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Noncommutative Monomial Symmetric Functions.

Lenny Tevlin

Abstract. This presentation will introduce noncommutative analogs of monomial symmetric functions (and

their dual, forgotten symmetric functions). In analogy to the classical theory, expansion of ribbon Schur

functions in this basis in nonnegative. Moreover, one can define fundamental noncommutative symmetric
functions by analogy with quasi-symmetric theory. The expansion of ribbon Schur functions in this basis is

also nonnegative. The availability of monomial basis allows one to prove a noncommutative Cauchy identity

as well as study a noncommutative pairing implied by Cauchy identity.

Résumé. Cette présentation fera découvrir les analogues non-commutatives des fonctions symétriques

monomiales et leurs duales, fonctions symétriques ”forgotten”. De façon identique a la théorie classique, le
développement des fonctions Schur rubans dans cette base est non-négatif. Aussi on peut introduire des

fonctions fondamentales symétriques comme dans la théorie quasi-symétrique. Le développement des
fonctions Schur rubans dans cette base est aussi non-négatif. On peut ainsi demontrer une identité de

Cauchy non-commutative et analyser le couplage non-commutatif qui en derive.
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1. Introduction and Notations.

1.1. Compositions and Partitions. All definitions in this and the following sections are standard.
I will use the notation from [2] for commutative symmetric functions and those of [1] for noncommutative
ones.1

Let I = (i1, . . . , in) be a composition, i.e. an ordered set of positive integers (i1, . . . , in), called parts of the
composition I. The sum of all components of the composition, its weight, is denoted by |I|, i.e.

|I| = i1 + . . . + in

2000 Mathematics Subject Classification. Primary 05E05; Secondary 16W30.
Key words and phrases. algebraic combinatorics, symmetric functions, partitions.
1With one exception. The fundamental quasi-symmetric function is denoted FI in [1] and LI in [7]. I will use LI for the

noncommutative version and reserve F I for a noncommutative forgotten symmetric function.
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and the number of parts in the composition – by `(I).
For a composition I define a reverse composition I = (in, . . . , i1).
For two compositions I = (i1, . . . , ir−1, ir) and J = (j1, j2, . . . , js) define two operations · and .:

I . J = (i1, . . . , ir−1, ir + j1, j2, . . . , js), `(I . J) = `(I) + `(J)− 1(1.1)

and I · J = (i1, . . . , ir, j1, . . . , js), `(I · J) = `(I) + `(J)(1.2)

Parts of the composition Ĩ conjugate to a composition I can be read from the diagram of the composition
I from left to right and from bottom to top.

A partition is a composition with weakly decreasing parts, i.e.

λ = (λ1, . . . , λn) with λ1 ≥ λ2 ≥ . . . ≥ λn

The number of times an integer i occurs in a partition λ is denoted by mi(λ).
The reverse refinement order for compositions is defined as follows. Let I = (i1, . . . , in), J =

(j1, . . . , jk), |J | = |I|
J � I

if J can be obtained from I, i.e. every part of J can be obtained from parts of I: js = irs + . . . + irs+p for
all s and some rs and p.

1.2. Quasideterminants. Noncommutative monomial symmetric functions will be defined in terms
of quasideterminants. The definition of a quasideterminant for an arbitrary matrix was given in [1]. In
general quasideterminant is not polynomial in its entries. All the matrices that come up in what follows will
be almost-triangular with constants above the main diagonal. Moreover, in principle an n × n matrix has
n2 quasideterminants, which can be calculated with respect to any element of the matrix. In what follows
by quasideterminant I will always mean the quasideterminant with respect to the element in the lower left
corner (see below).

Consider a quasideterminant of an n×n almost triangular matrix. Such quasideterminant is polynomial
in its entries and according to Proposition 4.7 of [5] can be written as:

Qn(B) ≡ Qn(b1, . . . , bn−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 b1 0 . . . . . . . . . . . .
a21 a22 b2 0 . . . . . . . . .
...

...
...

...
...

...
...

aj1 aj2 . . . ajj bj 0 . . .
...

