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On the Young-Fibonacci insertion algorithm

Janvier Nzeutchap

Abstract. This work is concerned with some properties of the Young-Fibonacci insertion algorithm and
its relation with Fomin’s growth diagrams. It also investigates a relation between the combinatorics of

Young-Fibonacci tableaux and the study of Okada’s algebra associated to the Young-Fibonacci lattice. The
original algorithm was introduced by Roby and we redefine it in such a way that both the insertion and

recording tableaux of any permutation are conveniently interpreted as chains in the Young-Fibonacci lattice.
A property of Killpatrick’s evacuation is given a simpler proof, but this evacuation is no longer needed in
making Roby’s and Fomin’s constructions coincide. We provide the set of Young-Fibonacci tableaux of size

n with a structure of graded poset, induced by the weak order on permutations of the symmetric group,
and realized by transitive closure of elementary transformations on tableaux. We show that this poset gives

a combinatorial interpretation of the coefficients in the transition matrix from the analogue of complete
symmetric functions to analogue of the Schur functions in Okada’s algebra. We end with a quite similar

observation for four posets on Young-tableaux studied by Taskin.

Résumé. Ce travail s’interresse à quelques propriétés de l’algorithme d’insertion de Young-Fibonacci, plus

particulièrement nous montrons une relation simple entre l’approche Schensted et l’approche Fomin de cette
correspondance. Nous nous interressons aussi à l’apport de la combinatoire des tableaux de Young-Fibonacci

dans l’étude de l’algèbre d’Okada associée au graphe de Young-Fibonacci. Nous redéfissons l’algorithme
initial dû à Roby, de manière à ce que les deux tableaux associés à une permutation quelconque aient

une interprêtation combinatoire convenable en terme de chemin dans le graphe de Young-Fibonacci. Nous
munissons l’emsemble des tableaux de Young-Fibonacci de taille n d’un d’ordre partiel gradué induit par la
correspondance de Young-Fibonacci et l’ordre faible sur le groupe symétrique. Nous montrons que ce poset

donne une interprêtation combinatoire des nombres de Kostka dans l’algèbre d’Okada associée au graphe de
Young-Fibonacci. Nous montrons un résultat analogue pour les nombres de Kostka usuels, en relation avec

quatre posets sur les tableaux de Young étudiés par Taskin.
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1. Introduction

The Young lattice (YL) is defined on the set of partitions of positive integers, with covering relations
given by the natural inclusion order. The differential poset nature of this graph was generalized by Fomin
who introduced graph duality [13]. With this extension he introduced [15] a generalization of the classical
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Robinson-Schensted-Knuth [1, 2] algorithm, giving a general scheme for establishing bijective correspon-
dences between couples of saturated chains in dual graded graphs, both starting at a vertex of rank 0 and
having a common end point of rank n, on the one hand, and permutations of the symmetric group Sn on
the other hand. This approach naturally leads to the Robinson-Schensted insertion algorithm.

Roby [17] gave an insertion algorithm analogous to the Schensted correspondence, which maps a per-
mutation σ onto a couple made of a Young-Fibonacci tableau P (σ) and a path tableau Q(σ). Roby’s path
tableau Q(σ) is canonically interpreted as a saturated chain in the Fibonacci lattice Z(1) introduced by
Stanley [11] and also by Fomin [14]. Roby also showed that Fomin’s approach is partially equivalent to his
construction.

Indeed in Roby’s construction, only the saturated chain Q̂ obtained from Fomin’s growth diagram has
an interpretation as a representation of the path tableau Q(σ), while there seems to be no way to translate

the Young-Fibonacci tableau P (σ) into its equivalent chain P̂ . Contrarily to the approach of Killpatrick [8]
who has used an evacuation to relate the two constructions of Roby and Fomin, we show that with a suitable
mechanism for converting a saturated chain in the Young-Fibonacci lattice into a Young-Fibonacci tableau,
Roby’s construction naturally coincides with Fomin’s one.

The paper is organized as follows. In Section 1.1 we recall the definition of the Young-Fibonacci lattice,
then in Section 2 we define a mechanism for converting a saturated chain in this lattice into a standard
Young-Fibonacci tableau. In the same section, we also introduce a modification in Roby’s algorithm, in such
a way that both the insertion and recording tableaux of any permutation will have an interpretation in terms
of saturated chain in the Young-Fibonacci lattice. In Section 3.1 we relate Roby’s algorithm with Fomin’s
construction using growth diagrams and we compare it to Killpatrick’s work. In Section 4, we define an
analogue of Kostka numbers for Young-Fibonacci tableaux, and we point out one of their relation with usual
Fibonacci numbers. In Section 5 we define and we study some properties of a poset on Young-Fibonacci
tableaux. This poset turns out to be a model for the interpretation as well as the computation of another
analogue of Kostka numbers, introduced by Okada [16] in an analogue of the algebra of symmetric functions,
associated to the Young-Fibonacci lattice. We prove this result is Section 6, and in the last section of the
paper we prove a similar result relating usual Kostka numbers with four posets on Young-tableaux studied
by Taskin [9].

1.1. The Young-Fibonacci lattice.
A Fibonacci diagram or snakeshape of size n is a column by column graphical representation of a

composition of an integer n, with parts equal to 1 or 2. The number of such compositions is the nth

Fibonacci number. A partial order is defined on the set of all snakeshapes, in such a way to obtain an
analogue of the Young lattice of partitions of integers (YL). This lattice is called the Young-Fibonacci
lattice (YFL) and it was introduced by Stanley [11] and also by Fomin [14]. As we will see in the sequel,
there is a considerable similarity between the two lattices, as well as the combinatorics of tableaux their
induce. The covering relations in YFL are given below, for any snakeshape u.

(1) u is covered by the snakeshape obtained by attaching a single box just in front ;
(2) u is covered by the snakeshape obtained by adding a single box on top of its first single-boxed

column, reading u from left to right.
(3) if u starts with a series of two-boxed columns, then it is covered by all snakeshapes obtained by

inserting a single-boxed column just after any of those columns.

