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Non-commutative extensions of classical determinantal identities

Matjaž Konvalinka and Igor Pak

Abstract. We present several non-commutative extensions of MacMahon Master Theorem and Sylvester’s
Identity. The proofs are combinatorial and new even in the classical (commutative) cases.

Résumé. Nous présentons plusieurs extensions noncommutatives du Master théorème de MacMahon et de
l’identité de Sylvester. Même dans les cas classiques (commutatifs), les démonstrations sont nouvelles et de
nature combinatoire.

Introduction

Combinatorial Linear Algebra is a beautiful and underdeveloped part of Enumerative Combinatorics.
The underlying idea is very simple: one takes a matrix identity and views it as an algebraic result over a
(possibly non-commutative) ring. Once the identity is translated into the language of words, Lothaire style,
an explicit bijection or an involution is employed to prove the result. The resulting combinatorial proofs
are often insightful and lead to extensions and generalizations of the original identities, often in unexpected
directions.

Now, it is not surprising that quantum linear algebra identities can also be established by combinatorial
means. On the contrary, it is perhaps surprising that so little work has been done in this direction. Given
the large body of q-results as well as (totally) non-commutative results, one would expect the quantum
generalizations to play an important role in modern developments.

In this paper we establish a general framework of quantum and more general non-commutative general-
izations of classical determinantal identities. We restrict ourselves to two identities: the MacMahon Master
Theorem and the Sylvester’s determinant identity. Both have been thoroughly studied and have a number
of connections and applications to combinatorics and representation theory. In fact, both have been recently
generalized to quantum matrices [GLZ, KL]. We find a far-reaching (qij)-extensions of both results as well
as a number of intermediate generalizations.

Our technique is based on explicit combinatorial arguments rather than algebra. We adopt the funda-
mental philosophy of quasi-determinants due to Gelfand and Retakh [GR] (see also [G+]) and restate the
identities in the language of lattice paths (i.e. positive sums of certain words), by using the inverse matrix
elements rather than determinant themselves. We then are able to prove bijectively the resulting equivalent
versions of classical identities. These bijections are new in both cases and are of independent interest. We
then show that the form of these identities and the structure of the bijections are such that they are easily
amenable to advanced generalizations, with little change in the proof. In fact, the bijections themselves are
exactly the same, but there is a fair amount of bookkeeping required to establish the refined results.

This extended abstract is constructed as follows. We start with the general algebraic framework and
describe various classes of quantum matrices, quantum determinants, as well as some combinatorics of words.
The main part of the paper is then split into two sections where we discuss MacMahon’s Master Theorem
and Sylvester’s identity. Both parts proceed along parallel lines, but can be read independently. In each case
we state the most general result and describe a bijection proving the classical result. We then briefly outline
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the necessary bookkeeping in each case, skipping most details for the lack of space. We conclude with final
remarks and open problems.

This extended abstract is based on two papers [K1, KP] which contain complete proofs of all results,
further extensions and applications. They will appear as separate publications.

Historical remarks. Let us give a brief overview of the wealth of previous results in the subject. This work
being in the intersection of several fields, is strongly connected to several streams of recent developments on
both algebraic and combinatorial side.

First, there is a great deal of the combinatorics of words approach to the linear algebra identities, their
various extensions and applications. We refer to [Z] for an accessible introduction and basic references, and
to [L] for an overview of the field.

Second, a tremendous body of literature exists on quantum groups and quantum linear algebra. Without
going into history and technical details let us mention Manin’s works [M2, M1] where the (qij)-analogues
were obtained. While this is not the last step in a long chain of generalizations, this version motivated our
ultimate generalizations.

Third, the Gelfand-Retakh’s non-commutative approach established a direction in which the identities
can be generalized [GR, G+]. In particular, they showed that a large number of ‘generalized determinants’
are special cases of the general quasi-determinants they defined. A subsequent work [ER] further generalized
this set of examples.