...
...

...
...

...
...

an−1 1 an−1 2 . . . . . . . . . . . . bn−1

an1 an2 . . . anj . . . . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

=
∑

n≥j1>...>jk>1

(−1)k+1anj1b
−1
j1−1aj1−1 j2b

−1
j2−1aj2−1 j3 . . . b−1

jk−1ajk−1 1(1.3)

where aij are free noncommutative elements and bj ’s belong to some commutative field B and commute with
all aij .

1.3. Noncommutative Symmetric Functions. I will think of Sym as a free associative algebra gen-
erated by an infinite sequence Ψk, k ≥ 1 over a commutative field. Ψk’s will be referred to as noncommutative
power sums. Ψk is the notation used for power sum of the first kind in [1] and my use of the same notation
is for convenience. Hopefully this will not be misleading. (I will make use of one type of power sums only
and will therefore refer to Ψk simply as power sums.)

As one particular realization of noncommutative power sums, one can consider a most direct noncom-
mutative analog of regular power sums. For an infinite collection of non-commuting variables (z1, z2, . . .) one
can build symmetric powers sums

Ψk =
∑

i

zk
i

For any composition I define a product
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Definition 1.1.

ΨI =
`(I)∏
k=1

Ψik

Then using the results of [1], one can define elementary and complete symmetric functions as the following
quasi-determinants:

nΛn = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣

Ψ1 1 0 . . . 0 0
Ψ2 Ψ2 2 . . . 0 0
...

...
...

...
...

...
Ψn−1 . . . . . . . . . Ψ2 n− 1
Ψn . . . . . . . . . Ψ2 Ψ1

∣∣∣∣∣∣∣∣∣∣∣
and

nSn =

∣∣∣∣∣∣∣∣∣∣∣

Ψ1 −(n− 1) 0 . . . 0 0
Ψ2 Ψ1 −(n− 2) . . . 0 0
...

...
...

...
...

...
Ψn−1 . . . . . . . . . Ψ2 −1
Ψn . . . . . . . . . Ψ2 Ψ1

∣∣∣∣∣∣∣∣∣∣∣
For a composition I = (i1, . . . , in) define products of

complete symmetric functions SI = Si1Si2 . . . Sin

elementary symmetric functions ΛI = Λi1Λi2 . . .Λin

Ribbon Schur functions are defined as

RI = (−1)k−1

∣∣∣∣∣∣∣∣∣∣

Sik
1 . . . 0 0

. . .
Si3+···+ik

. . . Si3 1 0
Si2+···+ik

. . . Si2+i3 Si2 1
Si1+...+ik

. . . Si1+i2+i3 Si1+i2 Si1

∣∣∣∣∣∣∣∣∣∣
Furthermore, the algebra Sym affords an involution:

ω(Ψk) = (−1)k−1Ψk

ω(Sk) = Λk

ω(RI) = ReI
2. Results.

In Section 3 I introduce three new linear bases in Sym. The first basis monomial symmetric functions,
denoted by M I seems to play in the noncommutative theory a role similar to that of the monomial symmetric
functions in the commutative one.

The two functions enjoy the following relationship,

m̃µ =
∑
Sn

mI ,

where m̃µ is the augmented monomial symmetric function as in Exercise 10, §6, Ch. I of [2], mI denotes the
commutative image of M I , the sum is over all distinct permutations of composition I, and µ is the partition
obtained from I.

The second basis is that of forgotten symmetric functions denoted by F I .
Complete symmetric functions continue to be worthy of their name just as in the commutative case where

hn is a sum of all monomial functions of the same degree. The noncommutative version of this relationship
is

Sn =
∑
|I|=n

M I
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In fact a stronger statement is true:
F I =

∑
J�I

MJ ,

where the sum is over all compositions that are less fine than I. (A complete symmetric function Sn is a
forgotten function corresponding to the composition 1n.)