The rank |u| of a snakeshape u is the sum of digits of the corresponding Fibonacci word. Its length will
be denoted `(u). Let u and v be two snakeshapes such that v covers u in YFL, the cell added to u to obtain
v is an inner corner of v, it is also called an outer corner of u.

Remark 1.1. Young-Fibonacci tableaux (YFT) will naturally appear as numberings of snakeshapes,
satisfying certain conditions described in the sequel, the same way as Young tableaux are numberings of
partitions of integers with prescribed numbering conditions. The numbering conditions of Young-Fibonacci
tableaux are deduced from the description of the Young-Fibonacci insertion algorithm (Section 2.2).

Below is a pictorial representation of a finite realization of YFL, from rank 0 up to rank n = 4, with
black cells representing inner corners.
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Figure 1. The Young-Fibonacci lattice.

Now let us look at the problem of converting a saturated chain in YFL into a standard YFT.

2. Young-Fibonacci tableaux and Young-Fibonacci insertion algorithm

In YL, any saturated chain starting at the empty partition can be canonically converted into a standard
Young tableau, and this representation is convenient in many ways. It consists in labeling the boxes as their
occur in the chain. As already observed by Roby [17], one question which presents itself is to do the same in
YFL for any saturated chain starting at the empty snakeshape ∅. The need of such a conversion mechanism
will appear in section 3.1 in the interpretation of two saturated chains in a growth diagram.

One may also use the canonical labeling to convert a saturated chain of YFL into a tableau, but Roby
had already pointed out that one major problem with this canonical labeling is that except for the trivial
rule that each element in the top row must be greater than the one below it, no other obvious rules govern
what numberings are allowed for a given shape. We suggest that one first defines simple rules governing what
numberings are allowed for a given shape, so that it be easy to decide if a numbering of a snakeshape is a
legitimate Young-Fibonacci tableau or not. The convention we use is described in the next section.

2.1. Converting a chain in YFL into a standard Young-Fibonacci tableau.
Since we do not use the same conventions as Roby [17] and Fomin [13], let us give the following definition

of Young-Fibonacci tableaux.

Definition 2.1. A numbering of a snakeshape with distinct nonnegative integers is a standard Young-
Fibonacci tableau (SYFT) under the following conditions.

(1) entries are strictly increasing in columns ;
(2) any entry on top in any column has no entry greater than itself on its right.

To convert a chain in YFL into a standard YFT, one will follow the canonical approach as far as the new

box added to the chain lies in the first column. Example with the chain Q̂ = (∅, 1, 2, 12, 22, 221, 2211, 21211)
; the sub-chain (∅, 1, 2, 12, 22) is converted as follows.

∅ → 1 → 2

1
→ 2

3 1
→ 4 2

3 1

Now moving from the shape 22 to the shape 221 in YFL, one inserts a box just after a two-boxed column
of the previous shape. In such a situation, one will move the entry on top in that column into the newly
created box, and then shift the other entries of the top row to the right. Finally, if n is the largest entry in
the partial tableau obtained, then label the box on top in the first column with (n+ 1).

The conversion started above keeps on as follows, xk means that writing or moving the label x is the
kth action performed during the current step.
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22→ 221 :
4 2

3 1
→ 4 2

3 1
→ 4

3 1 21 → 42

3 1 2
→ 53 4

3 1 2

221→ 2211 :
5 4

3 1 2
→ 5 4

3 1 2
→ 5

3 1 41 2
→ 52

3 1 4 2
→ 63 5

3 1 4 2

2211→ 21211 :
6 5

3 1 4 2
→ 6 5

3 1 4 2
→ 5

3 61 1 4 2
→ 72 5

3 6 1 4 2

It easily follows from the description above that this mechanism produces only legitimate YFT (Definition
2.1), and that the conversion is reversible. Now another question which presents itself is how to count
standard YFT of a given shape u 6= ∅, we denote this number by Fu. Let us first recall the formula counting
linear extensions of a binary tree poset P.

(2.1) |Ext(P)| =
n !

d1d2 · · · dn
where for the ith node vi, di is the number of nodes v ≤P vi. This formula is due to Knuth [3], and since
any snakeshape u can be canonically assimilated to a poset Pu, then we have the following.

Proposition 2.2. Standard Young-Fibonacci tableaux of a given shape are counted by the hook-length
formula for binary trees.

To apply the formula to a snakeshape u, count it cells from right to left and from bottom to top, labeling
the first box and each box appearing in the bottom row of any two-boxed column. The number of standard
YFT of the given shape is the product of all the labels obtained.

Example 2.3. Let us consider u = 2212.

a snakeshape
u = 2212

•
•

•
•

•

•
•

its poset Pu

7

1

5

1

3

2

1
hook lengths

6 4 1

F2212 = 7!
2×3×5×7

= 6× 4× 1

= 24

2.2. Redefining the Young-Fibonacci Insertion Algorithm.
We refer the reader to [17, 8] for a description of the original algorithm ; below is the one we consider.

Definition 2.4. The Young-Fibonacci insertion algorithm maps a permutation σ onto a couple of
standard YFT built as follows. The insertion tableau P (σ) is built by reading σ from right to left, matching
any of the letters encountered (and not yet matched) with the maximal one (not yet matched) on its left if
any, provided that the latter be greater than the first. The recording tableau Q(σ) records the positions of
the letters, in the reverse order of the one in which they are matched.

Example 2.5. For σ = 2715643, we have the following.

2 7 1 5 6 4 3
1 2 3 4 5 6 7

• P (σ) =
7 6 2

3 4 5 1
and Q(σ) =

7 6 3

2 5 4 1

Remark 2.6. That both P (σ) and Q(σ) are standard Young-Fibonacci tableaux (Definition 2.1) is clear
from the description of the algorithm. This is not the case in the original algorithm where P (σ) and Q(σ)
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are not of the same type. Indeed, with the original insertion algorithm, the insertion tableau is the same as
the tableau P (σ) above, but the recording tableau Q(σ) which follows does not satisfy Definition 2.1.

