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A theory of general combinatorial differential operators
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Abstract. Let D = d/dX. We develop a theory of combinatorial differential operators of the form Ω(X, D)
where Ω(X, T ) is an arbitrary species of structures built on two sorts, X and T , of underlying elements.
These operators act on species, F (X), instead of functions. We show how to compose these operators, how
to compute their adjoints and their counterparts in the context of underlying symmetric functions and power
series. We also analyse how these operators behave when applied to products of species (generalized Leibniz
rule) and other combinatorial operations. Special instances of these operators include: combinatorial finite
difference operators, Φ(X, ∆), corresponding to the species Ω(X, T ) = Φ(X, E+(T )), where E+ is the species
of non-empty finite sets; pointing operators, Λ(XD), which are self-adjoint and correspond to the species
Ω(X, T ) = Λ(XT ); and combinatorial Hammond differential operators, Θ(D), corresponding to the species
Ω(X, T ) = Θ(T ).

Résumé. Soit D = d/dX. Nous développons une théorie d’opérateurs différentiels combinatoires de la forme
Ω(X, D) où Ω(X, T ) est une espèce de structures arbitraire construites sur deux sortes, X et T , d’éléments
sous-jacents. Ces opérateurs agissent sur des espèces, F (X), plutôt que sur des fonctions. Nous montrons
comment composer ces opérateurs, comment calculer leurs adjoints et les opérateurs qui leur correspondent
dans le contexte des fonctions symétriques et des séries génératrices. Nous analysons aussi le comporte-
ment de ces opérateurs lorsqu’ils sont appliqués au produit d’espèces (règle de Leibniz) ainsi qu’à d’autres
opérations combinatoires. Ces opérateurs incluent les opérateurs combinatoires de différences finies, Φ(X, ∆),
correspondant aux espèces Ω(X, T ) = Φ(X, E+(T )), où E+ est l’espèce des ensembles finis non-vides, les
opérateurs de pointage, Λ(XD), qui sont auto-adjoints et correspondent aux espèces Ω(X, T ) = Λ(XT )
ainsi que les opérateurs différentiels combinatoires de Hammond, Θ(D), qui correspondent aux espèces
Ω(X, T ) = Θ(T ).

1. Preliminary notions

Informally, a combinatorial species of structures is a class of labelled structures which is closed under
relabellings along bijections1. A structure belonging to a species F is called an F -structure. The set of
F -structures on a finite underlying set U is assumed to be finite and is denoted by F [U ]. Hence, s ∈ F [U ]
means that s is an F -structure on U . Two F -structures s and t are said isomorphic if one can be obtained
from the other one by a relabelling induced by a bijection between their underlying sets. More precisely, if
β : U → V is such a bijection, the induced relabelling is denoted by F [β] : F [U ] → F [V ]. An isomorphism
class of F -structures is called an unlabelled F -structure. Two species F and G are equal (isomorphic), and
we write F = G, if there exists a natural isomorphism (in the sense of theory of category) between them.
This means that for each U , there exists a bijection αU : F [U ] → G[U ] such that G[β]αU = αV F [β] for each
bijection β : U → V .
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and functions, see [6].
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Several enumerative formal series can be associated to any species F . The most important one is the
cycle index series, denoted ZF (x1, x2, x3, . . .), and is defined by

(1.1) ZF (x1, x2, x3, . . .) =
∑

n≥0

1

n!

∑

σ∈Sn

fixF [σ] xσ1
1 xσ2

2 xσ3
3 . . .

where Sn denotes the symmetric group of order n, fixF [σ] is the number of F -structures on [n] left fixed
under the action of the permutation σ ∈ Sn and σi, i ∈ N∗, is the number of cycles of length i of the
permutation σ ∈ Sn. Other classical enumerative formal series, that is, F (x), the exponential generating

series, and, F̃ (x), the tilda generating series are obtained by specializing the series ZF ,

(1.2) F (x) = ZF (x, 0, 0, . . .) and F̃ (x) = ZF (x, x2, x3, . . .).

