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| Outline I

Dual graded graphs: pairs of graphs invented by Fomin which encode inser-
tion (Robinson-Schensted) algorithms. “Weighted” versions of Stanley’s

differential posets.

Kac-Moody algebras: generalization of Lie algebras depending on a Cartan
matriz and possessing combinatorial data such as weights, Weyl group, ...
Our Aim: For each Kac-Moody algebra g with Weyl group W we produce
dual graded graphs (I'y, I'y,) with:

vertex set: the Weyl group W, and

edges: “weighted” versions of the strong and weak orders of WV,

This construction depends on the choice of a dominant integral weight and

a positive central element of g.



‘ Graded graphs I

Definition: A weighted directed graph I' = (V| E) is graded if there is a
height function h :' V' — Z so that if (v,w) € E then h(w) = h(v)+ 1. Let
m(v,w) € Z>o denote the weight of the edge (v, w).

IfI" is a graded graph, we define up and down linear operators on | [, .\, Z.v
by

and

Dr(v) = Z m(w,v) w.

(w,w)eE
We will always assume I' is [ocally finite so that these operators make

sense when extended by linearity and continuity.



‘ Young’s Lattice I

Figure 1: Young’s lattice Y as a graded graph.



‘ Dual graded graphs: I

Definition: A pair (I',I") of graded graphs is dual if they have the same

vertex set and
DF’UF - UFDF’ = rld
for some integer r € Z>q, called the differential coefficient.

Example: Young’s Lattice Y. The pair (Y,Y) is dual with differential

coefficient 1. For example,

DU( ) = D ) + D( )

VS

)+ ( +1)

— 9 4+

uD([ 1)) =v([]) =[]+




‘Tableaux and paths in dual graded graphs.l

Assumption: Our graded graph I' has a unique source (or minimum
element) 0 with h(0) = n.

Definition: A tableau of shape v is a path

O:UO_>m1U1_>m2U2_>m3"'_>m Up =V

n

in I' where each edge v; — v;,1 has been marked with an integer m;
between 1 and m(v;,v;y1). We may think of there being m(v,w) edges
joining v to w, so the marking represents the choice of one such edge.

Example: In Young’s lattice Y

AN

00— 3 3 > 3 —

corresponds to

p—t

Y|

DO




‘ Robinson-Schensted identity I

Let fi denote the number of tableau of shape v.
Theorem (Fomin): Suppose (I',I") is a pair of dual graded graphs with

differential coefficient . Then

> SR =l (1)
v: h(v)=n

Furthermore, a set of local bijections in (I',I") will give an algorithmic

proof of (1).

Example: In Young’s lattice Y we have

> (R =nl

A [A|l=n



‘Some known dual graded graphs and insertionsl

I I Insertion
Young’s lattice Y Y Robinson-Schensted
Fibonacci poset FY FY Fibonacci
Shifted Young’s lattice SY Marked SY Shifted insertion
Marked strong order on cores | Weak order on cores LLMS insertion
112]14]5]8 1(2%4]7*|8
Shifted tableau: 3169 Marked shifted tableau: 3 [5*|9*
7110 6 (10
1*|2* 13
. 1374 1214
Marked strong tableau: o Weak tableau: 5
4* 4




‘ Kac-Moody algebras I

A Kac-Moody algebra g(A) depends on a Cartan matrix
A= (aij)iel
of integers where [ is some indexing set.

The Weyl group W of g(A) is a Coxeter group with generators {s; | i € I}
and relations
sp=1 (si85)™7 =
for some m;; € {2,3,4,6,00}.
Other data:
l. roots @ € R
simple roots {«; |7 € I}

simple coroots {a) | i € I}

weights lattice P

A

. fundamental weights w; € P



‘Strong and weak ordersl

Strong and weak orders are two partial orders on V.

The length £(w) of w € W is the length of shortest expression of w in

terms of the s;.

Left weak order: transitive closure < of the relations
v < s;v whenever ((s;v) ={(v)+ 1

A reflection s, € W is an element conjugate to a generator s;. They are
labeled by real roots a € R*®.

Strong (Bruhat) order: transitive closure < of the cover relations

v<w if w=uvs, and {(w) =l(v) + 1
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‘The strong graph FSI

Pick a dominant integral weight A € P.
Vertex set: Elements w € W
Grading: h=0:W — Z>
Edges: For each cover v < w in the strong order set
m(v,w) = {a’, A)

where w = wvs,. This number m(v,w) will always be a nonnegative
integer.
Tableaux in I'y are called strong tableauz.