Now, specifically on MacMahon Master Theorem (MMT), the classical works of Cartier and Foata
reproved the theorem by using the combinatorics of words [CF, F1, F2]. By doing so they explicitly
extended it to what we call Cartier-Foata (partially commutative) matrices. Most recently, there has been
a large number of extensions and generalizations. The turning point was the Garoufalidis-Lê-Zeilberger
paper [GLZ] which proved a quantum analogue of the MMT. In fact, having restated the MMT in linear
algebra form it opened a room for generalizations:

(MMT)
∞∑

k=0

tr(SkA) =
1

det(I −A)
.

In a series or papers [FH1, FH2, FH3], Foata and Han reproved the quantum MMT, found interesting
further extensions and an important ‘1 = q’ principle which allows easy algebraic proof of certain q-equation
(implicitly based on the Gröbner bases of the underlying quadratic algebras). In a different direction, Hai
and Lorenz established the quantum MMT by using the Koszul duality [HL], thus suggesting that MMT
can be further extended to Koszul quadratic algebras with a large group of (quantum) symmetries. We refer
to [KP], the basis of this abstract, for further references and details.

The Sylvester’s determinant identity (SDI) has also been intensely studied, mostly in the algebraic rather
than combinatorial context. The crucial step was made by Krob and Leclerc [KL] who found a quantum
version of SDI. Since then, Molev found several far-reaching extensions of the SDI to Yangians, including
other root systems [Mo1, Mo2] (see also [HM]). We refer to [K1] for further details and references.

1. Algebraic framework

1.1. Matrices and words. We work in the C-algebra A of formal power series in non-commuting
variables aij , 1 ≤ i, j ≤ m. Elements of A are infinite linear combinations of words in variables aij (with
coefficients in C). In most cases we take elements of A modulo some ideal I generated by a finite number of
quadratic relations.

We consider lattice steps of the form (x, i) → (x + 1, j) for some x, i, j ∈ Z, 1 ≤ i, j ≤ m. We think of
x being drawn along x-axis, increasing from left to right, and refer to i and j as the starting height and the
ending height, respectively. We identitfy the step (x, i) → (x + 1, j) with aij . Similarly, we identify a finite
sequence of steps with a word in the alphabet {aij : 1 ≤ i, j ≤ m}, i.e. with an element of the algebra A.
If each step in a sequence starts at the ending point of the previous step, we call such a sequence a lattice
path. A lattice path with starting height i and ending height j will be called a path from i to j.

We abbreviate the product aλ1µ1 · · · aλ`µ`
to aλ,µ for λ = λ1 · · ·λ` and µ = µ1 · · ·µ`, where λ and µ are

regarded as words in the alphabet {1, . . . , m}. For such a word ν = ν1 · · · ν`, define the set of inversions of ν

I(ν) = {(i, j) : i < j, νi > νj},
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and let inv ν = |I(ν)| be the number of inversions of ν.
Let B = (bij)n×n be a square matrix with entries in A, i.e. bij ’s are linear combinations of words in A.

To define the determinant of B, expand the terms of

(1.1)
∑

σ∈Sn

(−1)inv(σ)bσ11 · · · bσnn,

and weight a word aλ,µ with a certain weight w(λ, µ). The resulting expression is called the determinant of
B with respect to A. In the usual commutative case, all weights are equal to 1.

In all cases we set w(∅,∅) = 1. We have
1

det(I −A)
=

1
1− Σ

= 1 + Σ + Σ2 + . . . ,

where Σ is a certain finite weighted sum of words in aij . Note that both left and right inverse of det(I −A)
are equal to the infinite sum on the right. Throughout the paper we use the fraction notation as above in
non-commutative situations.

The (i, j)-th entry of Ak is the sum of all paths of length k from i to j. Since

(I −A)−1 = I + A + A2 + . . . ,

the (i, j)-th entry of (I −A)−1 is the sum of all paths (of any length) from i to j.