QRoby(σ) =
3 7 4

2 6 5 1

The definition of Q(σ) we adopt is inspired from the hypoplactic [4] and sylvester [5] insertion algorithms,
where Q(σ) also records the positions in σ of the labels of P (σ). With this definition, some essential properties
of the Young-Fibonacci correspondence have a much easier combinatorial proof, which is not always the case
in [17]. For example, let us recall the involution property.

Theorem 2.7. [17] For any permutation σ, P (σ−1) = Q(σ).

Proof. Consider the geometric construction by Killpatrick [8], and recall that P (σ) corresponds to
reading vertical coordinates of the rightmost and uppermost x in that order, for any broken line. As for
Q(σ), we have defined it in such a way that it corresponds to reading horizontal coordinates of the uppermost
and rightmost x in that order. The construction for σ−1 is obtained by transposing the one for σ. �

Another fundamental property of Roby’s algorithm which is easily proved using Definition 2.4 follows.

Theorem 2.8. [17] Let σ be an involution of the symmetric group, then the cycle decomposition of σ is
the column reading of its insertion tableau P (σ).

We give two other canonical words associated with a tableau t ; so if we let YFC(t) denotes the equivalence
class made of permutations having t as insertion tableau, then YFC(t) has at least three canonical elements.
The first canonical element is its canonical involution, that is the only involution the cycles of which coincide
with the columns of t, as stated in Theorem 2.8. The two other canonical elements are the maximal (resp.
minimal) element for the lexicographical order. We will make use of these elements in Section 5.

Lemma 2.9. Let t be a Young-Fibonacci tableau, w1 the left-to-right reading of its top row and w2 the
right-to-left reading of its bottom row, then w1.w2 (where . denotes the usual concatenation of words) is the

maximal element (for the lexicographical order) of YFC(t), it is denoted wtmax.

Lemma 2.10. The word consisting of the right-to-left and up-down column reading of t is the minimal
element (for the lexicographical order) of YFC(t), it is denoted wtmin.

Proof. Clear from the description of the Young-Fibonacci insertion algorithm. �

An example is given with the tableau t below ; its canonical involution is (13)(26)(48)(5)(7) = 36185274, the
maximal canonical element is 86315274, and the minimal one is 31562784.

t =
8 6 3

4 7 2 5 1

We will see (Theorem 5.12) that YFC(t) is the set of linear extensions of a given poset, and additionally,
YFC(t) is an interval of the weak order on the symmetric group (Theorem 5.9).

3. Young-Fibonacci insertion and growth in differential posets

In this section we show that with the modification we have introduced in Roby’s original insertion
algorithm, together with the conversion mechanism discussed in section 2.1, the Young-Fibonacci insertion
algorithm naturally coincides with Fomin’s approach using growth diagrams. So we claim that Killpatrick’s
evacuation [8] is no longer needed in making the two constructions coincide. We give a simplification of
Killpatrick’s theorem relating Roby’s original algorithm to Fomin’s one through an evacuation process, and
we will later need this evacuation in the proof of Theorem 6.2 giving a combinatorial interpretation of Okada’s
analogue of Kostka numbers.

Let us recall that Fomin’s construction with growth diagrams consists in using some local rules in filling
a diagram giving rise to a pair of saturated chains in YL. For any permutation σ, the growth diagram d(σ)
is build the following way. First draw the permutation matrix of σ ; next fill the left and lower boundary of
d(σ) with the empty snakeshape ∅. The rest of the construction is iterative ; d(σ) is filled from the lower left
corner to the upper right corner, following the diagonal. At each step and for any configuration as pictured
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below, z is obtained by applying the local rules to the vertices t, x, y and the permutation matrix element
α. We refer the reader to [15] for more details on this construction.

b2

x z

a1 α b1

t y

a2

Figure 2. A square in a growth diagram.

Algorithm 1 : local rules for YFL
1: if x 6= y and y 6= t then
2: z := t, with a two-boxed column added in front
3: else
4: if x = y = t and α = 1 then
5: z := t, with a single-boxed column added in front
6: else
7: z is defined in such a way that the edge bi is degenerated whenever ai is degenerated
8: end if
9: end if

3.1. Equivalence between Roby’s and Fomin’s constructions.
Let us build Fomin’s growth diagram for the permutation σ = 2715643.

∅ � �� ��� ���� � ���� � ����� �� �����
x

∅ � � �� ��� ���� � ���� ������
x

∅ � � �� ��� ��� ���� � ����
x

∅ � � �� �� �� ��� ����
x

∅ � � �� �� �� �� ���
x

∅ � � �� �� �� �� ��
x

∅ ∅ ∅ � � � � �
x

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

Figure 3. Example of growth diagram for the Young-Fibonacci insertion.

We get the paths Q̂ = (∅, 1, 2, 12, 22, 221, 2211, 21211) and P̂ = (∅, 1, 11, 21, 211, 1211, 2211, 21211) on
the upper and right boundary respectively. Now let us convert them into Young-Fibonacci tableaux, using
the mechanism discussed in section 2.1.

∅ → 1 → 2 1 → 3

2 1
→ 4 3

2 1
→ 5 3

2 4 1
→ 6 3

2 5 4 1
→ 7 6 3

2 5 4 1
= Q̂(σ) = Q(σ)

∅ → 1 → 2

1
→ 2

3 1
→ 4 2

3 1
→ 5 2

3 4 1
→ 6 5 2

3 4 1
→ 7 6 2

3 4 5 1
= P̂ (σ) = P (σ)
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So as we can see on this example, the two constructions naturally coincide.

Remark 3.1. Let us mention that because Roby used the canonical labeling to convert a chain into a

tableau, there seemed to be no way to convert the chain P̂ into its equivalent tableau P (σ). Killpatrick’s

algorithm was then an approach to relate P̂ with P (σ). Our own approach consists in the introduction of a
modification of the original algorithm, and a new labeling process.

Theorem 3.2. Let (P̂ (σ), Q̂(σ)) be the pair of Young-Fibonacci tableaux obtained from the permutation
σ by using Fomin’s growth diagram and let (P (σ), Q(σ)) be the Young-Fibonacci insertion and recording

tableaux using Roby’s insertion modified (Definition 2.4), then P̂ (σ) = P (σ) and Q̂(σ) = Q(σ).

