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| Preliminaries |

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space R? is the convex hull of finitely

many points V' = {vy, vy, ..., v, } C RY In other words,

P =conv(V)={ v+ Xvo+ -+ A\v, : allA\; >0, and Ay + Ao+ -+ A, =1},
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Definition 1. A (convex) polytope P in the d-dimensional Euclidean space R? is the convex hull of finitely

many points V' = {vy, vy, ..., v, } C RY In other words,

P =conv(V)={ v+ Xvo+ -+ A\v, : allA\; >0, and Ay + Ao+ -+ A, =1},

A d-dimensional lattice Z¢ = {x = (x1,...,24) | V2; € Z} is the collection of all points with

integer coordinates in R Any point in a lattice is called a lattice point.
An integral polytope is a convex polytope, whose vertices are all lattice points.

For any region R C R?, we denote by £( ) := R N Z< the set of lattice points in R.
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| Preliminaries |

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space R? is the convex hull of finitely

many points V' = {vy, vy, ..., v, } C RY In other words,

P =conv(V)={ v+ Xvo+ -+ A\v, : allA\; >0, and Ay + Ao+ -+ A, =1},

A d-dimensional lattice Z¢ = {x = (x1,...,24) | V2; € Z} is the collection of all points with

integer coordinates in R4, Any point in a lattice is called a lattice point.
An integral polytope is a convex polytope, whose vertices are all lattice points.

For any region R C R?, we denote by £(?) := R N Z< the set of lattice points in R.

Definition 2. For any polytope P C R? and some positive integer m € N, the m:th dilated polytope of
PismP = {mx : x € P}. We denote by

i(m, P) = |L(mP)|

the number of lattice points in m P.
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| Preliminaries |

Definition 1. A (convex) polytope P in the d-dimensional Euclidean space R? is the convex hull of finitely

many points V' = {v, vy, ..., v,} C RY In other words,

P =conv(V)={ v+ Xvo+ -+ A\v, : allA\; >0, and Ay + Ao+ -+ A, =1},

A d-dimensional lattice Z* = {x = (z1,...,14) | V&; € Z} is the collection of all points with

integer coordinates in R, Any point in a lattice is called a lattice point.
An integral polytope is a convex polytope, whose vertices are all lattice points.

For any region R C R?, we denote by £(?) := R N Z< the set of lattice points in R.

Definition 2. For any polytope P C R? and some positive integer m € N, the m:th dilated polytope of
PismP = {mx : x € P}. We denote by

i(m, P) = |L(mP)|
the number of lattice points in m P.

Example: When d = 1, P is an interval [a, b], where a, b € Z. Then mP = [ma, mb] and

i(P,m)=(b—a)m+ 1.
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| Theorem of Ehrhart |

Theorem 3. (Ehrhart) Let P be a d-dimensional integral polytope, then i(P, m) is a polynomial in m of

degree d.

Therefore, we call ¢( P, m) the Ehrhart polynomial of P.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?

w The leading coefficient of i( P, m) is the volume Vol(P) of P.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?

w The leading coefficient of i( P, m) is the volume Vol(P) of P.

m The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with

respect to the sublattice in the hyperplane spanned by the facet.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?

m The leading coefficient of (P, m) is the volume Vol(P) of P.

m The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with

respect to the sublattice in the hyperplane spanned by the facet.

w» The constant term of i( P, m) is always 1.
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| Coefficients of Ehrhart polynomials I

If P is an integral polytope, what we can say about the coefficients of its Ehrhart polynomial i(P, m)?

w The leading coefficient of i( P, m) is the volume Vol(P) of P.

m The second coefficient equals 1/2 times the sum of volumes of each facet, each normalized with

respect to the sublattice in the hyperplane spanned by the facet.
w The constant term of i( P, m) is always 1.

> No results for other coefficients for general polytopes.
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| Motivation |

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recallthatgiven T’ = {t1, ..., t, } - alinearly ordered set, a d-dimensional cyclic polytope Cy(T') =
Cy(ty, ..., t,)isthe convex hull conv{vy(t1), va(ta), ..., v4(t,)} of n > ddistinct points v4(t;), 1 <

1 < m, on the moment curve.
The moment curve in R? is defined by

[ )

t2
vg R — Rt py(t) =

)
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| Motivation |

De Loera conjectured that the Ehrhart polynomial of an integral cyclic polytope has a simple formula.