Many combinatorial operations can be performed in the framework of the theory of species. The main
ones are addition, product, substitution, pointing, cartesian product and derivative. For precise definitions
of these operations, see [2]. However, in this paper we make an extensive use of the cartesian product and the
derivative and we briefly recall their definitions. Let F and G be any species and U a finite set. The derivative

species F
′

of a species F is given by F
′

[U ] = F [U + {∗U}], where ∗U is an element chosen outside of the
underlying set U . The cartesian product of F and G, denoted F ×G, is defined by (F ×G)[U ] = F [U ]×G[U ].

The behaviour of the cycle index series according to the operations of derivation and of cartesian product
is well known; see [2]. In particular, we have

(1.3) ZF
′ (x1, x2, x3, . . .) =

∂

∂x1
ZF (x1, x2, x3, . . .), ZF×G(x1, x2, x3, . . .) = (ZF × ZG)(x1, x2, x3, . . .),

where ZF × ZG means the Hadamard product of the series ZF and ZG.

A molecular species M is a species possessing only one isomorphy type. This means that any two M -
structures are always isomorphic. Such a species is characterized by the fact that it is indecomposable under
the combinatorial sum: M is molecular ⇐⇒ (M = F + G =⇒ F = 0 or G = 0). Any molecular species
M can be written under the form of a quotient species M = Xn/H , where Xn represents the species of
linear orders of length n and H ≤ Sn is a subgroup of the symmetric group of order n. In fact, H is the
stabilizer of any M -structure. Two molecular species Xn/H and Xm/K are equal (that is, isomorphic as
species) if and only if n = m and H and K are conjugate subgroups of Sn. Furthermore, any species F can
be uniquely expanded in terms of molecular species as follows:

F =
∑

M∈M

fMM,

where M denotes the set of all molecular species and fM ∈ N is the number of subspecies of F isomorphic
to M . This expansion is unique and called the molecular expansion of the species F .

It is also possible to extend the notion of molecular species to the case of multi-sort species. For instance,
for two-sort species, where the two sorts are denoted X and T , each molecular species M = M(X, T ) can be
written in the form M(X, T ) = XnT k/H, where H ≤ SX

n × ST
k is the stabilizer of any M -structure and SX

n

is the symmetric group of order n acting on points of sort X . The exponents n and k are called the degree

of M in X and T . The cycle index series of a two-sort molecular species M(X, T ) = XnT k/H is given by
the expression

ZM (x1, x2, . . . ; t1, t2, . . .) =
1

|H |

∑

h∈H

x
c1(h)
1 x

c2(h)
2 . . . t

d1(h)
1 t

d2(h)
2 . . . ,

where ci(h) (resp. di(h)), for i ≥ 1, denotes the number of cycles of length i of the permutation on
points of sort X (resp. T ) induced by the element h ∈ H and |H | is the cardinality of H . Note that
SX

n × ST
k is isomorphic to the Young subgroup Sn,k ≤ Sn+k permuting independently {1, 2, . . . , n} and

{n + 1, n + 2, . . . , n + k}.
It is important to notice that in the series ZM above, the monomials in the xi’s always appear before

the ones in the ti’s.

In this paper, we use the following graphical conventions:

1) for any species F = F (X), we find appropriate to represent an F -structure by a drawing of the
form of Figure 1 a) where black dots stand for the distinct elements (of sort X) of the underlying
set;
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2) for a two-sort species Ω = Ω(X, T ), Figure 1 b) shows the convention used to represent an Ω-
structure, where black dots (resp. black squares) are elements of sort X (resp. of sort T );

3) setting T := 1 in a species Ω(X, T ), we obtain the species Ω(X, 1) where points of sort T are
unlabelled. Notice that white squares represent undistinguishable unlabelled elements of sort T ;
see Figure 1 c) and the substitution is possible if Ω(X, T ) is ”finitary in T ”. This means that for
every finite set U of points of sort X there is no Ω-structure on the pair of sets (U, V ) for every
sufficiently large finite set V of points of sort T .

unlabelled

a) b) c)

:

Ω
X:X:

T:

Ω

T

F

Figure 1. a) F (X)-structure; b) Ω(X, T )-structure; c) Ω(X, 1)-structure

Using these graphical conventions, the structures belonging, for example, to the cartesian product
Ω1(X, T ) × Ω2(X, T ) of two-sort species can be represented by Figure 2 a) and a structure belonging ot

the species F
′

(X) can be represented by Figure 2 b).

b)

2

a)

1
ΩΩ F

Figure 2. a) Ω1(X, T )× Ω2(X, T )-structure; b) F
′

(X)-structure

Finally, we will make an extensive use in this paper of the so-called partial cartesian product according
to a sort. Considering two-sort species Ω1(X, T ) and Ω2(X, T ), the partial cartesian product with respect to
the sort T of Ω1 and Ω2 is denoted by

(1.4) Ω1(X, T ) ×T Ω2(X, T )

and is illustrated by Figure 3. Formally, a Ω1(X, T )×T Ω2(X, T )-structure s on a pair (U, V ) of sets of sort
X and T , respectively, is a pair s = (s1, s2) where s1 ∈ Ω1[U1, V ] and s2 ∈ Ω2[U2, V ] where U1 ∪ U2 = U
and U1 ∩ U2 = ∅. This operation had been first introduced by Gessel and Labelle in [5] in the context of
Lagrange inversion. It can be checked that ×T can be written in terms of the ordinary cartesian product as
Ω1(X, T )E(Y ) × Ω2(Y, T )E(X)

∣∣
Y :=X

.

2. General combinatorial differential operators

2.1. Basic definitions. Let D = d/dX denote the classical combinatorial derivative operator defined
by

DF (X) =
d

dX
F (X) = F

′

(X).

We will make use of partial cartesian products and substitutions of the form T := 1 to introduce general
differential operators of the form Ω(X, D), where Ω(X, T ) is an arbitrary two-sort species. These operators
Ω(X, D) will transform species into species.
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1 2Ω
:

T:

Ω
X

Figure 3. Representation of an Ω1(X, T )×T Ω2(X, T )-structure

Definition 2.1. (General combinatorial differential operators) Let Ω(X, T ) be a two-sort species and
F (X) be a species. If Ω(X, T ) is finitary in T or F (X) is of finite degree in X , then Ω(X, D)F (X) is the
species defined by

(2.1) Ω(X, D)F (X) := Ω(X, T ) ×T F (X + T )|T :=1.

�

Figure 4 a) describes a typical Ω(X, D)F (X)-structure on a set of 9 elements of sort X . For example,
let Ω(X, T ) = A(X, T ) be the species of rooted trees with internal nodes of sort X and leaves of sort
T and F (X) = C10(X) be the species of oriented cycles of length 10, then Figure 4 b) shows a typical
A(X, D)C10(X)-structure. Taking Ω(X, D) = E(L≥2(X)D) where E and L≥2 are the species of sets and of
lists of length ≥ 2, respectively, then the species of octopuses (see Figure 4 c)) can be written as Oct(X) =
E(L≥2(X)D)C(X) where C(X) is the species of oriented cycles.

c)b)a)

unlabelled

root

::T

Ω

X

F

Figure 4. a) Ω(X, D)F (X)-structure, b) A(X, D)C10(X)-structure and c) an octopus

Note that the restrictions on Ω or F in Definition 2.1 are necessary in order that (2.1) defines a species.
For example, for the species C(X) of oriented cycles (of arbitrary lengths), A(X, D)C(X) is not a species
since the number of structures would be infinite on any non-empty finite set U . From now, we will always
assume that the restrictions in Definition 2.1 are satisfied.

Since every two-sort species Ω(X, T ) can be written as a linear combination
∑

ωK
XnT k

K
of molecular

species, every differential operator Ω(X, D) is a linear combination of the corresponding molecular linear
operators of the form XnDk/K, K ≤ Sn,k. We will denote the action of these operators on species F (X) by

(
XnDk

K

)
F (X) =

XnF (k)(X)

K

in conformity with the classical notation XnDkF (X) = XnF (k)(X) corresponding to the degenerate case
where K = {id}. With these notations, we have