The third basis is that of fundamental symmetric functions LI by analogy with Gessel’s fundamental
quasi-symmetric functions [8, 7, 1]

LI =
∑
J�I

M I

In the following Section 4, I will study recursions and multiplication of these newly introduced functions.
Interestingly, products of noncommutative monomial and fundamental symmetric functions are nonnegative.

Transitions between different bases are studied in Section 5. It appears that ribbon Schur functions are
nonnegative both in the monomial and fundamental bases as will be discussed in 5.4 and 5.5 respectively.

I will derive a noncommutative Cauchy identity in Section 6, which will lead to a noncommutative
pairing, as discussed later in the same section.

3. Monomial, Forgotten, and Fundamental Noncommutative Symmetric Functions.

Define noncommutative monomial symmetric function corresponding to a composition I =
(i1, . . . , in) as a quasideterminant of an n by n matrix:

Definition 3.1.

nM I ≡ nM (i1,...,in) = (−1)n−1

∣∣∣∣∣∣∣∣∣∣∣

Ψin
1 0 . . . 0 0

Ψin−1+in Ψin−1 2 . . . 0 0
...

...
...

...
...

...
Ψi2+...+in . . . . . . . . . Ψi2 n− 1
Ψi1+...+in

. . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣
where n is the length of I. In particular

Λn = M1n

where Λn is an elementary symmetric function introduced in [1].
Also define noncommutative forgotten symmetric function as an n by n quasideterminant:

Definition 3.2.

nF I ≡ nφ(i1,...,in) =

∣∣∣∣∣∣∣∣∣∣∣

Ψin
−(n− 1) 0 . . . 0 0

Ψin−1+in
Ψin−1 −(n− 2) . . . 0 0

...
...

...
...

...
...

Ψi2+...+in
. . . . . . . . . Ψi2 −1

Ψi1+...+in
. . . . . . . . . Ψi1+i2 Ψi1

∣∣∣∣∣∣∣∣∣∣∣
In particular

F 1n

= Sn

where Sn a homogeneous symmetric function as in [1].
As noted above (see (1.3)) it follows from Proposition 4.7 of [5] that all M I and F I are polynomial in

power sums.
Notice that if involution ω is extended by linearity (compare Prop. 3.9 in [1])

ω(ΨI) = (−1)|I|−`(I)ΨĪ

then

Proposition 3.1.
ω(M I) = (−1)|I|−`(I)F Ī ,

where I is the reversed composition.



NONCOMMUTATIVE MONOMIAL SYMMETRIC FUNCTIONS. 5

By analogy with the quasi-symmetric theory [8, 7, 1]), define fundamental noncommutative symmetric
function as

Definition 3.3.
LI =

∑
J�I

M I

These functions behave nicely under the involution ω:

Proposition 3.2.
ω

(
LI

)
= L

eI
4. Recursion Relations, Pieri formulas, and Multiplicative Structure.

In this section I will consider multiplication rules for newly introduced functions that they inherit from
the multiplication rule of power sums (1.1).

4.1. Monomial and Forgotten. The definition of the monomial functions (3.1) implies a linear rela-
tionship between monomial functions obtained from the same composition due to Theorem 1.8 of [6].

This relationship can be stated as follows (and can be considered as a generalization of formulas (31) in
Proposition 3.3 in [1]):

Proposition 4.1. Newton-type relations.

nM i1,...,in = Ψi1M
i2,...,in −Ψi1+i2M

i3,...,in + . . . + (−1)s−1Ψi1+...+is
M is+1,...,in + . . . + (−1)nΨi1+...+in

(4.1)

nφi1,...,in = φi1,...,in−1Ψin
+ φi1,...,in−2Ψin−1+in

+ . . . + φi1+...+isΨis+1,...,in
+ . . . + Ψi1+...+in

(4.2)

Moreover, Newton-type relationships above imply rules of multiplication by a power sum of an arbitrary
monomial function on the left and forgotten on the right:

Proposition 4.2. Pieri-like formula for monomials and forgotten.
Let I be a composition with `(I) = n, then

Ψr ·M I = (n + 1)M (r)·I + n M (r).I(4.3)

F I ·Ψr = (n + 1)φI·(r) − n F I.(r)(4.4)

More generally, the product of two monomial symmetric functions has the following expansion:

Proposition 4.3.