Proof. The equality P̂ (σ) = P (σ) follows from that any snakeshape P̂k appearing in P̂ is the shape

of the tableau P (σ/[1..k]) where σ/[1..k] is the restriction of σ to the interval [1..k]. Indeed, the path P̂ is
obtained applying to P (σ) the reverse process of the one described in section 2.1. In so doing, the cell added

to P̂k to get P̂k+1 lies in the first column when either σ/[1..k+1] ends with the letter k + 1 or σ/[1..k+1] does
not end with the letter k + 1 but σ/[1..k] ends with the letter k. A quite similar reasoning is used to prove

the equality Q̂(σ) = Q(σ). �

3.2. Another viewpoint of Killpatrick’s evacuation for Young-Fibonacci tableaux.
For a tableau t, this operation is defined only for top entries of the columns of t. Let a0 be such an

entry, the tableau resulting from the evacuation of a0 is denoted ev(t, a0) and is built as follows.

(1) if a0 is a single-boxed column, then just delete this column and, if this is necessary, shift one
component of the remaining tableau to connect it with the other one (e.g of line 3 in the table
below) ;

(2) otherwise, the box containing a0 is emptied and one compares the entry a1 that was just below a0

with the entry a2 on top of the column just to the right if any. If a2 < a1 then this terminates the
evacuation process (e.g of line 4 in the table below). Otherwise, move a2 on top of a1, creating a
new empty box in the tableau. If the new empty box is a single-boxed column, then this terminates
the evacuation process (e.g of line 7, step 4, in the table below), otherwise, iteratively repeat the
process with the entries just below and to the right of this new empty box.

Let t be a tableau of size n and shape u. If one successively evacuates the entries n, (n− 1), · · · , 1 from
t, labeling the boxes of u according to the positions of the empty cells at the end of the evacuation of entries,
one gets a path tableau denoted ev(t). Recall that a path tableau is the canonical labeling of a saturated
chain.

Remark 3.3. ev(t) is the same tableau as the one described by Killpatrick [8], with Young-Fibonacci
tableaux defined as in Definition 2.1.

Lemma 3.4. Let w be a word with no letter repeated, let a0 be one of its letters appearing as a top
element in a column of P (w), and let w0 be the word obtained from w by deleting the only occurrence of a0,
then ev(P (w), a0) = P (w0).

Proof. Easily from the description of the evacuation and the description of the Young-Fibonacci in-
sertion algorithm (Definition 2.4). �

We give a simpler proof of the following theorem by Killpatrick, relating ev(P (σ)) with P̂ . Indeed,

using the canonical labeling, Roby has converted the path P̂ into a path tableau P̂ (σ) and

Theorem 3.5. [8] ev(P (σ)) = P̂ (σ).

Proof. Follows from Lemma 3.4 and the remark that any snakeshape P̂k appearing in P̂ is the shape
of the tableau P (σ/[1..k]) where σ/[1..k] is the restriction of σ to the interval [1..k]. �
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7 t =
7 6 2

3 4 5 1
→ • 6 2

3 4 5 1
→ 6 • 2

3 4 5 1
→ 6 5 2

3 4 • 1 7

6
6 5 2

3 4 1
→ • 5 2

3 4 1
→ 5 • 2

3 4 1

6

7

5
5 2

3 4 1
→ • 2

3 4 1
→ 4 2

3 • 1

6

5 7

4
4 2

3 1
→ • 2

3 1

4 6

5 7

3
2

3 1
→ 2

• 1

4 6

3 5 7

2
2

1
→ •

1

4 6 2

3 5 7

1 1 → • ev(t) =
4 6 2

3 5 7 1

Table 1. Evacuation on Young-Fibonacci tableaux.

4. Fibonacci numbers and a statistic on Young-Fibonacci tableaux

In this section we point out a property of Young-Fibonacci numbers defined as an analogue of Kostka
numbers. Recall that the usual Kostka numbers Kλ, µ are defined for two partitions λ and µ of the same
integer n and they appear when expressing Schur functions sλ in terms of the monomial symmetric functions
mµ, and in the expression of the complete symmetric functions hµ in terms of Schur functions sλ.

(4.1) sλ =
∑

µ

Kλ, µmµ ; hµ =
∑

µ

Kλ, µ sλ

We will not focus on the algebraic interpretation of the Kλ, µ but rather on their combinatorial interpre-
tation in terms of tableaux. Indeed, Kλ, µ counts the number of distinct semi-standard Young-tableaux of
shape λ and valuation µ, that is to say with µi entries i for i = 1 .. `(µ). It is then natural to introduce the
same definition with Young-Fibonacci tableaux.

Definition 4.1. A semi-standard Young-Fibonacci tableau is a numbering of a snakeshape with non-
negative integers, not necessarily distinct, preserving the conditions stated in Definition 2.1.

Definition 4.2. Let u and v be two snakeshapes of size n, the Young-Fibonacci number associated to
u and v, denoted Nu, v is the number of distinct semi-standard Young-Fibonacci tableaux of shape u and
valuation v, that is to say with vi entries i for i = 1 .. `(v).

For example, for u = 221 and v = 1211, there are 4 distinct semi-standard Young-Fibonacci tableaux of
shape u and valuation v. So N221, 1211 = 4.

4 3

1 2 2

4 3

2 1 2

4 3

2 2 1

4 2

3 1 2

Proposition 4.3. Young-Fibonacci numbers are generated by the recurrence formulas below, where both
u and v are snakeshapes.

(4.2)




N∅, ∅ = 1 ; N2, 2 = 0
N1u, v1 = Nu, v ; N1u, v2 = Nu, v1

N2u, v1 =
∑
w∈ v1− Nu,w ; N2u, v2 =

∑
w∈ v1− Nu,w1
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where v1− denotes the multiset of snakeshapes obtained from v either by deleting a single occurrence of 1, or

by decreasing a single entry not equal to 1, for example 21121− = [1112, 212, 212, 2111].