Recall thatgiven T' = {t1, ..., 1, }< alinearly ordered set, a d-dimensional cyclic polytope Cy(T') =

Cy(ty, ..., t,)isthe convex hull conv{vy(t1), va(ta), ..., v4(t,)} of n > ddistinct points v4(t;), 1 <
1 < m, on the moment curve.

The moment curve in R? is defined by

vg R — Rt py(t) =

Example: T = {1,2,3,4},d = 3 :

1 2 3 4
Cy4(T) is the convex polytope whose verticesare | 1 |, | 4 |, 9 , | 16
1 8 27 64
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Theorem 4. For any d-dimensional integral cyclic polytope Cd(T),

’L(Cd<T), m) — Vol(mCd(T)) + i(Cd_1<T), m)

Hence,

i(Ca(T),m) = > Volu(mCy(T))

k=0
d
= ) Voly(Cp(T))m*,
k=0

where Vol (mCy(T)) is the volume of mCy(7T) in k-dimensional space, and by convention we let

Volo(mCy(T)) = 1.
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Example: T = {1,2,3,4},d = 3 :
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Example: T = {1,2,3,4},d = 3 :

1 2 3 4
w Oy(T) = conv{| 1 |,| 4 |, 9 |,]| 16 |} :4(Cy(T),m) = 2m> + 4m? +
1 8 27 64

3m + 1.
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Example: T = {1,2,3,4},d = 3 :

1 2 3 4
w Oy(T) = conv{| 1 |,| 4 |, 9 |,]| 16 |} :4(Cy(T),m) = 2m> + 4m? +
1 8 27 64
3am + 1.
1 2 3 4
b Cy_1(T) = conv{ : : : }i(Cyr(T),m) = 4m*+3m+1.
1 4 9 16
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Example: T = {1,2,3,4},d = 3 :

1 2 3 4
w Oy(T) = conv{| 1 |,| 4 |, 9 |,]| 16 |} :4(Cy(T),m) = 2m> + 4m? +
1 8 27 64
3am + 1.
1 2 3
b Cy_1(T) = conv{ : : : }i(Cyr(T),m) = 4m*+3m+1.
1 4 9 16

w Cy o(T) = conv{1,2,3,4} = [1,4] : i(Cy_o(T),m) = 3m + 1.
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Example: T = {1,2,3,4},d = 3 :

1 2 3 4
w Oy(T) = conv{| 1 |,| 4 |, 9 |,]| 16 |} :4(Cy(T),m) = 2m> + 4m? +
1 8 27 64
3am + 1.
1 2 3
b Cy_1(T) = conv{ : : : }i(Cyr(T),m) = 4m*+3m+1.
1 4 9 16

b C'y o(T) = conv{l,2,3,4} = [1,4] : i(Cy_2(T), m) = 3m + 1.
b Oy 3(T) =R :4(Cy3(T),m) = 1.
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Example: T = {1,2,3,4},d = 3 :

1 2 3 4
w Oy(T) = conv{| 1 |,| 4 |, 9 |,]| 16 |} :4(Cy(T),m) = 2m> + 4m? +
1 8 27 64
3am + 1.
1 2 3
b Cy_1(T) = conv{ : : : }i(Cyr(T),m) = 4m*+3m+1.
1 4 9 16

b Cy o(T) = conv{l,2,3,4} = [1,4] : i(Cy_o(T),m) = 3m + 1.
b Oy 3(T) =R :4(Cy3(T),m) = 1.
w2 4 3 and 1 are the volumes of C5(T"), Co(T'), C1(T') and Cy(T), respectively.
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Note that if we define 7% : RY — R?~* to be the map which ignores the last k& coordinates of a point,
then 7%(Cy(T)) = Cy_1(T'). So when P = Cy(T) is an integral cyclic polytope, we have that

i(P,m) = Vol(mP) +i(m(P),m) =Y Vol (x**(P))m"*, (5)

where Vol (P) is the volume of P in k-dimensional Euclidean space R¥.
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Note that if we define 7% : RY — R?~* to be the map which ignores the last k& coordinates of a point,
then 7%(Cy(T)) = Cy_1(T'). So when P = Cy(T) is an integral cyclic polytope, we have that

i(P,m) = Vol(mP) +i(m(P),m) =Y Vol (x**(P))m"*,

where Vol (P) is the volume of P in k-dimensional Euclidean space R¥.

