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This talk describes joint work with Dy-
lan Thurston and with (former or cur-
rent) Boston-area undergraduates Gabriel
Carroll, Andy Itsara, Ian Le, Gregg Musiker,
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auspices of REACH (Research Expe-
riences in Algebraic Combinatorics at
Harvard). For details of the proofs, see
math.CO/0511633.
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I. Triangulations and frieze patterns

To every triangulationT of an n-gon
with vertices cyclically labelled 1 through
n, Conway and Coxeter associate an(n−
1)-rowed periodic array of numbers called
afrieze pattern determined by the num-
bersa1,a2, . . . ,an, whereak is the num-
ber of triangles inT incident with ver-
tex k.

(See J. H. Conway and H. S. M. Cox-
eter, “Triangulated Polygons and Frieze
Patterns,”Math. Gaz. 57 (1973), 87–
94 and J. H. Conway and R. K. Guy,
in The Book of Numbers, New York :
Springer-Verlag (1996), 75–76 and 96–
97.)
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E.g., the triangulation

6 5

4

32

1

of the 6-gon determines the 5-row frieze
pattern

... 1 1 1 1 1 1 1 1 1 ...

... 1 3 2 1 3 2 1 3 2 ...

... 1 2 5 1 2 5 1 2 5 ...

... 1 3 2 1 3 2 1 3 2 ...

... 1 1 1 1 1 1 1 1 1 ...
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Rules for constructing frieze patterns:

1. The top row is

. . . ,1,1,1, . . .

2. The second row (offset from the first)
is

. . . ,a1,a2, . . . ,an,a1, . . .

(with periodn).

3. Each succeeding row (offset from
the one before) is determined by the re-
currence

A
B C : D = (BC - 1) / A
D
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Facts:

• Every entry in rows 1 throughn−1
is non-zero (so that the recurrence

D = (BC-1)/A

never involves division by 0).

• Each of the entries in the array is a
positive integer.

• For 1≤ m ≤ n−1, then−mth row
is the same as themth row, shifted.
(That is, the array as a whole is in-
variant under a glide reflection.)
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Question: What do these positive inte-
gers count? (And why does the array
possess this symmetry?)

E.g., in the following picture, what are
there 5 of?

6



Answer: Perfect matchings of the graph
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General construction:

Put a black vertex at each of then ver-
tices of then-gon.
Put a white vertex in the interior of each
of the n− 2 triangles in the triangula-
tion T .
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For each of then−2 triangles, connect
the black vertices of the triangle to the
white vertex inside the triangle. This
gives a connected planar bipartite graph
with n black vertices andn− 2 white
vertices.
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If we remove 2 of the black vertices
(say verticesi and j), we get a graph
with equally many black and white ver-
tices. LetCi, j be the number of perfect
matchings of this graph.
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Theorem (Gabriel Carroll and Gregory
Price): The Conway-Coxeter frieze pat-
tern is just

. . . C1,2 C2,3 C3,4 C4,5 . . .

. . . C1,3 C2,4 C3,5 . . .

. . . Cn,3 C1,4 C2,5 C3,6 . . .

. . . Cn,4 C1,5 C2,6 . . .
... ... ... ...

(interpret all subscripts modn).

Note: This claim explains the glide-reflection
symmetry.
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Proof of theorem:

1. Ci,i+1 = 1.
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(proof of theorem, continued)

2. Ci−1,i+1 = ai.
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(proof of theorem, continued)

3. Ci, jCi−1, j+1 = Ci−1, jCi, j+1−1.

j +1

j

i

i−1

Move the 1 to the left-hand side, and
write the equation in the form
Ci, jCi−1, j+1+Ci−1,iC j, j+1 =Ci−1, jCi, j+1
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(proof of theorem, concluded)

This is a consequence of a lemma due
to Eric Kuo (see Theorem 2.5 in “Ap-
plications of graphical condensation for
enumerating matchings and tilings,”
math.CO/0304090):

If a bipartite planar graphG has 2 more
black vertices than white vertices, and
black verticesa,b,c,d lie in cyclic or-
der on some face ofG, then

M(a,c)M(b,d) =

M(a,b)M(c,d)+M(a,d)M(b,c),

where M(x,y) denotes the number of
perfect matchings of the graph obtained
from G by deleting verticesx andy and
all incident edges.
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A version of this construction that in-
cludes edge-weights gives the cluster al-
gebras of typeA introduced by Sergey
Fomin and Andrei Zelevinsky. (See sec-
tion 3.5 of Fomin and Zelevinsky, “Y -
systems and generalized associahedra”,
hep-th/0111053.)