1.2. Classes of non-commutative matrices. For a matrix A = (aij)m×m we say that A is:
(1) commutative if

ajlaik = aikajl for all i, j, k, l;
(2) Cartier-Foata if

ajlaik = aikajl for all i, j, k, l, i 6= j;
(3) right-quantum if

ajkaik = aikajk for all i, j, k

aikajl − ajkail = ajlaik − ailajk for all i, j, k, l

(4) q-Cartier-Foata if

ajlaik = aikajl for all i < j, k < l,

ajlaik = q2 aikajl for all i < j, k > l,

ajkaik = q aikajk for all i < j;

(5) q-right-quantum if

ajkaik = q aikajk for all i < j,

aikajl − q−1 ajkail = ajlaik − q ailajk for all i < j, k < l;

(6) q-Cartier-Foata if

ajlaik = q−1
kl qij aikajl for all i < j, k < l

ajlaik = qijqlk aikajl for all i < j, k > l

ajkaik = qij aikajk for all i < j;

(7) q-right-quantum if

ajkaik = qij aikajk for all i < j

aikajl − q−1
ij ajkail = qklq

−1
ij ajlaik − qkl ailajk for all i < j, k < l.

Here q, qij for i < j, are some fixed non-zero complex numbers.
We have the following implications:

(7) ⇒ (5) ⇒ (3)
⇓ ⇓ ⇓

(6) ⇒ (4) ⇒ (2) ⇒ (1)
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For example, by (7) ⇒ (6) we mean that if a statement is true for all q-right-quantum matrices, it is also
true for all q-Cartier-Foata matrices. Equivalently, every q-Cartier-Foata matrix is also q-right-quantum.

We denote the ideals of A generated by relations in (1)–(7) by

Icomm, Icf , Irq, Iq−cf , Iq−rq, Iq−cf , Iq−rq

respectively.

1.3. Non-commutative determinants. In cases (1)–(3), define the weight of aλ,µ to be

w(λ, µ) = 1.

In cases (4)–(5), take
w(λ, µ) = qinv µ−inv λ,

and in cases (6)–(7), take

w(λ, µ) =
∏

(i,j)∈I(µ)

qµjµi

∏

(i,j)∈I(λ)

q−1
λjλi

.

In other words, we keep track of the number of inversions in cases (4)–(5), and of actual inversions in (6)–(7).
The determinant with respect to A of the matrix I − A plays an important role. In cases (1)–(3), we

have:
det(I −A) =

∑

J⊆[m]

(−1)|J| detAJ ,

where
detAJ = det(aij)i,j∈J =

∑

σ∈SJ

(−1)inv σaσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}. Similarly, in cases (4)–(5), we have:

detq(I −A) =
∑

J⊆[m]

(−1)|J|detqAJ ,

where
detqAJ = detq(aij)i,j∈J =

∑

σ∈SJ

(−q)− inv σaσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}. Finally, in cases (6)–(7), we have:

detq(I −A) =
∑

J⊆[m]

(−1)|J|detqAJ ,

where

detqAJ = detq(aij)i,j∈J =
∑

σ∈SJ


 ∏

(js,jt)∈I(σ)

(−qσ(jt)σ(js))−1


 aσ(j1)j1 · · · aσ(jk)jk

for J = {j1 < j2 < . . . < jk}.

1.4. Matrix inverse formulas. Recall that if D is an invertible matrix with commuting entries, we
have:

(1.2) D−1
ij = (−1)i+j detDji

det D
,

where Dji denotes the matrix D without j-th row and i-th column. This matrix inverse formula can also be
extended to cases (2)–(7) as follows.

In cases (2)–(3), when A = (aij)m×m is a Cartier-Foata matrix or a right-quantum matrix, we have:
(

1
I −A

)

ij

= (−1)i+j 1
det(I −A)

· det (I −A)ji for all 1 ≤ i, j ≤ m.

The proof is a straightforward linear algebra manipulation, see e.g. [KP, §12].
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In cases (4)–(5), when A = (aij)m×m is a q-Cartier-Foata or a q-right-quantum matrix, we have
(

1
I −A[ij]

)

ij

= (−1)i+j 1
detq(I −A)

· detq (I −A)ji for all 1 ≤ i, j ≤ m,

where

A[ij] =




q−1a11 · · · q−1a1j a1,j+1 · · · a1m

...
. . .