Question: Are there other integral polytopes which have the same form of Ehrhart polynomials as

cyclic polytopes? In other words, what kind of integral d-polytopes P are there whose Ehrhart polynomi-
als will be in the form of (5)?
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

FPSAC, 2006

Fu Liu
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

Example: (4,16)

P =C5({1,2,3,4}) =

(1,1)
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

Example: (4,16)
Hy ={(z,1+4z) |z € R}

P =C5({1,2,3,4}) =
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

Example: (4,16)
Hy ={(z,1+4z) |z € R}

P — C2<{1,2,3,4}) — 3,9)

[’(HU) — { " (07 _3)7 (1-, 1)-, (2-, 5), (3,9), (4, 13)7 .o }
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

Example: (4,16)
Hy ={(z,1+4z) |z € R}

P =C5({1,2,3,4}) =

3,9)
[’(HU) - { " (07 _3)7 (17 1)7 (27 5)7 (379)7 (47 13)7 o }

T(L(Hy))={--,0,1,2,3,4,--- ,} =Z
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| Properties of integral cyclic polytopes I

What are some key properties of an integral cyclic polytope C’d(T)?

When d = 1, Cy4(T) is just an integral polytope.

For d > 2, for any d-subset 7" C T, let U = v4(T") be the corresponding d-subset of the vertex
set V' = v,(T) of Cy(T). Then:

a) m(conv(U)) = w(Cy(T")) = Cyq_1(T") is an integral cyclic polytope, and

b) m(L(Hy)) = Z% !, where Hy; is the affine space spanned by U. In other words, after dropping

the last coordinate of the lattice of Hy;, we get the (d — 1)-dimensional lattice.

Example: (4,16)
Hy ={(z,1+4z) |z € R}

P =C5({1,2,3,4}) =

3,9)
[’(HU) — { " (07 _3)7 (1-, 1)-, (2-, 5), (3,9), (4, 13)7 .o }

T(L(Hy)) =1+ ,0,1,2,3,4,---,} =7

Remark: Condition b) is equivalent to say that for any lattice point y & Zd_l, we have that

W‘l(y) M Hy;, the intersection of Hy; with the inverse image of y under T, is a lattice point.
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| Definition of lattice-face polytopes I

We define lattice-face polytopes recursively.
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| Definition of lattice-face polytopes I

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.
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| Definition of lattice-face polytopes I

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d > 2, we call a d-dimensional polytope P with vertex set I/ a lattice-face polytope if for any
d-subset U C V,

a) m(conv(U)) is a lattice-face polytope, and

b) 7(L(Hy)) = 2471,
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| Definition of lattice-face polytopes I

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d > 2., we call a d-dimensional polytope P with vertex set V' a lattice-face polytope if for any
d-subset U C V,

a) m(conv(U)) is a lattice-face polytope, and

b) 7(L(Hy)) = 2%

Lemma 6. Any integral cyclic polytope is a lattice-face polytope.
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| Definition of lattice-face polytopes I

We define lattice-face polytopes recursively.

We call a one dimensional polytope a lattice-face polytope if it is integral.

For d > 2, we call a d-dimensional polytope P with vertex set I/ a lattice-face polytope if for any
d-subset U C V,

a) m(conv(U)) is a lattice-face polytope, and

b) 7(L(Hy)) = 2471,
Lemma 6. Any integral cyclic polytope is a lattice-face polytope.