In this broadened context, the entries
of frieze patterns are rational functions
rather than numbers. Fomin and Zelevin-
sky proved that these rational functions
are Laurent polynomials.

The matchings model can be used to
show that the coefficients in these Lau-
rent polynomials are all positive (as was
conjectured by Fomin and Zelevinsky).
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II. Markoff numbers

A Markoff triple is a triple(x,y,z) of
positive integers satisfyingx2+y2+z2 =
3xyz; e.g., the triple (2,5,29).
A Markoff number is a positive in-
teger that occurs in at least one such
triple.
Writing the Markoff equation as
(*) z2− (3xy)z+(x2+ y2) = 0,
a quadratic equation inz, we see that
if (x,y,z) is a Markoff triple, then so
is (x,y,z′), wherez′ = 3xy− z = (x2 +
y2)/z, the other root of (*).
(z′ is positive becausez′ = (x2 + y2)/z,
and is an integer becausez′ = 3xy− z.)

Likewise forx andy.
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Claim: Every Markoff triple(x,y,z) can
be obtained from the Markoff triple(1,1,1)
by a sequence of such exchange opera-
tions. E.g.,(1,1,1)→ (2,1,1)→ (2,5,1)
→ (2,5,29).

Proof idea: Use high-school algebra and
some Olympiad-level cleverness to show
that if (x,y,z) is a Markoff triple with
x ≥ y ≥ z, and we takex′ = (y2+ z2)/x,
thenx′ < x unlessx = y = z = 1. See
A. Baragar, “Integral solutions of the
Markoff-Hurwitz equations,” (Journal
of Number Theory 49 (1994), 27–44).

So in fact, each Markoff triple can be
obtained from (1,1,1) by a sequence of
moves that leaves two numbers alone
and increases the third.
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Create a graph whose vertices are the
Markoff triples and whose edges corre-
spond to the exchange operations

(x,y,z) → (x′,y,z),

(x,y,z) → (x,y′,z),

(x,y,z) → (x,y,z′)

where

x′ =
y2+ z2

x
,

y′ =
x2+ z2

y
,

z′ =
x2+ y2

z
.

This 3-regular graph is connected (see
the preceding claim), and it is not hard
to show that it is acylic. Hence the graph
is the 3-regular infinite tree.
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Markoff numbers are associated
with pairs of mutually visible
lattice points in the triangular

lattice. This association is
bijective (up to lattice symmetry).

Equivalently, we can associate Markoff
numbers (up to symmetries of the trian-
gular latticeL) with primitive vectors in
L, where a non-zero vectoru is called
primitive if it cannot be written askv
for k > 1 andv ∈ L.
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For example, the Markoff triple 2,5,29
corresponds to the three primitive vec-
torsu = ~OA, v = ~OB, andw = ~OC, with
O, A, B, andC forming a fundamental
parallelogram for the triangular lattice,
as shown below.

O

A B

C

The Markoff number 1 corresponds to
the primitive vector~AB.
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To find the Markoff number associated
with a primitive vector~OX , take the union
R of all the triangles that segmentOX
passes through. The underlying lattice
provides a triangulation ofR. E.g., for
the vectoru = ~OC from the previous
page, the triangulation is

O

A B

C

Turn this into a planar bipartite graph
as in Part I, letG(u) be the graph that
results from deleting verticesO andC,
and letM(u) be the number of perfect
matchings ofG(u). (If u is a shortest
vector in the lattice, putM(u) = 1.)
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Theorem (Gabriel Carroll, Andy Itsara,
Ian Le, Gregg Musiker, Gregory Price,
and Rui Viana): Ifu, v, andw are prim-
itive vectors in the triangular latticeL
with±u±v±w = 0 for a suitable choice
of signs, such that any two ofu, v, and
w form a basis forL, then

(M(u),M(v),M(w))

is a Markoff triple. Every Markoff triple
arises in this fashion.