...
...

. . .
...

q−1ai−1,1 · · · q−1ai−1,j ai−1,j+1 · · · ai−1,m

ai1 · · · aij qai,j+1 · · · qai,m

...
. . .

...
...

. . .
...

am1 · · · amj qam,j+1 · · · qamm




.

This follows from the “1 = q” principle [FH1, §3] and is given in [KP, §12] and [K1, §11].
Finally, in cases (6)–(7), when A = (aij)m×m is a q-Cartier-Foata matrix or a q-right-quantum matrix,

we have: (
1

I −A[ij]

)

ij

= (−1)i+j 1
detq(I −A)

· detq (I −A)ji for all 1 ≤ i, j ≤ m,

where

A[ij] =




q−1
1i a11 · · · q−1

1i a1j q−1
1i qj,j+1a1,j+1 · · · q−1

1i qjma1m

...
. . .

...
...

. . .
...

q−1
i−1,iai−1,1 · · · q−1

i−1,iai−1,j q−1
i−1,iqj,j+1ai−1,j+1 · · · q−1

i−1,iqjmai−1,m

ai1 · · · aij qj,j+1ai,j+1 · · · qjmai,m

...
. . .

...
...

. . .
...

am1 · · · amj qj,j+1am,j+1 · · · qjmamm




.

This follows from the “1 = qij” principle, see [KP, §12] and [K1, §11].

Alternatively, matrix inverse formulas can also be proved combinatorially, see [K2].

2. MacMahon Master Thorem

2.1. Main result. Assume that the variables x1, . . . , xm commute with all aij and that they satisfy
the commutation relation

xjxi = qij xixj for i < j

for some non-zero complex numbers qij . Choose k1, . . . , km ≥ 0, and expand the product
m∏

i=1

(ai1x1 + . . . + aimxm)ki .

For every term, use the commutation relations to move all xi’s to the right of aij ’s and to rearrange them
so that their indices are non-decreasing. Along the way, we exchange pairs of variables xi and xj , producing
a product of qij ’s. Denote by G(k1, . . . , km) the coefficient at xk1

1 · · ·xkm
m . Each such coefficient is a finite

sum of words ai1j1 · · · ai`j`
weighted by monomials in qij ’s, 1 ≤ i < j ≤ m; here we have i1 ≤ . . . ≤ i`, the

number of variables ai,∗ is equal to ki, and the number of variables a∗,j is equal to kj . Our main result is
the following theorem.

Theorem 2.1 (q-right-quantum MacMahon master theorem). Let A = (aij)m×m be a q-right-quantum
matrix. Denote the coefficient of xk1

1 · · ·xkm
m in

m∏

i=1

(ai1x1 + . . . + aimxm)ki ,

by G(k1, . . . , km). Then

(2.1)
∑

(k1,...,km)

G(k1, . . . , km) =
1

detq(I −A)
,
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where the summation is over all nonnegative integer vectors (k1, . . . , km).

The classical MacMahon master theorem states the same for A a complex matrix and the q-determinant
replaced by the usual determinant.

2.2. Cartier-Foata case. Assume first that A is a Cartier-Foata matrix.

Define a balanced sequence (b-sequence) to be a finite sequence of steps

α =
{
(0, i1) → (1, j1) , (1, i2) → (2, j2) , . . . , (`− 1, i`) → (`, j`)

}
,

such that the number of steps starting at height i is equal to the number of steps ending at height i, for all
i. We denote this number by ki, and call (k1, . . . , km) the type of the b-sequence. Clearly, the total number
of steps in the path is ` = k1 + . . . + km.

Define an ordered sequence (o-sequence) of type (k1, . . . , km) to be a b-sequence of k1 steps starting at
height 1, then k2 steps starting at height 2, etc., so that ki steps end at height i. Denote by O(k1, . . . , km)
the set of all o-sequences of type (k1, . . . , km).

