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From Alternating Sign Matrices

To Orbital Varieties

P. Di Francesco and P. Zinn-Justin

Plan of the talk

⋄ Definition of the Temperley–Lieb model of loops

⋄ Relation to Alternating Sign Matrices

⋄ Quantum Knizhnik–Zamolodchikov Equation

⋄ Relation to sl(N) Orbital Varieties

⋄ Generalization to other orbital varieties / other boundary conditions

(see also: DF+ZJ math-ph/0410061, math-ph/0508059)
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The Temperley–Lieb model of loops
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The two types of plaquettes are chosen randomly with probabilities p, 1 − p.

Question: how do the external vertices connect to each other?
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Temperley–Lieb model of loops cont’d

It is convenient to encode the probabilities as a vector Ψ indexed by link patterns, and to normalize

it so that the smallest entry is 1.

Conjectures [de Gier, Nienhuis ’01]

(1) The components can be chosen to be integers, the smallest being 1.

(2) The sum of components is the number of alternating sign matrices of size n:

An =
1!4!7! · · · (3n − 2)!

n!(n + 1)!(n + 2)! · · · (2n − 1)!





0 + 0
+ − +
0 + 0





now a Theorem [PDF, PZJ oct ’04]

(3) The largest component is An−1.

[Razumov, Stroganov ’01] formulated a much more general conjecture that interprets combinatorially

each individual component. [still unproven]
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ASM enumeration: Izergin’s determinant formula

Associate to each horizontal line of the grid a parameter xi and to each vertical line a parameter yi.

The weight w(x, y) at a vertex depends on the parameters x, y of the lines and is equal to:
+ · · · 0

...
+

or

+
...
0 · · · +

0 · · · +
...
+

or

+
...

+ · · · 0
+ or –

a(x, y) = q1/2x − q−1/2y b(x, y) = q1/2y − q−1/2x c(x, y) = (q − q−1)(x y)1/2

An(x1, . . . , xn; y1, . . . , yn) ≡
∑

6v DWBC configs

n
∏

i,j=1

w(xi, yj)

Korepin wrote recursion relations that fix entirely An (in terms of An−1). Using them Izergin showed

An(x1, . . . , xn; y1, . . . , yn) =

∏n
i,j=1 a(xi, yj)b(xi, yj)

∏

i<j(xi − xj)(yi − yj)
det

i,j=1...n

(

c(xi, yj)

a(xi, yj)b(xi, yj)

)

NB: An(x1, . . . , xn; y1, . . . , yn) is a symmetric function of the xi, and of the yi.

Kuperberg (’98): set q = e2iπ/3 and xi = yi = 1 ⇒ recover Zeilberger’s formula for An.
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6 Vertex Model with DWBC at q = e2iπ/3: Okada formula

In the next 2 slides, set q = e2iπ/3.

Okada (’02): An(x1, . . . , xn; y1, . . . , yn) is a symmetric function of the full set of parameters xi, yi.

zi ≡ xi zi+n ≡ yi i = 1 . . . n

It is a Schur function: (up to a prefactor)

An(z1, . . . , z2n) = sY (z1, . . . , z2n) Y =















































2n − 2

It is entirely characterized by the following properties: (Stroganov, ’04)

(i) It is a symmetric [homogeneous] polynomial of the zi, of degree n − 1 in each variable.

(ii) It satisfies the recursion relation

An(z1, . . . , z2n)∣
∣zj=q zi

=

2n
∏

k=1
k 6=i,j

(q2zi − zk) An−1(z1, . . . , zi−1, zi+1, . . . , zj−1, zj+1, . . . , z2n) .
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Inhomogeneous T–L model of loops [PDF, PZJ ’04]

Introduce local probabilities dependent on the column i via a parameter zi respecting integrability of

the model (i.e. satisfying Yang–Baxter equation). Form the new vector Ψ(z1, . . . , z2n) of probabilities,

normalized so that its components are coprime polynomials.

⋆ Polynomiality. The components of Ψ(z1, . . . , z2n) are homogenous polynomials of total degree

n(n − 1) and of partial degree at most n − 1 in each zi, with coefficients in Z[q], q = e2iπ/3.

⋆ Factorization and symmetry. (...)

The sum of components is a symmetric polynomial of all zi.

⋆ Recursion relations. The set of components Ψπ(z1, . . . , z2n) satisfies linear recursion relations when

zj = q2 zi; in particular, the sum satisfies the Korepin/Stroganov recursion relation, and therefore

∑

π

Ψπ(z1, . . . , z2n) = An(z1, . . . , z2n)
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qKZ and Affine Hecke representation [Pasquier]

Consider the following set of equations: (level 1 qKZ)

Ψ(z1, . . . , zi+1, zi, . . . , z2n) = Ři(zi+1/zi)Ψ(z1, . . . , z2n), i = 1, 2, . . . , 2n − 1 (1)

Ψ(z2, z3, . . . , z2n, q6 z1) = c σ−1Ψ(z1, . . . , z2n) (2)

where Ψ is a vector-valued polynomial of degree n(n − 1), σ is rotation of link patterns and

Ři(z) =
(q−1

− qz) + (1 − z)ei

q−1z − q

ei =
i i+1

= generator of Temperley–Lieb algebra TL(β = −q − q−1) acting on link patterns.