(4.5) MJ ·M I =
∑

K�J, |K|=|J|

(
`(I) + `(K)

`(J)

)
MK·I +

(
`(I) + `(K)− 1

`(J)

)
MK.I ,

where the sum is over all compositions preceding J in the reverse refinement order. (Binomial coefficients
with negative entries are taken to be zero.)

Proposition 4.4.

(4.6) F I · F J =
∑
K�J

(−1)`(K)−`(J)+1

(
`(I) + `(K)

`(J)

)
F I·K +

∑
K�J

(−1)`(K)−`(J)

(
`(I) + `(K)− 1

`(J)

)
F I.K

In addition, generalizing formula (30) of Proposition 3.3 in [1], given a composition I = (i1, . . . , in) the
following bilinear relations are true:

Proposition 4.5.
n∑

s=0

(−1)n−sF i1,...,isM is+1,...,in =
n∑

s=0

(−1)n−sM i1,...,isF is+1,...,in = 0
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4.2. Fundamental. So far I have not been able to obtain a formula for multiplication of fundamental
corresponding to arbitrary compositions. The following partial results can nevertheless be useful:

Proposition 4.6.

Ln · LJ =
∑

M�J

(
n + `(J)− 1

`(M)

)
Ln·M +

(
n + `(J)− 1

`(M)− 1

)
Ln.M

and dually

LI · L1n

=
∑
K�I

(
`(Ĩ) + n− 1

`(K̃)

)
LK.1n

+
(

`(Ĩ) + n− 1
`(K̃)− 1

)
LK·1n

For two arbitrary compositions the following result seems to follow from numerous examples:

Conjecture 4.1.

LI · LJ =
∑

K�I, M�J

cK·MLK·M + cK.MLK.M

with all coefficients nonnegative integers.

5. Transition between Different Bases.

It turns out that transition matrices between noncommutative monomial and forgotten function are
specially simple, i.e. uni-triangular with respect to the reverse refinement order. It is necessary, however, to
first revisit quasideterminants and their properties first.

5.1. An Identity between Quasideterminants of Almost-Triangular Matrices. The property
of triangularity follows from a general identity for quasideterminants of almost-triangular matrices.2 This
identity relates a quasideterminant of an almost-triangular matrix with given entries on the off-diagonal to
a sum of quasideterminants with the same off-diagonal entries but in reversed order and opposite sign.

Let an operator Tj act on Qn(B) by simultaneously removing (j+1)thth column and jth row (the column
and row that intersect at the off-diagonal element bj). (The resulting (n − 1) × (n − 1) matrix is filled in
with the first (n− 2) entries of B.) Further, for a composition J = (j1, j2, . . . , jk) define

TJ =
k∏

s=1

Tjs
, with k = `(J)

Take B = N. Then the following identity is true:

Proposition 5.1.

(5.1)
1
n

Qn(−(n− 1),−(n− 2), . . . ,−1) =
∑

J

(−1)n−k−1

n− k
TJQn(1, 2, . . . , n− 1),

where the sum is over all subsets J ⊆ [1, 2, . . . , n− 1].

2I believe this identity is new.
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Example 5.1. Consider a four by four quasideterminant Q4(−3,−2,−1) and its expansion:

Q4(−3,−2,−1) =
1
4

∣∣∣∣∣∣∣∣
a11 −3 0 0
a21 a22 −2 0
a31 a32 a33 −1
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ =

=
(
−1

4
T∅ +

1
3

(T1 + T2 + T3)−
1
2

(T1T2 + T1T3 + T2T3) + T1T2T3T4

)
Q4(1, 2, 3) =

=− 1
4

∣∣∣∣∣∣∣∣
a11 1 0 0
a21 a22 2 0
a31 a32 a33 3
a41 a42 a43 a44

∣∣∣∣∣∣∣∣ +
1
3

∣∣∣∣∣∣
a21 1 0
a31 a33 2
a41 a43 a44

∣∣∣∣∣∣ +
1
3

∣∣∣∣∣∣
a11 1 0
a31 a32 2
a41 a42 a44

∣∣∣∣∣∣ +
1
3

∣∣∣∣∣∣
a11 1 0
a21 a22 2
a41 a42 a43

∣∣∣∣∣∣−
− 1

2

∣∣∣∣ a31 1
a41 a44

∣∣∣∣− 1
2

∣∣∣∣ a12 1
a41 a43

∣∣∣∣− 1
2

∣∣∣∣ a11 1
a41 a42

∣∣∣∣ + a41

5.2. Noncommutative Monomial and Forgotten Symmetric Functions. If akj = Ψin−k+1+...+in−j+1 ,
where (i1, . . . , in) are parts of the composition I then (5.1) implies

Proposition 5.2.

(5.2) F I =
∑
J�I

MJ ,

where the sum is over compositions in the reverse refinement order.
And conversely,

(5.3) M I =
∑
J�I

(−1)`(I)−`(J)F J ,

Example 5.2. Continuing Example 5.1, consider an expansion of F 2,2,1,3. Therefore let I = (2, 2, 1, 3)
and akj = Ψin−k+1+...+in−j+1 , then

1
4

∣∣∣∣∣∣∣∣
Ψ3 −3 0 0
Ψ4 Ψ1 −2 0
Ψ6 Ψ3 Ψ2 −1
Ψ8 Ψ5 Ψ4 Ψ2

∣∣∣∣∣∣∣∣ = −1
4

∣∣∣∣∣∣∣∣
Ψ3 1 0 0
Ψ4 Ψ1 2 0
Ψ6 Ψ3 Ψ2 3
Ψ8 Ψ5 Ψ4 Ψ2

∣∣∣∣∣∣∣∣ +
1
3

∣∣∣∣∣∣
Ψ4 1 0
Ψ6 Ψ2 2
Ψ8 Ψ4 Ψ2

∣∣∣∣∣∣ +
1
3

∣∣∣∣∣∣
Ψ3 1 0
Ψ6 Ψ3 2
Ψ8 Ψ5 Ψ2

∣∣∣∣∣∣ +

+
1
3

∣∣∣∣∣∣
Ψ3 1 0
Ψ4 Ψ1 2
Ψ8 Ψ5 Ψ4

∣∣∣∣∣∣− 1
2

∣∣∣∣∣ Ψ6 1
Ψ8 Ψ2

∣∣∣∣∣− 1
2

∣∣∣∣∣ Ψ4 1
Ψ8 Ψ4

∣∣∣∣∣− 1
2

∣∣∣∣∣ Ψ3 1
Ψ8 Ψ5

∣∣∣∣∣ + Ψ8,

i.e.
F 2,2,1,3 = M2,2,1,3 + M2,2,4 + M2,3,3 + M4,1,3 + M2,6 + M4,4 + M5,3 + M8

5.3. Noncommutative Monomial and Power Sums. Consider J = (j1, . . . , js) � I = (i1, . . . , in),
i.e.

J = (i1 + . . . + ip1 , ip1+1 + . . . + ip2 , . . . , ipk−1+1 + . . . + ipk
, . . . , ips

+ . . . + in)
for some nonnegative p1, . . . , ps. Set p0 = 0. Then the formula for transition from monomial to power sum
basis can be written as

Proposition 5.3.

M I =
∑
J�I

(−1)`(I)−`(J)∏s−1
k=0(`(I)− pk)

ΨJ

Conversely,

Proposition 5.4.

ΨI =
∑
J�I

`(J)∏
k=1

(`(J)− k + 1)pk−pk−1MJ
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Combining the expansion of monomial functions in power sums and power sums in complete (and other
bases) from [1], one can obtain expansion monomial functions in complete (and other bases).