Lemma 7. Any lattice-face polytope is an integral polytope.
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| The Main Theorem |

Theorem 8. Let P be a lattice-face d-polytope, then

i(P,m) = Vol(mP) +i(w(P),m) = Y Vol (x**(P))m".
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| The Main Theorem |

Theorem 8. Let P be a lattice-face d-polytope, then

i(P,m) = Vol(mP) +i(w(P),m) = Y Vol (x**(P))m".

Observation:

1. w(P) is a lattice-face (d — 1)-polytope = we only need to show the first equality.
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| The Main Theorem |

Theorem 8. Let P be a lattice-face d-polytope, then

i(P,m) = Vol(mP) +i(w(P),m) = Y Vol (x**(P))m".

Observation:
1. w(P) is a lattice-face (d — 1)-polytope = we only need to show the first equality.

2. m P is a lattice-face d-polytope = it’s enough to show that

[L(P)| = Vol(P) + [L(x(P))]-
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: (4,16)

P =C5({1,2,3,4}) =

(1,1)
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: (4,16)
P =0C5{1,2,3,4}) =
(1,1)
W(P) - 1 2 3 4
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: (4,16)
P =0C5{1,2,3,4}) =
(1,1)
W(P) - 1 2 y 3 4
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: 7T_1(y) (4,16)
P =0C5{1,2,3,4}) =
(3,9)
(2,4)
(1,1)
W(P) - 1 2 y 3 4
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: 7T_1(y) (4,16)
P =0C5{1,2,3,4}) =
(3,9)
n(y, P)
(2,4)
(1,1)
W(P) - 1 2 y 3 4
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: 7T_1(y) (4,16)

NB(P)
hegative boundary

P =C5({1,2,3,4}) =

(2,4)
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| More Notation |

1. For any polytope P C R? and any point y € m(P), let n(y, P) be the point of 7~ 1(3) N P

having the smallest last coordinate.

2. Define N B(P) = Uye(pyn(y, P) to be the negative boundary of P and ((P) = P\ NB(P)

to be the nonnegative part of P.

Example: 7T_1(y) (4,16)

NB(P)
hegative boundary

P =C5({1,2,3,4}) =

(2,4)
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Clearly, 7 induces a bijection between L(N B(P)) and L(7(P)). Therefore,

[L(P)]
= |LQUP))|+ |L(NB(P))]
= [LQP))[ + [L(=(P))]
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Clearly, 7 induces a bijection between L(N B(P)) and L(7(P)). Therefore,

[L(P)]
= |LQUP))|+ |L(NB(P))]
= [LQP))[ + [L(=(P))]

Comparing with the formula we want to show:
[L(P)| = Vol(P) + [L(n(P))],

one see that to prove Theorem 8 it is sufficient to prove the following theorem.

Theorem 9. For any P a lattice-face d-polytope,

Vol(P) = |L((P))].
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For any triangulation (without introducing new vertices) 2, U - - - U P} of a lattice-face polytope P,

(note that (iv) implies that all F; are lattice-face polytopes,) we have that

k

Q(P) = EP Q(P;), which implies that | £((P))| = Z IL(QP))].

=1
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For any triangulation (without introducing new vertices) 2, U - - - U P} of a lattice-face polytope P,

(note that (iv) implies that all F; are lattice-face polytopes,) we have that

k

Q(P) = EP Q(P;), which implies that | £((P))| = Z IL(QP))].

=1

V4

U3

V2

U1
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For any triangulation (without introducing new vertices) 2, U - - - U P} of a lattice-face polytope P,

(note that (iv) implies that all F; are lattice-face polytopes,) we have that

k k
Q(P) = EP Q(P;), which implies that [ £(Q(P))| = > " |L(Q(F))].
1=1 1=1
Example: ot - -
P = v = U U
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For any triangulation (without introducing new vertices) 2, U - - - U P} of a lattice-face polytope P,
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Q(P) = EP Q(P;), which implies that [ £(Q(P))| = > " |L(Q(F))].
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For any triangulation (without introducing new vertices) 2, U - - - U P} of a lattice-face polytope P,

(note that (iv) implies that all P; are lattice-face polytopes,) we have that

k k
Q(P) = EP Q(P;), which implies that [ £(Q(P))| = > " |L(Q(F))].
=1 1=1
Example: ot - -
_P pr— v pr— U v
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However, for any triangulation (without introducing new vertices) I, U - - - U P, we have that

k
Vol(P) =) Vol(P).
i=1
Comparing this with

LQP)) = D LR

we conclude that, to prove Theorem 9 (Vol(P) = |L(§2(P))|), it is enough to prove the the case

when P is a lattice-face d-simplex, i.e., P has d + 1 vertices which are affinely independent.
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| Idea of the Proof |

We will use two dimensional lattice-face simplices to illustrate the idea of our proof.