Now consider a lattice path from (0, 1) to (x1, 1) that never goes below y = 1 or above y = m, then
a lattice path from (x1, 2) to (x2, 2) that never goes below y = 2 or above y = m, etc.; in the end, take a
straight path from (xm−1, m) to (xm,m). We call this a path sequence (p-sequence). Observe that every
p-sequence is also a b-sequence. Denote by P(k1, . . . , km) the set of all p-sequences of type (k1, . . . , km).

Example 2.2. Figure 1 presents an o-sequence and a p-sequence.

Figure 1. An o-sequence and a p-sequence of type (4, 7, 8).

Observe that choosing a term of
m∏

i=1

(ai1x1 + . . . + aimxm)ki

means choosing a term a1∗x∗ k1 times, then choosing a term a2∗x∗ k2 times, etc., and then multiplying all
these terms. In other words, each term in G(k1, . . . , km) corresponds to an o-sequence in O(k1, . . . , km).

Let us define a bijection ϕ : O(k1, . . . , km) → P(k1, . . . , km) with the property that the word ϕ(α) is a
rearrangement of the word α, for every o-sequence α.

Take an o-sequence α, and let [0, x] be the maximal interval on which it is part of a p-sequence, i.e.
the maximal interval [0, x] on which the o-sequence has the property that if a step ends at level i, and the
following step starts at level j > i, the o-sequence stays on or above height j afterwards. Let i be the height
at x. Choose the step (x′, i) → (x′ + 1, i′) in the o-sequence that is the first to the right of x that starts at
level i (such a step exists because an o-sequence is a balanced sequence). Keep switching this step with the
one to the left until it becomes the step (x, i) → (x + 1, i′). The new object is part of a p-sequence at least
on the interval [0, x + 1]. Continue this procedure until we get a p-sequence ϕ(α).

For example, for the o-sequence given in Figure 1 we have x = 1 and i = 3. The step we choose then is
(12, 3) → (13, 1), i.e. x′ = 12. The following result is straightforward.

Lemma 2.3. The map ϕ : O(k1, . . . , km) → P(k1, . . . , km) constructed above is a bijection.

Example 2.4. Figure 2 shows the switches for an o-sequence of type (3, 1, 1), and the p-sequence in
Figure 1 is the result of applying this procedure to the o-sequence in the same figure (we need 33 switches).
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Figure 2. Transforming an o-sequence into a p-sequence.

Note that the sum of the paths from 1 to 1 is enumerated by
(
(I −A)−1

)
11

. By the matrix inverse
formula in case (2), the sum of all p-sequences is equal to

(
1

I −A

)

11

(
1

I −A11

)

22

(
1

I −A12,12

)

33

· · · 1
1− amm

=

=
(
det−1(I −A) · det(I −A11)

) · (det−1(1−A11) · det−1(I −A12,12)
) · · · = 1

det(I −A)
.

All the steps we switched had different starting heights, so ϕ(α) = α modulo the ideal Icf . This completes
the proof of Theorem 2.1 for A a Cartier-Foata matrix.

2.3. Right-quantum case. A slightly more involved proof proves the same theorem in the right-
quantum case; here we have to perform the switches simultaneously. Figure 3 shows that the sum over
all elements of O(3, 1, 1) is equal to the sum over all elements of P(3, 1, 1) modulo the ideal Irq. Here p-
sequences are drawn in bold, an arrow from a sequence α to a sequence α′ means that we get α′ from α by
performing a switch and that α′ = α mod Irq, and arrows from q-sequences α, β to q-sequences α′, β′ whose
intersection is marked by a dot mean that we get α′ (resp. β) from α (resp. β) by performing a switch, and
α′ + β′ = α + β mod Irq.

Figure 3. Transforming o-sequences into p-sequences via a series of simultaneous switches.