Theorem 2.2. (Generalized Leibniz rule) Let F (X) and G(X) be two species. Then,

(2.2)
XnDk

K
F (X)G(X) =

∑

i+j=k

∑

L:Sn,i,j

(
K

L

)
XnF (i)(X)G(j)(X)

L
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where L : Sn,i,j means that L runs through a complete system of representatives of the conjugacy classes of

subgroups of Sn,i,j and the coefficients
(
K
L

)
are defined by the ”addition formula” [1],

(2.3) Xn(T1 + T2)
k/K =

∑

i+j=k

∑

L:Sn,i,j

(
K

L

)
XnT i

1T
j
2 /L

�

For example, n = 0 and K = {id} corresponds to the classical Leibniz rule

DkF (X)G(X) =
∑

i+j=k

(
k

i

)
F (i)(X)G(j)(X),

while, the molecular operator E2(XD), where E2 is the species of 2-sets, corresponds to the formula

E2(XD)(F · G) = (E2(XD)F ) · G + X2F
′

· G
′

+ F · (E2(XD)G) .

Proposition 2.1. Let G(X) := Ω(X, D)F (X), then we have

(2.4) ZG(x1, x2, x3, . . .) = ZΩ(x1, x2, x3, . . . ;
∂

∂x1
, 2

∂

∂x2
, 3

∂

∂x3
, . . .)ZF (x1, x2, x3, . . .).

�

In Proposition 2.1, the convention of writing all the tj ’s to the right of all the xi’s in ZΩ(x1, x2, . . . , t1, t2, . . .)
must be applied. For example, taking Ω(X, D) = E(XD), where E is the species of sets, we have
E(XD)F (X) = F (2X). In this case, we must take

ZΩ(x1, x2, . . . ,
∂

∂x1
, 2

∂

∂x2
, . . .) =

∑ xn1
1 xn2

2 . . . ( ∂
∂x1

)n1( ∂
∂x2

)n2 . . .

n1!n2! . . .

not
∑ (x1

∂
∂x1

)n1(x2
∂

∂x2
)n2 . . .

n1!n2! . . .
.

Another example is given by taking a species of the form P(X) = X + P≥2(X) and considering the
operator Ω(X, D) = E(P≥2(X)D). It is easily seen that

E(P≥2(X)D)F (X) = F (P(X))

and formula (2.4) of Proposition 2.1 reduces to the plethystic substitution ZF◦P = ZF ◦ ZP as the reader
can check. The operator P≥2(X)D can be called an ”eclosion” operator in the terminology of [8].

Definition 2.3. (Composition of differential operators) Let Ω1(X, T ) and Ω2(X, T ) be two-sort species.
Then, we define the composition of Ω1(X, D) by Ω2(X, D) by the following formula:

(2.5) Ω2(X, D) ⊙ Ω1(X, D) = Ω3(X, D)

where

(2.6) Ω3(X, T ) = Ω2(X, T )⊙ Ω1(X, T ) := Ω2(X, T + T0) ×T0 Ω1(X + T0, T )|T0:=1

and T0 is an auxiliary extra sort.

Figure 5 illustrates an Ω3(X, T )-structure.
The composition Ω2(X, D)⊙Ω1(X, D) corresponds to the application of Ω1(X, D) followed by Ω2(X, D).

The operation ⊙ is associative but non-commutative. For example, (XD)⊙ (X2D) = 2X2D + X3D2 while
(X2D) ⊙ (XD) = X2D + X3D2.

Proposition 2.2. Let Ω3(X, T ) = Ω2(X, T ) ⊙ Ω1(X, T ), then, we have, for any species F = F (X),

Ω3(X, D)F (X) = Ω2(X, D) [Ω1(X, D)F (X)] .

Proof. See Figure 6.
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unlabelled

1
2

0

:

:

Ω Ω

T
:
X
T

Figure 5. Ω2(X, T + T0) ×T0 Ω1(X + T0, T )|T0:=1-structure

a) b)

1
2

1
2

unlabelledunlabelled

0
unlabelled:

Ω

T
: X:

F

Ω

:

Ω

TT X:

F

Ω

Figure 6. a) Ω2(X, D) [Ω1(X, D)F (X)] and b) [Ω2(X, T )⊙ Ω1(X, T )]F (X)

Theorem 2.4. Let Ω2(X, T ) = XaT k

A
and Ω1(X, T ) = XbT ℓ

B
be two molecular species on two sorts where

A ≤ Sa,k and B ≤ Sb,ℓ. Then, for the species Ω(X, T ) = Ω2(X, T ) ⊙ Ω1(X, T ), we have,

(2.7) ZΩ =
∑

n1,n2,...