5.4. Ribbon Schur Functions and Noncommutative Monomials. Given the importance of Kostka
numbers, it is natural to consider an expansion of ribbon Schur functions in monomials

RI =
∑

J, |J|=|I|

KIJMJ ,

where KIJ can be called the noncommutative Kostka numbers by analogy with the classical case.
Based on a fair number of examples the following can be stated as a conjecture

Conjecture 5.3. KIJ are nonnegative integers.

The fact that expansion coefficients are integers is obvious from the definition of ribbon Schur functions
and the fact that product of M Is is integral in the monomial basis. It is the fact that these integers are
nonnegative that is missing a proof.

For certain types of compositions this conjecture can be confirmed by explicit expressions.

Proposition 5.5. Let k ≥ r, then

(5.4) Rk1r =
(

k + r − 1
r

) ∑
|I|=k

M I·1r

Proposition 5.6.

(5.5) R1kn =
∑
|J|=k

∑
|I|=n

(
`(I) + `(J)− 1

k

)
MJ·I +

(
`(I) + `(J)− 2

k

)
MJ.I

5.5. Ribbon Schur Functions and Fundamental Noncommutative Symmetric Functions.
Ribbon Schur functions seem to have an expansion in fundamental noncommutative function with nonneg-
ative coefficients as well, i.e. if

RI =
∑

J,|J|=|I|

GIJLJ

then

Conjecture 5.4. GIJ are nonnegative integers.

This conjecture is obviously stronger then Conjecture 5.3. As in the case of noncommutative Kostka
numbers only the nonnegativity requires proof.
Again, this can be confirmed by explicit formulas in special cases. For ribbon Schur functions labeled by
compositions with two and three parts respectively, one obtains

Example 5.5.

Rnm = SnSm − Sn+m = Ln · Ln − Ln.m by (4.6)
=

∑
J1�(m)

(
n + m− 1

`(J1)

)
Ln·J1 +

(
n + m− 1
`(J1)− 1

)
Ln.J1 − Ln.m =

=
∑

J1�(m)

(
n + m− 1

`(J1)

)
Ln·J1 +

∑
J1�(m)

(
n + m− 1
`(J1)− 1

)
Ln.J1



NONCOMMUTATIVE MONOMIAL SYMMETRIC FUNCTIONS. 9

Example 5.6.

Rknm =
∑

J1�(m)

∑
J2�n·J1

(
n + m− 1

`(J1)

)(
k + n + `(J1)− 1

`(J2)

)
Lk·J2+

+
∑

J1�(m)

∑
J2�n·J1

(
n + m− 1

`(J1)

)(
k + n + `(J1)− 1

`(J2)− 1

)
Lk.J2+

+
∑

J1�(m)

[(
n + m− 1

`(J1)

)(
k + n + `(J1)− 1

`(J1)

)
−

(
k + n + m− 1

`(J1)

)]
Lk.n·J1+

+
∑

J1�(m)

∑
J2�n.J1

(
n + m− 1
`(J1)− 1

)(
k + n + `(J1)− 2

`(J2)

)
Lk·J2+

+
∑

J1�(m)

∑
J2�n.J1

(
n + m− 1
`(J1)− 1

)(
k + n + `(J1)− 2

`(J2)− 1

)
Lk.J2+

+
∑

J1�(m)

[(
n + m− 1
`(J1)− 1

)(
k + n + `(J1)− 2

`(J1)− 1

)
−

(
k + n + m− 1

`(J1)− 1

)]
Lk.n.J1

with all coefficients nonnegative.

6. A Noncommutative Cauchy Identity and Pairing.

Equipped with noncommutative monomial and fundamental symmetric functions, I’m ready to state the
noncommutative version of the Cauchy identity.

Proposition 6.1. ∑
I

M I(X)SI(A) =
∑

J

LJ(X)RJ(A).

Using the noncommutative Cauchy identity as a starting point, define the noncommutative pairing

Definition 6.1.
〈M I |SJ〉 = δIJ ,

i.e. declare monomial symmetric functions to be dual to complete.
Then fundamental symmetric functions are dual to ribbon Schur:

Proposition 6.2.
〈LI |RJ〉 = δIJ

One of the pleasing properties of this pairing is that

Proposition 6.3. The involution ω is an isometry of the pairing (6.1).