2.4. q-right-quantum case. Let us sketch the proof in the weighted case (5), i.e. when xjxi = qxixj

for i < j, and the matrix A is q-right-quantum. When we expand
m∏

i=1

(ai1x1 + . . . + aimxm)ki ,

a term aλ,µ in G(k1, . . . , km) has weight qinv µ = w(λ, µ) (since λ is non-decreasing and inv λ = 0). Performing
the switches changes the weight, but at each point the term aλ,µ has weight w(λ, µ). For example, if i < j
and k < l, λ = λ1ijλ2, µ = µ1klµ2, λ′ = λ1jiλ2, µ = µ1lkµ2, then inv λ′ = inv λ + 1, inv µ′ = inv µ + 1 and
so the relation ajlaik = aikajl gives

qinv µ−inv λaλ,µ = qinv µ′−inv λ′aλ′,µ′ mod Iq−cf .

Therefore, the sum of all o-sequences with corresponding weights is equal to the sum of all p-sequences with
corresponding weights modulo Iq−rq. By the matrix inversion formula, the latter is equal to detq

−1(I − A)
modulo Iq−rq.
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2.5. q-right-quantum case. We assume that xjxi = qijxixj for i < j, and that the matrix A is
q-right-quantum. When we expand

m∏

i=1

(ai1x1 + . . . + aimxm)ki ,

a term aλ,µ in G(k1, . . . , km) has weight
∏

(i,j)∈I(µ)

qµjµi = w(λ, µ).

While performing the switches, the weight of a term aλ,µ is w(λ, µ) at every point, so the sum of all o-
sequences with corresponding weights is equal to the sum of all p-sequences with corresponding weights
modulo Iq−rq. The latter is equal to detq−1(I −A) by the matrix inversion formula.

3. Sylvester’s determinant identity

3.1. Main result. Consider a matrix A = (aij)m×m. Choose n < m, and denote by Â the submatrix
(aij)1≤i,j≤n. Also define

ai∗ =
(
ai1 ai2 · · · ain

)
, a∗j =




a1j

a2j

...
anj


 .

The main result is the following theorem.

Theorem 3.1 (q-right-quantum Sylvester’s determinant identity). Let A = (aij)m×m be a q-right-
quantum matrix, and choose n < m. Let Â, ai∗, a∗j be defined as above, and let

cqij = −detq−1(I − Â) · detq

(
I − Â −a∗j
−ai∗ −aij

)
, Cq = (cij)n+1≤i,j≤m.

Suppose qij = qi′j′ for all i, i′ ≤ n and j, j′ > n. Then

detq−1(I − Â) · detq(I −A) = detq(I − Cq).

Here detq(I − Cq) is defined with respect to the algebra Cq generated by cqij , n + 1 ≤ i, j ≤ m, and the
other determinants are defined with respect to A.

3.2. Non-commutative Sylvester’s identity. First, let us present a combinatorial proof of the so-
called non-commutative Sylvester’s identity [GR].

Theorem 3.2 (Gelfand-Retakh). Consider the matrix C = (cij)m
i,j=n+1, where

cij = aij + ai∗(I − Â)−1a∗j .

Then
(I −A)−1

ij = (I − C)−1
ij .

Proof. Take a lattice path aii1ai1i2 · · · ai`−1j with i, j > n. Clearly it can be uniquely divided into
paths P1, P2, . . . Pp with the following properties:

• the ending height of Pr is the starting height of Pr+1

• the starting and the ending heights of all Pr are strictly greater than n
• all intermediate heights are less than or equal to n

Next, note that for i, j > n, the sum over all non-trivial paths with starting height i, ending height j,
and intermediate heights ≤ n is equal to

aij +
∑

k,l≤n

aik(I + Â + Â2 + . . .)klalj = aij + ai∗(I − Â)−1a∗j = cij .

The decomposition therefore proves Theorem 3.2. ¤
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Example 3.3. Figure 4 depicts a path from 4 to 4 with a dotted line between heights n and n + 1, and
the corresponding decomposition, for n = 3.

P1 P2 P3 P4

Figure 4. The decomposition (a41a13a32a22a25)(a54)(a43a33a33a31a14)(a44).

The theorem implies that

(3.1) (I −A)−1
n+1,n+1(I −An+1,n+1)−1

n+2,n+2 · · ·
(

I −
(

Â a∗m
am∗ amm

))−1

mm

=

= (I − C)−1
n+1,n+1(I − Cn+1,n+1)−1

n+2,n+2 · · · (1− cmm)−1.