For q = e±2iπ/3, one recovers the previous eigenvector Ψ.

Rewrite Eqs. (1) by separating the action on link patterns and that on polynomials:

(q−1zi+1 − qzi)∂iΨ = (ei + q + q−1)Ψ (1′)

where ∂ ≡
1

zi+1−zi
(τi − 1) and τi switches zi and zi+1. The operators (q−1zi+1 − qzi)∂i acting on

polynomials form a representation of the Hecke algebra. Together with the cyclic shift of spectral

parameters they generate a representation of affine Hecke. . .
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Rational limit and Hotta’s construction

Consider q = −e−~a/2, zi = e−~wi , ~ → 0. In this limit the ei form a representation of TL(β = 2)

which is a quotient of the symmetric group. The ei generate the Joseph representation on orbital

varieties, and Eq. (1’) is related to Hotta’s construction of this representation. Each Ψπ is the

multidegree of an orbital variety. NB: Ψπ(zi = 0, a = 1) = degree, Ψ(a = 0) = Joseph polynomial.

Here the orbital varieties are the irreducible components of the scheme of upper triangular N × N

matrices that square to zero, N = 2n. Torus action = conjugation by diagonal matrices and scaling.

Example: N = 4. Two components:

O

1 2 3 4

=











M =







0 m13 m14

m23 m24

0

















Ψ

1 2 3 4

= (a + z1 − z2)(a + z3 − z4)

O
1 2 3 4

=











M =







m12 m13 m14

0 m24

m34






: m12m24 + m13m34 = 0











Ψ
1 2 3 4

= (a + z2 − z3)(2a + z1 − z4)
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Other orbital varieties/boundary conditions

B-type orbital varieties: consider (2r + 1) × (2r + 1) matrices such that MT J + JM = 0

where J is the antidiagonal matrix with 1’s on the antidiagonal, and M2 = 0.

The multidegrees of irreducible components of this scheme satisfy B-type qKZ equation at q = −1.

q-deform and set q = e2iπ/3, zi = 1.

Results for r even:

Theorem [DF ’05]: if one normalizes the solution of qKZ equation so that its smallest entry is 1, then

the sum of components is AV (r), the number of Vertically Symmetric Alternating Sign Matrices of

size r + 1

Conjecture: the largest component is the number of Cyclically Symmetric Transpose Complement

Plane Partitions in a hexagon of size r × r × r.
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The O(1) loop model: closed boundary conditions

The components are the (unnormalized) probabilities of the following model on a strip:

21 L

1 2 3 4 5 6 7 8 : 170
646

1 2 3 4 5 6 7 8 : 75
646

1 2 3 4 5 6 7 8 : 71
646

1 2 3 4 5 6 7 8 : 56
646

1 2 3 4 5 6 7 8 : 14
646

1 2 3 4 5 6 7 8 : 75
646

1 2 3 4 5 6 7 8 : 30
646

1 2 3 4 5 6 7 8 : 56
646

1 2 3 4 5 6 7 8 : 14
646

1 2 3 4 5 6 7 8 : 50
646

1 2 3 4 5 6 7 8 : 14
646

1 2 3 4 5 6 7 8 : 14
646

1 2 3 4 5 6 7 8 : 6
646

1 2 3 4 5 6 7 8 : 1
646
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Other orbital varieties/boundary conditions

C-type orbital varieties: consider (2r)× (2r) matrices such that MT J + JM = 0 where J

is the antidiagonal matrix with 1’s (resp. −1’s) in the upper (resp. lower) triangle. and M2 = 0.

Take its multidegrees, q-deform them, and set q = e2iπ/3, zi = 1. Conjectures: (r even)

⋄ With the normalization that the smallest component is 1, the sum of components is the number

of Cyclically Symmetric Self-Complementary Plane Partitions in a hexagon of size r × r × r.

⋄ The largest entry is the sum of components at size r − 1.

D-type orbital varieties: consider (2r) × (2r) matrices such that MT J + JM = 0 where

J is the antidiagonal matrix with 1’s on the antidiagonal, and M2 = 0.

Take its multidegrees, q-deform them, and set q = e2iπ/3, zi = 1. Conjectures:

⋄ With the normalization that the smallest component is 1, the sum of components is the number

of Half-Turn Symmetric Alternating Sign Matrices of size r.

⋄ The largest entry is the sum of components of the C-type solution at size r − 1.