(
( ∂

∂t1
)n1(2 ∂

∂t2
)n2 . . . ZXaT k

A

) (
( ∂

∂x1
)n1(2 ∂

∂x2
)n2 . . . ZXbT ℓ

B

)

1n1n1!2n2n2! . . .
.

Proof. We have

ZXa(T0+T )k

A

= e
t01

∂
∂t1

+
t02
2

2∂
∂t2

+
t03
3

3∂
∂t3

+···
ZXaT k

A

(x1, x2, . . . ; t1, t2, . . .)(2.8)

=
∑

n1,n2,...

tn1
01 tn2

02 . . . ( ∂
∂t1

)n1(2 ∂
∂t2

)n2 . . .

1n1n1!2n2n2! . . .
ZXaT k

A

(x1, x2, . . . ; t1, t2, . . .)(2.9)

In a similar way,

Z (X+T0)bTℓ

B

=
∑

n1,n2,...

tn1
01 tn2

02 . . . ( ∂
∂x1

)n1(2 ∂
∂x2

)n2 . . .

1n1n1!2n2n2! . . .
ZXbT ℓ

B

(x1, x2, . . . ; t1, t2, . . .).(2.10)

The result follows using the cartesian product according to the sort T0 and letting t0i := 1, i = 1, 2, 3, . . ..

Using another time the linearity of the molecular expansion, we easily obtain:

Corollary 2.1. Let Ω2(X, T ) and Ω1(X, T ) be any two-sort species. Then, we have

(2.11) ZΩ2⊙Ω1 =
∑

n1,n2,...

(
( ∂

∂t1
)n1(2 ∂

∂t2
)n2 . . . ZΩ2

)(
( ∂

∂x1
)n1(2 ∂

∂x2
)n2 . . . ZΩ1

)

1n1n1!2n2n2! . . .
.

�
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2.2. Bilinear form and adjoint operators. In [6], Joyal introduced a bilinear form, denoted < , >,
in the realm of species in the following way: given two species F = F (X) and G = G(X), < F (X), G(X) >
is defined by

(2.12) < F (X), G(X) > = F (X) ×X G(X)|X:=1 = number of unlabelled F × G − structures,

provided it is finite (see Figure 7 a)). It is well known (see [5, 6]) that, for any species H(X),

< H(D)F (X), G(X) > = < F (X), H(X)G(X) >,

which means that multiplication by H(X) is a right adjoint to H(D).
We have the following more general result:

Proposition 2.3. Let Ω(X, T ) be a two-sort species. Then,

< Ω(X, D)F (X), G(X) > = < F (X), Ω(D, X)G(X) > .

That is (Ω(X, D))∗ := Ω(D, X) is the adjoint operator of Ω(X, D).

Proof. See Figure 7 b).

Ω

a) b)

F

G

F G F

GΩ =~

Figure 7. a) < F (X), G(X) > and b) < Ω(X, D)F (X)), G(X) > = < F (X), Ω(D, X)G(X) >

Proposition 2.4. Let Ω1(X, T ) and Ω2(X, T ) be two sort-species. Then, we have

(2.13) (Ω2(X, D) ⊙ Ω1(X, D))∗ = Ω∗
1(X, D) ⊙ Ω∗

2(X, D) = Ω1(D, X) ⊙ Ω2(D, X).

�

3. Special cases

3.1. Combinatorial Hammond differential operators. The special case Ω(X, T ) = Θ(T ) corre-
sponds to the classical Hammond combinatorial differential operator defined by (see [4, 6])

(3.1) Θ(D)F (X) = (E(X)Θ(T )) × (F (X + T ))

∣∣∣∣
T :=1

:= Θ(T )×T F (X + T )

∣∣∣∣
T :=1

.