Proof. Easily from the definition of Young-Fibonacci tableaux and Young-Fibonacci numbers. �
v = 222 2211 2121 2112 21111 1221 1212 12111 1122 11211 11121 11112 111111

u = 222 2 3 4 5 6 4 5 6 5 7 8 12 15
2211 4 5 5 7 9 5 7 9 7 9 9 12 15
2121 2 3 4 4 5 4 4 5 4 6 8 8 10
2112 1 1 1 1 1 2 2 3 3 4 4 4 5
21111 2 3 3 3 4 3 3 4 3 4 4 4 5
1221 2 2 3 4 4 3 4 4 4 4 6 8 8
1212 1 1 1 1 1 1 2 2 3 3 3 4 4
12111 2 2 2 3 3 2 3 3 3 3 3 4 4
1122 1 1 1 1 1 1 1 1 2 2 3 3 3
11211 1 1 2 2 2 2 2 2 2 2 3 3 3
11121 1 1 1 1 1 1 1 1 2 2 2 2 2

11112 0 0 0 0 0 1 1 1 1 1 1 1 1
111111 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. Matrix of Young-Fibonacci numbers for n = 6.

Theorem 4.4. Let n ≥ 2 be a positive integer, then the number of couples (u, v) of snakeshapes of size
n such that Nu, v = 0 is the (n− 2)th Fibonacci number.

Proof. The proof is done by induction on n. Indeed using equation (4.2) it is easy to see that Nu, v 6= 0
whenever u 6= 1n−22. So the problem is equivalent to counting the number of snakeshapes v such that
N1n−22, v = 0. But N1n−22, v = 0 if and only if there exists a snakeshape w such that v = 2w. Then the

problem is finally equivalent to counting the snakeshapes of size (n− 2), and hence the result. �

5. A weak order on Young-Fibonacci tableaux

In what follows, we introduce a partial and graded order denoted � on the set YFTn of Young-Fibonacci
tableaux of size n. We will see (Theorem 5.8) that this partial ordering on YFTn is such that the map
from the weak order on the symmetric group Sn which sends each permutation σ onto its Young-Fibonacci
insertion tableau P (σ) is order-preserving. More particularly, standard Young-Fibonacci classes on Sn are
intervals of the weak order on Sn. Recall that the weak order on permutations of Sn is the transitive closure
of the relation σ ≤p τ if τ = σδi for some i, where δi is the adjacent transposition (i i+1). An inversion of a
permutation σ is a couple (j, i), 1 ≤ i < j ≤ n such that σ−1(i) > σ−1(j), that is to say j appears on the left
of i in σ. Note that this is not the definition commonly used . The set of inversions of a permutation σ will
be denoted inv(σ), and the number of inversions denoted #inv(σ). We will be making use of an analogous
notion of non-inversion of a permutation σ which is a couple (i, j), 1 ≤ i < j ≤ n such that σ−1(i) < σ−1(j),
that is to say i appears on the left of j in σ. The set of non-inversions of a permutation σ will be denoted
ord(σ).

Definition 5.1. To introduce �, we define the operation of shifting an entry in a tableau t as follows.

(1) the bottom entry a of any column of t may move and bump up the entry c on its left if c is a
single-boxed column of t. In the example below, the letter 1 is the one being shifted.

5

2 4 3 1
shift the entry 1−−−−−−−−−−−−−−−−→

5 3

2 4 1

(2) In the case a was the bottom entry in a two-boxed column, the top entry b will just fall down. In
the two examples below, the letter 2 (resp. 3) is the one being shifted.

4

5 2 3 1
shift 2−−−−−−−−−→

5

2 4 3 1
and

4 2

5 3 1
shift 3−−−−−−−−−→

5 2

3 4 1
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(3) In the case the column just to the left of a is two-boxed, with bottom entry c and a < c, then a
may replace c which on its turn is shifted to the right in such a way that if c < b then c will just
replace a ; otherwise c is placed as a new single-boxed column between a and b, and b just falls
down. In the two examples below, the letter 1 (resp. 2) is shifted.

5 4

2 1 3
shift 1−−−−−−−−−→

5 4

1 2 3
and

5 3

4 2 1
shift 2−−−−−−−−−→

5

2 4 3 1

Remark 5.2. It easily follows from the definition that shifting an entry in a tableau always produces a
legitimate tableau of the same size. In an analogous way, given a tableau t, one defines the reverse operation
of finding all the tableaux t′ such that shifting an entry in t′ gives back t. For example, one will check that

5 2

3 4 1
is obtained from

4 2

5 3 1
,

5 2

4 3 1
and

5

3 4 2 1
by shifting 3 or 1.

Finally it is clear that this operation is antisymmetric, that is to say if t′ is obtained from t by shifting a
given entry, then t cannot be obtained from t′ by shifting an entry.

The latter observation is enforced by the following lemma which also defines the graduation of the poset
(YFTn,�) we will soon introduce.

Lemma 5.3. Let t2 be a tableau obtained by shifting an entry in a tableau t1, and let σ1 (resp. σ2) be
the minimal permutation canonically associated to t1 (resp. t2) as stated in Lemma 2.10, then the inversions
sets of σ1 and σ2 are related by the relation #inv(σ2) = #inv(σ1) + 1.

Proof. The proof takes into account all the situations one can encounter in shifting an entry in t1.

(1) t1 = T2
?

c a T1 and t2 = T2
c
a ? T1, where T1 and T2 are partial YFT having minimal canonical words

w1 and w2 (see Lemma 2.10 for the definition), and ? means any entry preserving the conditions
of Definition 2.1, and possibly no entry. The minimal permutations associated to t1 and t2 are
σ1 = w1?acw2 and σ2 = w1?caw2 respectively, and clearly σ2 has one more inversion than σ1.

(2) t1 = T2
d ?
c a T1 and t2 = T2

d
a c ? T1, with a < c < d ; one has σ1 = w1?adcw2 and σ2 = w1?cdaw2.

