

S - the standard generating set of simple complex
reflections in Zr o Sn.

Theorem 5. There exists a signed two-sided
action on Ir,n

ρ(si)Cv := sign(i; v) · Csivsi

(for all si ∈ S, v ∈ Ir,n),

which determines a Gelfand model for Zr o Sn.
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For v ∈ Zr o Sn let |v| := (|vi,j |). Then

sign(i; v) :=




−1, sivsi = v and si ∈ Des(|v|);
1, otherwise

for all i > 0

sign(0; v) :=




−1, v1,1 = ω−1 and r is even;

1, otherwise

Corollary For r = 2 (i.e., for the Weyl group of
type B)

sign(0; v) :=




−1, if s0vs0 = v and s0 ∈ Des(v);

1, otherwise
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5. Hecke Algebra

Let Hn(q) be the Hecke algebra of Sn,

with set of generators {Ti | 1 ≤ i < n}
and defining relations

(Ti + q)(Ti − 1) = 0 (∀i),

TiTj = TjTi if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i < n− 1).
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Define a map ρq : S → GL(Vn) by

ρq(Ts)Cw :=





−q Cw, sws = w ∧ s ∈ Des(w)

Cw, sws = w ∧ s 6∈ Des(w)

(1− q) Cw+

+q Csws, w <I sws

Csws, sws <I w.

Theorem 6. ρq is a Gelfand model for Hn(q).

Proof Idea:

By Lusztig’s version of Tits’ deformation
theorem, deforming representation matrices gives
“essentially the same” representation.
Now, apply Theorem 1.
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By the deformation theorem,
ρq may be viewed as an Sn-representation;
the characters are rational functions of q1/2.

By discreteness of the Sn character values,
each such function is locally constant,
and is thus constant globally.

By Theorem 1, ρq|q=1 = ρ is a model for the
group algebra of Sn.
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The Involutive Order on Involutions

Let gk := s1s3 · · · s2k−1 ∈ In.

Define the involutive length

of an involution w ∈ In of cycle type 2k1n−2k

ˆ̀(w) := min{`(v)| w = vgkv−1, v ∈ Sn},

where `(v) is the standard length of v ∈ Sn.

Define the involutive weak order ≤I on In as the
reflexive and transitive closure of the relation:

w ≺I sws if ∃s ∈ S ˆ̀(sws) = ˆ̀(w) + 1.
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Characters

Unimodal Permutations
π = 2 7 15 10 3 | 5 13 12 11 | 1 9 14 | 8 6 4
is (5,4,3,3)-unimodal.

Let Tµ := T1 · · · T̂µ1Tµ1+1 · · · T̂µ1+µ2 · · · · · ·Tn−1.

[R ’97, APR ’00]

χλ
q (Tµ) =

∑

{w 7→P | w is µ-unimodal}
(−q)des(w)

Tr (ψk(Tµ)) =
∑

{`(w)=k| w is µ-unimodal}
(−q)des(w)

Theorem 7.

Tr (ρq(Tµ)) =
∑

{w2=1| w is µ-unimodal}
(−q)des(w)
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6. Open Problems

Question 1: Define a simple action on
involutions of a Coxeter group W , which
determines a Gelfand model.

Known for Sn, Bn, D2n+1. Open for D2n ....

Question 1’: Construct a Gelfand model for
complex reflection groups; affine Weyl groups;
Iwahori Hecke algebras.

Question 2: Define a simple action on
symmetric elements in GLn(F q), which
determines a Gelfand model.

Restriction in Zr o Sn:

Show that the Stanton-White colored RSK is
compatible with restriction of ρ.
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