Figure 8 shows a typical Θ(D)F (X)-structure. Note that, contrarily to the general case, the composition

unlabelledT X:

F

:

Θ

Figure 8. A typical Θ(D)F (X)-structure
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Θ(D) ⊙ Ψ(D) of Hammond operators is commutative since it corresponds to ordinary multiplication:

(3.2) Θ(D) ⊙ Ψ(D) = (Θ · Ψ)(D).

Example 3.1. The following relations can be easily established by appropriate drawings and details are
left to the reader.

(1) For Θ(T ) = E2(T ), the species of two-element sets, we have

E2(D)(F · G) = (E2(D)F ) · G + F
′

G
′

+ (E2(D)G) · F,(3.3)

E2(D)(E ◦ F ) = (E ◦ F ) · (E2(D)F + E2(F
′

)).(3.4)

In particular, for the species F = C of oriented cycles and E ◦C = S of permutations, the previous
equation takes the form

E2(D)S = S · (E2(D)F + E2(L)).

(2) Translation operators. Taking Θ(X) = E(X), the species of sets, we obtain the translation operator
denoted E(D), whose action is described by

E(D)F (X) = F (X + 1), En(D)F (X) = F (X + n).

(3) When Θ(T ) = T n, n ≥ 0, then we recover the usual n-th derivatives

Θ(D)F (X) = DnF (X) =
dnG(X)

dXn
.

(4) Catalan derivative. Let Θ(T ) = B(T ) be the species of binary trees. It is well known that this
species satisfies the functional equation B = 1 + TB2. Since 1/B(T ) = 1 − TB(T ) we deduce that

B(D)F (X) = G(X) ⇐⇒ F (X) = (1 − DB(D)) G(X).

It is important to notice that the species 1 − TB(T ) is virtual, in this case.
(5) We can generalize the preceding example by taking any species B = B(T ) with constant term equal

to 1 since such a species is invertible under product (in the context of virtual species; see [2, 7]),
we have

B(D)F (X) = G(X) ⇐⇒ F (X) =
1

B(D)
G(X).

�

3.2. Self-adjoint and pointing operators. Since the adjoint of an operator Ω(X, D) is Ω(D, X), self-
adjoint operators correspond to symmetric species Ω(X, T ) = Ω(T, X). For example, the operator X3D3/K,
where K =< (123)(456) >≤ S3,3 is self-adjoint and Φ(X + D) is self-adjoint for any species Φ(X).

An important class of self-adjoint operators is the Λ-pointing operators defined by Λ(XD), where Λ =
Λ(T ) is an arbitrary species. Figure 9 a) shows a typical Λ(XD)F (X)-structure. The special case Λ(T ) = T
corresponds to the classical one-element pointing. The composition of pointing operators is not commutative
and is given by

Λ2(XD) ⊙ Λ1(XD) = Ω(X, D),

where

Ω(X, T ) = Λ2(XT + XT0) ×T0 Λ1(XT + T0T )

∣∣∣∣
T0:=1

.

Taking Λ(T ) = T 2, we obtain the operator (XD)2 which corresponds to pointing an ordered pair of
distinct elements in structures (see Figure 9 b)) and (XD)2 corresponds to the species (XT )2 = X2T 2. On the
contrary, for ordinary (i.e., classical) differential operators, we have (XD)2 6= X2D2 because multiplicative
notation is used to denote composition of ordinary differential operators. This fact is expressed as (XD)⊙2 6=
X2D2 in the present context. Indeed,

(XD)⊙2 := (XD) ⊙ (XD) = XD + X2D2 6= (XD)2 = X2D2

since we can point the same element in two successive pointings (see Figure 9 c)).
Taking Λ(T ) = C(T ), the species of oriented cycles, we obtain the operator C(XD) of cyclic-pointing.

An interesting subspecies of C(XD)F (X) has recently been introduced by Bodirsky et al. [3]. It consists
of all unbiased cyclically pointed F -structures. In such structures, the pointed cycle must be one of the
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or

a) b) c)

F F F FΛ

Figure 9. a) Λ-pointed F -structure, b) (XD)2F -structure and c) (XD ⊙ XD)F -structure

cycles of an automorphism of the F -structure. They applied this unbiased pointing to the uniform random
generation of classes of unlabelled structures.