The inversion (dc) appears in σ1 but not in σ2, whereas the inversions (da) and (ca) appear in σ2

but not in σ1 ; so σ2 has one more inversion.

(3) t1 = T2
d b
c a T1 and t2 = T2

d b
a c T1, with a < c < b < d ; one has σ1 = w1badcw2 and σ2 = w1bcdaw2.

The inversion (dc) appears in σ1 but not in σ2, whereas the inversions (da) and (ca) appear in σ2

but not in σ1 ; so σ2 has one more inversion. �

We are now in position to provide YFTn with a structure of poset.

Definition 5.4 (weak order on YFTn). Let t and t′ be two tableaux of size n, then t is said smaller
than t′ and we write t � t′ if one can find a sequence t0 = t, t1, · · · , tk = t′ of tableaux of size n such that
ti+1 be obtained from ti by shifting an entry, for i from 0 to k − 1.

Proposition 5.5. (YFTn,�) is a graded poset, the rank of a Young-Fibonacci tableau being the number
of inversions of its minimal canonical permutation.

Proof. Follows from Lemma 5.3. �

Remark 5.6. Note that this remarkable property of graduation of the poset of standard Young-Fibonacci
tableaux of size n does not apply to the similar poset YTn of standard Young tableaux of size n. The reader
interested may refer to [9] where Taskin studied many nice properties of four partial orders on YTn.
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54
123

ρ = 6

5 3
142

54
132

54
213

ρ = 5

43
512

5
1432

54
312

5 3
241

54
231

ρ = 4

4
5132

53
412

5 2
341

43
521

5
2431

54
321

ρ = 3

3
5412

42
531

5 2
431

4
5231

53
421

5
3421

ρ = 2

2
5431

3
5421

4
5321

5
4321

ρ = 1

54321 ρ = 0

Figure 4. The graded weak order on Young-Fibonacci tableaux of size 5.

Remark 5.7. As one will easily check it on the figure above, (YFTn,�) is not a lattice for n = 5 for

example. Indeed let a =
3

5421 and b =
5
3421, then a and b do not have a least upper bound.

Theorem 5.8. Let t1 and t2 be two tableaux, then t1 � t2 if and only if one can find two permutations
τ1 and τ2 such that P (τ1) = t1, P (τ2) = t2 and τ1 ≤p τ2.

Proof. It is enough to prove this statement for the case t2 is obtained by shifting an entry in t1, and
the proof is carried out as a parallel process of the proof of Lemma 5.3. So go back to the latter proof and

(1) take τi = σi ;
(2) take τ1 = w1?dacw2 and τ2 = w1?dcaw2 ;
(3) take τ1 = w1bdacw2 and τ2 = w1bdcaw2.

This shows that one can find two permutations τ1 and τ2 such that P (τ1) = t1, P (τ2) = t2 and τ2 = τ1δi
for some i, whenever t1 � t2. Reciprocally let τ1 and τ2 be two permutations such that P (τ1) = t1 and
P (τ2) = t2 and τ2 = τ1δi for some i. Then t2 is obtained from t1 by shifting the entry i in t1. �

We now look at the structure of the Young-Fibonacci classes ; below are two pictures of the poset
(YFT4,�). On the picture on the left, vertices are Young-Fibonacci classes corresponding to Young-Fibonacci
tableaux in the picture on the right. Recall that the rank of a class is the number of inversions of its minimal
element in the lexicographical order. The unique involution of any class is enclosed in a rectangle. A double
edge means that there are two couples (τ1, τ2) and (τ ′1, τ ′2) satisfying the conditions of Theorem 5.8.
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3241 ρ=4

3421
4321

2341
2431
4231

3142 ρ=3

3412
4312

2314
3214

2143
2413
4213

1342 ρ=2

1432
4132

2134 1324
3124

1243 ρ=1

1423
4123

1234 ρ=0

4 3

1 2

4

1 3 2

4 3

2 1

3

4 1 2

4 2

3 1

4

2 3 1

2

4 3 1

3

4 2 1

4

3 2 1

4 3 2 1

Figure 5. The graded weak order on Young-Fibonacci classes of size 4.

It is easy to check that each class appearing as a vertex of the poset (YFT4,�) is an interval of the weak
order (S4,≤p), and this is a general observation.

Theorem 5.9. Let t be a standard Young-Fibonacci tableau of size n, then YFC(t) is an interval of the
weak order (Sn,≤p), more over YFC(t) = [wtmin, w

t
max].

To prove this statement, we will first relate YFC(t) with linear extensions of a poset canonically associated
to t, and then we will prove that the set of linear extensions of this poset is an interval of the weak order.

Definition 5.10. Let t be a standard Young-Fibonacci tableau of size n, its canonical poset Pt is the
poset defined on the set {1, 2, ..., n} with the covering relations below.

(1) the right-to-left reading of the bottom row of t forms a chain in the poset ;
(2) each entry on top in a two-boxed column of t is covered by the corresponding entry on bottom row.

Note 5.11. A permutation σ is a toset (totally ordered set) with covering relations defined by σ(i) ≤σ
σ(j) whenever i < j, that is to say x ≤σ y if x appears to the left of y in σ. Let P be a poset and σ a
permutation, σ is said to be a linear extension of P if its relations preserve the relations in P, that is to say
if x ≤P y then x ≤σ y. The set of linear extensions of a poset P will be denoted Ext(P).

Theorem 5.12. Let t be a standard Young-Fibonacci tableau, then YFC(t) = Ext(Pt).

Proof. That any permutation σ having t as insertion tableau is a linear extension of Pt is clear from
Definitions 2.4 and 5.10. Conversely, if σ is a linear extension of Pt, then t is naturally built reading σ from
right to left following the description given in Definition 2.4. At each new step the first letter one reads is
the maximal one (for ≤Pt) not yet read in the chain described in rule (1) of Definition 5.10. �

Theorem 5.13. Let t be a standard YFT of size n, then Ext(Pt) is the interval [wtmin, w
t
max] in (Sn,≤p).

To prove this statement we make use of the following well known lemma.