Every coroot ¥ is a integral linear combination of simple coroots {« | i € I}.
The function a“ — {(a“,A) is linear, so is determined by its value on simple

Ccoroots.
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‘The weak graph le

Pick a positive central element

K = Zaioz;/ € Z1(g(A)).

Central: (K, a;) =0 for each 1 € T

Positive: a; > 0.

Vertex set: Elements w € W
Grading: h=/0:W — Z>g

Edges: Each cover v < w = s;v in the left weak order is weighted by

n(v,w) = (K,w;) = a;.

Tableaux in I',, are called weak tableauz.
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| Main Theorem I

The strong and weak graphs (I's,I',,) form a pair of dual
graded graphs with differential coefficient r = (K, A).

Corollary: Strong and weak tableaux satisfy

E |
Strong Weak = n..

The minimum element of (I'y,T",,) is the identity id.
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‘ Basic Properties I

. If g is a finite dimensional simple Lie algebra then the construction

produces nothing (since the center Z(g) = 0).

. The richest example seems to be the case of the affine Lie algebras in

which case there is a canonical central element K.ay.

. 'The construction is compatible with restriction to parabolics quotients

W/Wj for J C I.

. The construction is compatible with folding of Kac-Moody algebras:
when g(A) can be embedded into g(B) as the fixed points of an auto-

morphism.
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|Afﬁne Schubert Calculusl

Let K be a simple and simply-connected compact group and QK denote
the based-loops into K.

The construction was inspired by the study of the dual Hopf algebras
H,(QK) and H*(QK), together with their Schubert bases {£,} and {£“}.

Roughly speaking, the up and down operators correspond to the affine
Chevalley rules in homology and cohomology. These are combinatorial
rules for multiplication by the unique Schubert class &, (or £°°) in degree
2, written in the Schubert basis.

Thus “duality” of graded graphs corresponds to the pairing
H*(QK> &) H*(QK) — 7.

Hope: Our dual graded graphs can be related to Kac-Moody Schubert
calculus. More precisely, semistandard generalizations of our tableaux

should represent Schubert classes.

Remark: there is a general way to obtain dual graded graphs from dual Hopf
algebras (independently discovered by Hivert-Nzeutchap and L.-Shimozono.)
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LLMS insertion I

LLMS = Lam-Lapointe-Morse-Shimozono

L.

In type g = AW picking a local bijection one recovers the standard

n—1

case of LLLMS insertion.

. Taking n — oo we obtain the usual Robinson-Schensted insertion.

(Alternatively take g = A...)

. If we fold g(A) = CtV into g(B) = 21;}3_1 we obtain from LLMS

insertion an explicit insertion algorithm for oM.

Taking n — oo we obtain shifted insertion. (Alternatively take g =

Co.)

Open Problem: construct explicit insertion algorithms for all Kac-Moody

dual graded graphs.
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| Cores I

Definition: A n-core is a partition from which a n-ribbon cannot be

removed.

Example: A 3-core:

Not a 3-core:
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Weak and strong tableaux in the case g = 1217(11_)1 (LLMS)

In the case g = AW

~_1, weak and strong tableaux can be identified with

nested sequences of n-cores. Weak tableaux have no markings (since

Kean = Y ;@) but strong tableaux are marked.

A marked strong tableau:

1*12*
3* 4 _
T — V¥ —1 —1 —1 ”2
4*
A weak tableau:
1
214 .y
3 =) — — — —
4
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W n=3 n = oo
1234 | [3T4 374 5[374] [112
123547 [1]2
1243 | [3]47 374 ‘1123‘112
o3 4112
3 3
1324 | 3774 374
#3147 [1]2 112]4]1]2
3 1
1342 | 3127 374
o 3Tl 112 112]4]1]2
G 1 1 3
14231 = 3 1127311112
13" [1]2
1432 | 14 4 INE
3 3 112112
3112
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2143

2314

2341

2413

2431

2*

1*

3*

4*

N R

2*

4*

O |~

p—t

QO | H~

1>I<

3*

DD [ QO |
QO [ H~

2*

1*

3*

4*

— o
DO | H~

p—t

2*

1*

3*

—_

DO |~

—_

4*

— QO | i~

O |~

p—t

DO

4*

2*

1*

3*

— QO | H~

— DN | i~

= QO | W~
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