3.3. Low degree operators. Let K be a subgroup of Sn,k. By definition, the number k is called
the degree of the molecular differential operator XnDk/K. More generally, the degree of the differential
operator Ω(X, D), is the supremum (possibly infinite) of the degrees occurring in its molecular expansion
Ω(X, D) =

∑
K ωKXnDk/K. If all the degrees involved are k, the operator is said to be homogeneous of

degree k. Degree 0 operator are simply the multiplication operators H(X) which are adjoint, as we saw
before, to the Hammond operators H(D). Homogeneous operators of degree 1 are easily classified. They
are of the form H(X)D, since every species Ω(X, T ), homogeneous of degree 1 in T is of the form H(X)T .
Homogeneous operator of degree 2 are a little more involved. We call them handle operators for obvious
reasons (see Figure 10). The molecular handle operators XnD2/K fall into two classes:

a) the oriented ones, for which the second projection π2(K) is trivial in S2;
b) the unoriented ones, for which π2(K) ≃ S2.

For example, C3(X)D2 is oriented and E2(XD) is unoriented. Explicit tables of molecular differential
operators XnDk/K, for small n and k and their ⊙-composition are under construction by the authors.

a) b) c)

FΩ F F

Figure 10. a) Handle, b) oriented handle and c) unoriented handle

3.4. Finite differences operators. We saw in Section 3.1, that E(D) is the translation operator on
species (of finite degree): E(D)F (X) = F (X + 1). Hence, we can define the difference operator ∆ by the
equation

∆ = E+(D),

where E+ = E − 1 is the species of non-empty finite sets. We obviously have

(3.5) ∆F (X) = F (X + 1) − F (X).

Note that the right-hand side of (3.5) is not a virtual species since F (X) is always a subspecies of F (X +1).
Conversely, we can write D = E<−1>

+ (∆), where E<−1>
+ is the inverse under substitution of the species E+

(see [2] for a description of E<−1>
+ ). This opens the way to a completely new theory of general combinatorial

difference operators of the form Φ(X, ∆) = Φ(X, E+(D)) where Φ(X, T ) is an arbitrary species.
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3.5. Splittable and classical operators. Let us say that a molecular operator XnDk/K is splittable

if it can be written in the form of a product

XnDk

K
=

Xn

K1
·
Dk

K2

where K1 ≤ Sn and K2 ≤ Sk. More generally, any linear combination of splittable operators is called
splittable. For example, X3D2 and C(X)E2(D)+E(D) are splittable but E(XD) and the operator X3D3/K
where K =< (123)(456) >≤ S3,3 are not splittable. Of course, the adjoint of a splittable operator is always
splittable. In particular, every Hammond operator H(D) is splittable as well as every multiplication H(X).
However, splittable operators are not closed under composition ⊙. To see this, consider the composition of
the splittable operators C4(D) and C4(X). Some computations gives

C4(D) ⊙ C4(X) = C4(X)C4(D) + X3D3 + 4X2D2 + E2(XD) + 6XD + 3,

which is not splittable since

E2(XD) =
X2D2

< (12)(34) >
is not.

An important subclass of splittable combinatorial operators are those for which K2 = {id}. These
operators are closed under ⊙ and form an algebra:

(A(X)Dk) ⊙ (B(X)Dℓ) =

k∑

i=0

(
k

i

)
A(X)B(i)(X)Dk+ℓ−i.

Such operators have been used by Mishna to define a notion of holonomic species [9]. When both subgroups
K1 and K2 are trivial, the corresponding operators are said to be classical. They also form an algebra
(using complex coefficients in molecular expansions) under + and ⊙ which is isomorphic to the classical
Weyl C-algebra generated by X and D.
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I.R.M.A. Strasbourg (1987) 229/S-08, 5–21.
[5] Gessel I. and Labelle G., Lagrange Inversion for Species, J. Comb. Theory, Ser. A 72 (1995) 95–117.
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