Lemma 5.14. Let σ and τ be two permutations of Sn, then the three properties below are equivalent.

(1) σ ≤p τ ;
(2) ord(τ) ⊆ ord(σ) ;
(3) inv(σ) ⊆ inv(τ).

Proof. (of Theorem 5.13) It easily follows from the definition that Pt can be partitioned into an
antichain A = (y1, y2, · · · , y`) and a chain C = (x1 <Pt x2 <Pt · · · <Pt xk) such that for i = 1..` there exists
j(i) ≤ k such that yi <Pt xj(i), and additionally for i1 < i2 one has yi1 < yi2 and xj(i1) <Pt xj(i2). For
illustrations, we use the following example.
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A = (3, 6, 7)

C = (2 <Pt 5 <Pt 1 <Pt 4)

7 6 3

4 1 5 2

a tableau t
of shape u = 2212

4

7

1

6

5

2

3
its canonical posetPt

The set I is made of the inversions
below.
(3, 2), (6, 1), (7, 4)
(3, 1), (6, 4)
(2, 1), (5, 1), (5, 4).

The set O is made of the ordered
pairs below.
(2, 5), (2, 4), (1, 4)
(3, 5), (3, 4).

For σ ∈ Ext(P), inv(σ) includes at least the set

I =





(yi, xj(i)), i = 1..`
(yi, xr) / xj(i) > xr and xj(i) <Pt xr
(xi, xj) / xi > xj and xi <Pt xj





which is nothing but inv(wtmin) ; so by [Lemma 5.14 - (3)], wtmin ≤p σ. Moreover, ord(σ) includes at least
the set

O = { (yi, xr) / xj(i) <Pt xr } ∪ { (xi, xj) / xi < xj and xi <Pt xj }
which is nothing but ord(wtmax) ; so by [Lemma 5.14 - (2)], σ ≤p wtmax and hence σ ∈ [wtmin, w

t
max].

Conversely, for σ ∈ [wtmin, w
t
max], applying Lemma 5.14 to wtmin, σ and wtmax it appears that σ has the

inversions yi ≤σ xj(i) for i = 1..`, and the relations x1 <σ x2 <σ · · · <σ xk. So P (σ) = t and hence
σ ∈ Ext(Pt). �

Proof. (of Theorem 5.9) Follows from Theorem 5.12 and Theorem 5.13. �

Definition 5.15. Let u be a snakeshape of size n, the row canonical tableau rTu is the one such that

(1) top cells of rTu are labeled with entries n, n− 1, · · · from left to right ;
(2) bottom cells in two-boxed columns are labeled with entries 1, 2, · · · from left to right.

The column canonical tableau cTu is built by labeling the cells of u from right to left and bottom to top.

Lemma 5.16. Let u be a snakeshape of size n, then cTu (resp. rTu) is the unique tableau of shape u
having minimal rank ρumin (resp. maximal rank ρumax) in the poset (YFTn,�). For any snakeshape u, ρumin
is the number of double-boxed columns of u and ρumax is obtained as follows. Label each bottom cell with
the number of double-boxed columns on its left and do the same but add 1 for each top cell of double-boxed
columns of u. ρumax is the sum of labels obtained.

Proof. (of Lemma 5.16) Easily from the definitions. �

We will now relate (YFTn,�) to a transition matrix in Okada’s algebra associated to YFL.

6. A connection with Okada’s algebra associated to the Young-Fibonacci lattice

A Young-Fibonacci analogue of the ring of symmetric functions [6] was given and studied by S. Okada
[16], with a Young-Fibonacci analogue of Kostka numbers, appearing when expressing the analogue of a
complete symmetric function hv in terms of the analogue of Schur functions su.

(6.1) hv =
∑

u

Ku, v su

Young-Fibonacci analogue of Kostka numbers are generated by the recurrence formulas below [16], where
Ka, b is defined for two snakeshapes of the same weight and � denotes the covering relation in YFL.

(6.2)





K1u, 1v = Ku, v (r1)
K2u, 2v = Ku, v (r2)
K1u, 2v = 0 (r3)
K2u, 1v =

∑
w�u Kw, v (r4)
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As it is stated below, the hook-length formula for binary trees illustrated in Example 2.3 is an alternative
formula for computing Ku, 1n = Fu which is the dimension of a representation in Okada’s algebra.

Proposition 6.1. Let u be a snakeshape of size n, then Fu is the dimension of the module Vu corre-
sponding to u in the nth homogenous component of Okada’s algebra associated to YFL.

Proof. dim(Vu) is the number of saturated chains from ∅ to u in YFL, hence the result. �

Here is a more general statement giving a combinatorial interpretation of Ku, v using (YFTn,�).

Theorem 6.2. Let u and v be two snakeshapes of size n, and let 1̂ be the maximal tableau in (YFTn,�),

then Ku, v is the number of tableaux t of shape u in the interval [rTv, 1̂].

1̂ =
5 4

1 2 3

5 3

1 4 2

5 4

1 3 2

4 3

5 1 2

5

1 4 3 2
•

4

5 1 3 2

5 3

4 1 2
•

3

5 4 1 2
•

0̂

Example 6.3. In the matrix below, the num-
ber Ku, 1121 counts the number of standard Young-
Fibonacci tableaux of shape u in the interval
[rT1121, 1̂].

221 212 2111 122 1211 1121 1112 15

221 1 1 2 1 2 3 4 8
212 . 1 1 1 1 1 3 4

2111 . . 1 . 1 1 1 4
122 . . . 1 1 1 2 3

1211 . . . . 1 1 1 3
1121 . . . . . 1 1 2
1112 . . . . . . 1 1

15 . . . . . . . 1

Iterating this for each snakeshape v of size n, one
builds the transition matrix for expressing the ana-
logue of complete symmetric function hv in terms of
the analogue of Schur functions su.

Figure 6. (YFT5,�) and Okada’s analogue of Kostka matrix for n = 5.