In particular, ifu is a primitive vector,
thenM(u) is a Markoff number, and ev-
ery Markoff number arises in this fash-
ion.
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Proof: The base case, with

(M(e1),M(e2),M(e3)) = (1,1,1),

is clear.
The only non-trivial part of the proof is
the verification that

M(u+v)= (M(u)2+M(v)2)/M(u−v).
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(proof of theorem, concluded)

E.g., in the picture below, we need to
verify that

M( ~OC)M( ~AB) = M( ~OA)2+M( ~OB)2.

O

A B

C

But if we rewrite the desired equation
as

M( ~OC)M( ~AB) =

M( ~OA)M( ~BC)+M( ~OB)M( ~AC)

we see that this is just Kuo’s lemma!
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Remarks: Some of the work done by
the REACH students used a square lat-
tice picture; this way of interpreting the
Markoff numbers combinatorially was
actually discovered first, in 2001–2002
(Itsara, Le, Musiker, and Viana).

Also, the original combinatorial model
for the Conway-Coxeter numbers (found
by Price) involved paths, not perfect match-
ings. Carroll turned this into a perfect
matchings model, which made it pos-
sible to arrive at the matchings model
of Itsara, Le, Musiker, and Viana via a
different route.

Seewww.math.wisc.edu/∼propp/
reach/newback.jpg .
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III. Other directions for exploration

Neil Herriot (another member of REACH)
showed that if we replace the triangular
lattice used above by the tiling of the
plane by isosceles right triangles (gen-
erated from one such triangle by repeated
reflection in the sides), parallelograms
of mutually visible points in the square
lattice correspond to triples(x,y,z) of
positive integers satisfying either

x2+ y2+2z2 = 4xyz

or
x2+2y2+2z2 = 4xyz.

So, is there some more general combi-
natorial approach to ternary cubic equa-
tions of similar shape?
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Gerhard Rosenberger (“Uber die dio-
phantische Gleichungax2+by2+cz2 =
dxyz,” J. Reine Angew. Math. 305 (1979),
122–125) showed that there are exactly
three ternary cubic equations of the shape
ax2+by2+cz2 =(a+b+c)xyz for which
all the positive integer solutions can be
derived from the solution(x,y,z)= (1,1,1)
by means of the obvious exchange op-
erations(x,y,z) → (x′,y,z), (x,y,z) →
(x,y′,z), and(x,y,z)→ (x,y,z′), namely:

x2+ y2+ z2 = 3xyz,

x2+ y2+2z2 = 4xyz,

and
x2+2y2+3z2 = 6xyz.

28



The third Diophantine equation “ought”
to be associated with some combinato-
rial model involving the reflection-tiling
of the plane by 30-60-90 triangles, but
the most obvious approach (based on
analogy with the 60-60-60 and 45-45-
90 cases) does not work.
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What about the equationw2+x2+y2+
z2 = 4wxyz? (Such equations are called
Markoff-Hurwitz equations.)

The Laurent phenomenon applies here
too: The four exchange operations con-
vert an initial formal solution(w,x,y,z)
into a quadruple of Laurent polynomi-
als. (This is a special case of Theorem
1.10 in Fomin and Zelevinsky’s paper
“The Laurent phenomenon,”math.CO/
0104241.)

The numerators of these Laurent poly-
nomials ought to be weight-enumerators
for some combinatorial model, but we
have no idea what this model looks like.
We can’t even prove that the coefficients
are positive, although they appear to be.
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A variant of the notion of frieze pat-
terns is gotten by replacing the frieze-
pattern relation

A
B C : AD + 1 = BC

D

by the relation

A
B E C : AD + E = BC

D
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E.g.:
1 1 1 1 1 1 1 1 1 1 1 1

... 1 2 6 4 1 1 3 4 2 2 3 2 ...
4 2 2 3 2 1 2 6 4 1 1 3

1 1 1 1 1 1 1 1 1 1 1 1

Conway and Hickerson have both proved
that arrays of this kind have the same
sort of glide-reflection symmetry as frieze
patterns. Specifically, in any table of
this kind withn−2 rows, with top and
bottom rows consisting entirely of 1’s,
each row has period 2n.

All of the good algebraic properties that
are satisfied by frieze patterns seem to
hold for this variant as well. However,
some of these properties have not been
proved rigorously, and no supporting com-
binatorial model analogous to the match-
ings model of Carroll and Price is known.
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