One can deduce values of this pairing between different functions making use of transition formulas
between different bases (see Sec. 5) and applying involution ω.
To write down the formula for pairing between power sums, which is particularly interesting as they are not
orthogonal in contrast to the classical theory, I need to recall some more definitions from [1]. Denote the
last part of a composition I = (i1, . . . , ik) by

lp(I) = ik

and let J be a composition such that J � I. Let then J = (J1, ..., Jm) be the unique decomposition of J
into compositions (Ji)i=1,m such that |Jp| = ip, p = 1, ...,m. Define

lp(J, I) =
m∏

i=1

lp(Ji)

Then
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Proposition 6.4.

〈ΨI |ΨJ〉 =
∑

J�M�I

(−1)`(M)−`(J)lp(M,J)
`(M)∏
k=1

(`(M)− k + 1)pk−pk−1 ,

where pk are such that for each M

M = (i1 + . . . + ip1 , ip1+1 + . . . + ip2 , . . . , ipk−1+1 + . . . + ipk
, . . . , ips

+ . . . + in)

In particular

(6.1) 〈ΨI |ΨI〉 =

`(I)∏
k=1

ik

 `(I)! = sp(I)

The last notation is also from [1].

Corollary 6.2. Since the involution is an isometry of the scalar product

〈ΨI |ΨJ〉 = (−1)`(I)−`(J)〈ΨI |ΨJ〉

7. Some Noncommutative Identities.

In the Exercise 10, Ch. I, §5 of [2], it is shown that

(7.1)
∑
|λ|=n

X`(λ)−1mλ =
n−1∑
k=0

sn−k,1k (X − 1)k

This identity has the following noncommutative analog:

Proposition 7.1. ∑
|I|=n

X`(I)−1M I =
n−1∑
k=0

R1k,n−k(X − 1)k

In some sense this is a generalization of Corollary 3.14 of [1]

Ψn =
n−1∑
k=0

(−1)kR1k,n−k

as Proposition 7.1 reduces to the above at X = 0.
Another identity, a way of writing (56) from [1] or, a noncommutative version of Ex. 4, Ch. I, §5 of [2].

Proposition 7.2.

(S1)n =
∑
|I|=n

RI =
∑
|I|=n

`(I)∏
k=1

(`(I)− k + 1)ikM I
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9. Conclusions.

In conclusion, this presentation introduces what seems to be an adequate noncommutative analog of
monomial symmetric functions. The noncommutative monomial symmetric functions share a lot of proper-
ties with their classical analogs, the most important of which are the integrality and (conjectured) positivity
of the ribbon Schur functions in this basis.
Ribbon Schur functions are also (conjecturally) nonnegative in the basis of noncommutative fundamen-
tal symmetric functions and dual to these functions with respect to the pairing between noncommutative
monomial and complete symmetric functions.



NONCOMMUTATIVE MONOMIAL SYMMETRIC FUNCTIONS. 11

References

[1] Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, Jean-Yves-Thibon, Noncommutative
symmetric functions, Adv. Math. 112 (1995), 218-348;

[2] I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, 1995;

[3] A. Lascoux, Symmetric Functions, Notes of the course given at Nankai University, October-November 2001;
[4] Israel M. Gelfand, Sergei Gelfand, Vladimir S. Retakh, Robert Lee Wilson, Quasideterminants, QA/0208146;

[5] Israel M. Gelfand, Vladimir S. Retakh, Quasideterminants, I, Selecta Math. (N.S.) 3, 93-100 (1997);

[6] Israel M. Gelfand, Vladimir S. Retakh, Determinants of Matrices over Noncommutative Rings, Func. Anal. Appl. 25,
91-102 (1991);

[7] R. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, 1999.

[8] I. Gessel, Multipartite P-partitions and inner product of skew Schur functions, Contemp. Math. 34, 289-301 (1984);

Physics Department, Yeshiva University, 500 West 185th Street, New York, N.Y. 10033, USA

E-mail address: tevlin@yu.edu