Proof. (of Theorem 6.2) A proof consists in showing that for any couple (a, b) of snakeshapes appearing
in the left hand side of equation (6.2), there is a one-to-one correspondence between tableaux satisfying the
conditions of the theorem for (a, b) and those satisfying the conditions of the theorem for the couples of
snakeshapes in the corresponding right hand side of the relation. For (r1), given a tableau t of shape u such
that rTv � t, t is mapped onto the tableau t′ of shape 1u obtained from t by attaching a cell labeled n+ 1
to its left, and rT1v � t′. For (r2), one attaches a two-boxed column to the left of t, with 1 as bottom entry
and n + 2 as top entry, in addition one standardizes t by increasing all its entries. Then t′ is of shape 2u
and rT2v � t′. For (r3) it easily follows from the definition of the operation of shifting an entry in a tableau
that there is no tableaux t1 and t2 of shape 1u and 2v respectively, such that t2 � t1. For (r4), let t be a
tableau of shape 2u such that rT1v � t, then t is mapped onto the tableau t′ = ev(t, n), that is the tableau
obtained from t by evacuating its maximal letter (the evacuation process originally due to Killpatrick [8] is
described in Section 3.2). Indeed, let w be the shape of t′, then w � u and rTv � t′. �

7. Kostka numbers, the Littlewood Richardson rule, and four posets on Young tableaux

The poset (YFTn,�) of Young-Fibonacci tableaux we defined in Section 5 is an analogue of one among
four partial orders on the set YTn of standard Young tableaux of size n [9]. The weak order (YTn,�weak)
is defined as in Theorem 5.8 with P (σ) denoting the Schensted insertion tableau of σ. Let λ and µ be two
partitions of lengths `(λ) and `(µ), λ is said greater than µ in the dominance order and one writes λ ≥dom µ
if for each 1 ≤ i ≤ min(`(λ), `(µ)), the inequality λ1 + λ2 + · · ·+ λi ≥ µ1 + µ2 + · · ·+ µi holds. Let t be a
standard Young tableau of size n, and 1 ≤ i ≤ j ≤ n. We denote λ(t/i,j) the shape of the tableau obtained
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from t by first restricting t to the segment [i, j], then lowering all entries by i−1, and finally sliding the skew
tableau obtained into normal shape by jeu-de-taquin. The chain order �chain on standard Young tableaux
is defined as follows.

Definition 7.1. [9] Let t and t′ be two standard Young tableaux of size n, then t �chain t′ if and only
if for each 1 ≤ i ≤ j ≤ n, λ(t/i,j) ≥dom λ(t′/i,j).

The reader interested may refer to [9] for the definition of the two other orders, as well as for the
properties of those posets. The four posets happen to coincide up to rank n = 5.

5
4
3
2
1

4
3
2
15

5
4
2
13

5
3
2
14

5
4
3
12

4
25
13

5
24
13

4
35
12

3
25
14

5
34
12

4
2
135

3
2
145

5
2
134

4
3
125

5
4
123

5
3
124

24
135

45
123

25
134

34
125

35
124

2
1345

4
1235

3
1245

5
1234

12345

Figure 7. Partial order on Young tableaux of size 5.

Below is a Young tableaux analogue of Theorem 6.2.

Theorem 7.2. Let λ, µ be two partitions of size n, let rTµ be the row canonical standard Young tableau
of shape µ, that is to say rTµ has shape µ and is increasingly filled from let to right and bottom to top. And

let 0̂ be the minimal tableau in the poset of standard Young tableaux of size n. Then Kλ, µ is the number of

standard Young tableaux of shape λ in the interval [0̂, rTµ], for any one of the posets studied in [9].
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1̂

•
5

3 4

1 2

•

•
5

3

1 2 4

• 3 4

1 2 5

3 5

1 2 4

• 3

1 2 4 5

5

1 2 3 4

0̂ = 1 2 3 4 5

Example 7.3. In the matrix below, the num-
ber Kλ, 221 counts the number of standard Young

tableaux of shape λ in the interval [0̂, rT221].

µ = 5 41 32 311 221 2111 11111

λ = 5 1 1 1 1 1 1 1
41 . 1 1 2 2 3 4
32 . . 1 1 2 3 5

311 . . . 1 1 3 6
221 . . . . 1 2 5

2111 . . . . . 1 4
11111 . . . . . . 1

Iterating this for each partition µ of size n, one
builds the transition matrix for expressing the com-
plete symmetric function hµ in terms of the Schur
functions sλ.

Figure 8. Poset of Young tableaux and Kostka matrix for n = 5.

Proof. (of Theorem 7.2) For a given partition µ, let nscrt(µ) be the row canonical semi-standard Young
tableau of shape µ, that is the tableau filled with 1’s on its first line, 2’s on its second line and so on. Let
nsclt(n) be the semi-standard Young tableau of shape n and having µi entries i for i = 1..`(µ). Consider
the extension of Definition 7.1 to the set Tab(µ) of semi-standard Young tableaux having µi entries i for i =
1..`(µ). Then for each t ∈ Tab(µ), one has nsclt(n) �chain t �chain nscrt(µ). There is a canonical bijection

mapping (Tab(µ),�chain) onto ([0̂, rTµ],�chain) and this map is order preserving. So Theorem 7.2 holds for

the partial order �chain. From ([9], Theorem 1.1) and the remark that [0̂, rTµ] = rTµ1
∗ rTµ2

∗ · · · ∗ rTµ`(µ)
,

it follows that the set of tableaux in [0̂, rTµ] does not depend on the choice of the partial order. �

Concluding remarks and perspectives

There are quite many similarities between the Robinson-Schensted algorithm and the Young-Fibonacci
insertion algorithm. As well as between the combinatorics of Young tableaux and the combinatorics of Young-
Fibonacci tableaux. One of the questions we have not explored in this paper is the one of the existence of an
algebra of Young-Fibonacci tableaux, which would be an analogue of the Poirier-Reutenauer Hopf algebra of
Young tableaux [12]. Such an algebra would certainly help in giving a combinatorial description (in terms
of tableaux) of the product of Schur functions in Okada’s algebra associated to the Young-Fibonacci lattice.
We are currently looking for a suitable definition of this algebra.
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