In all the cases (1)–(7), both the left-hand side and the right-hand side of this equation can be written
in terms of non-commutative determinants.

3.3. Cartier-Foata case. Assume that A is Cartier-Foata. By the matrix inverse formula, the left-
hand side of (3.1) is equal to

det−1(I − Â) · det(I −A).

The following lemma implies that the right-hand side of (3.1) is equal to det−1(I − C).

Lemma 3.4. If A is a Cartier-Foata matrix, then C is a right-quantum matrix.

Proof. The proof involves a switching procedure similar to the one in the proof of MacMahon Master
Theorem. The product cikcjk is the sum of terms of the form

aii1ai1i2 · · · aipkajj1aj1j2 · · · ajrk

for p, r ≥ 0, i1, . . . , ip, j1, . . . , jr ≤ n. We can transform this term into a term of the form

ajj′1aj′1j′2 · · · aj′tkaii′1ai′1i′2 · · · ai′sk

without changing it modulo Icf . This means that cikcjk = cjkcik modulo Icf . The proof of the other
right-quantum relation is similar. ¤

For example, take m = 5, n = 2, i = 3, j = 5, k = 4 and the term a31a12a24a52a22a24; Figure 5 shows
the steps that transform it into a52a24a31a12a22a24.

Figure 5. Transforming a31a12a24a52a22a24 into a52a24a31a12a22a24.
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By using the matrix inverse formula, we can also prove that if A is Cartier-Foata, then

cij = − det−1(I − Â) · det
(

I − Â −a∗j
−ai∗ −aij

)
.

This finishes the proof of the Cartier-Foata Sylvester’s identity.

3.4. Other cases. The proofs in cases (3)–(7) follow the same pattern. For (3), we prove similarly
that C is right-quantum when A is right-quantum. The rest of the proof can be repeated verbatim. In cases
(4)–(7), the matrix C has elements

cij = aij + ai∗(I − q−1Â)−1(q−1a∗j),

where qij = q for i ≤ n and j > n in the q-Cartier-Foata and q-right-quantum cases. Essentially the same
proof as above shows that C is q-right-quantum (resp. q-right-quantum) if A is q-Cartier-Foata or q-right-
quantum (resp. q-Cartier-Foata or q-right-quantum). Now the corresponding matrix inverse formula implies
Theorem 3.1.

4. Final remarks

4.1. MacMahon’s original proof of the MacMahon Master Theorem and numerous application to bino-
mial identities can be found in [MM]. The standard analytic proof of MMT usually involves the Lagrange
inversion. Let us mention here a number of papers on the q-Lagrange inversion (see references in [KP]) as
well as non-commutative lagrange inversion (see [Ge, PPR]). Interestingly, none of the proofs extends to
this case.

4.2. In [KS], Krattenthaler and Schlosser found a different kind of q-extension of MMT. In [KP] we
show how this formula follows from the Cartier-Foata version.

4.3. Most recently, Martin Lorenz, reported to the authors that he found a Koszul duality proof of our
(qij)-extension of MMT. In a different direction, Etingof and Pak found an unusual algebraic extension of the
MMT by using the generalized Koszul dualty by Berger [EP]. It would be interesting to find a combinatorial
proof of this result.

4.4. Sylvester’s determinant identity is usually given in the form used by Bareiss [B]:

detA ·
(
det Â

)m−n−1

= det B

for

bij = det
(

Â a∗j
ai∗ aij

)
, B = (bij)m

i,j=n+1.

Our Theorem 3.1 in the commutative case is easily equivalent to this version. The proof in [B] is a straigh-
forward linear algebra argument. We refer to [MG, AAM] for other proofs and mild (commutative)
generalizations.

4.5. It would be nice to obtain generalizations of the MMT and Sylvester’s determinant identity to
other root systems, as suggested in [Mo2]. One would have to substitute the determinants with the Sklyanin
minors, but a combinatorial interpretations is yet to be found.
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