Assume P is a 2-dimensional lattice-face simplex with vertex set V' = {vl, Vs, ’Ug}, where the

€L
coordinates of v; are

Yi

WLOG, we assume that v, v, v3 are in an order such that both

positive. In other words, vy, V2, U3 are in counterclockwise order and r{ < 2.

FPSAC, 2006

1 T
1 i)
1 XT3

Y1
Yo
Ys

and

1 T
are

15172

Fu Liu
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(e

Lz
x 1 2o o
We can define an affine transformation I’ which maps — . One can
Y Lz oy
1 1

\ 1w

1. T gives a bijection between the lattice points in 2(P) and the lattice points in (T (P)). Therefore,

check that

we want to show that

Vol(P) = [L(UT(P)))].

2. T'(P) is a lattice-face polytope, as well.

FPSAC, 2006 Page 17



Ehrhart polynomials of lattice-face polytopes

Let P' = T'(P). Then its vertex setis V' = {v] =

where 1 =

FPSAC, 2006

I z1 wn
I 292 v
I 23 y3

1.271

1.’13'2

Fu Liu
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L1 L2 L3
Let P' = T'(P). Then its vertex setis V' = {v] = , U = Uy = },
0 0 Uy
L 21
1 2o o
, 1 23 ys
where 3 =
1 T
1 i)

By our assumption, 15, > (. There are 3 cases for the position of the vertices of I’ :

()1 < a9 < X3, (i) ry <x3 < T2, (i) x5 < 21 < X9.
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(i)xr < a9 < 3 -

T ) x3
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(i)xr < a9 < 3 -

T ) x3
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(i)xr < a9 < 3 -

T ) x3
P = v

—_~
|
i~

N~
|
<

W~
|
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—_~
|
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|
<
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(i)xr < a9 < 3 -

T ) x3
P = v
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(i)xr < a9 < 3 -

T ) x3
P = v

—_~
|
i~

N~
|
<

W~
|
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(i)xr < a9 < 3 -

T L2 I3
P = v = LU

[\l
|
=

W~
|
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(i)xr < a9 < 3 -

T L2 I3
P = v = LU

[\l
|
=

W~
|
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(i)xr < a9 < 3 -

/ _ ! _ I __
P _ vy = y Ug = y Uz =
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FPSAC, 2006

(i)xr < a9 < 3 -

/ / 332 / 333
P — /Ul — ,U2 — 7?}3 —
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(i)xr < a9 < 3 -

9 XT3
/ / /
P = V] = , Uy = , Vg =

1 T
Because P’ is a lattice-face polytope, it is not hard to show that yg is a multiple of both
1 s
1 X2
and
1 XT3
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For any positive integers a1, ag, if S = aias ,
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For any positive integers a;, as, if S =

araz ,  then |[L(S)] = Z?izl szill L.
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For any positive integers a;, as, if S =

araz ,  then |[L(S)] = Z?izl szill L.

Therefore, we define f2(a1,az) = > .1, > .27 1, for any positive integers ay, as.
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For any positive integers a;, ag, if.S = ajaz, then [L(S)| = 01 > 20 1

Therefore, we define fo(a1, as) = Zgllzl Zjill 1, for any positive integers ay, as. Thus,
1 =1 (yé/ 1 =1 ) .
T3 1 z3 1 1
I I
csl= Y S =g " . and
s1=1 so=1 1 X3 1 I3
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For any positive integers a;, ag, if.S = ajaz, then [L(S)| = 01 > 20 1
Therefore, we define fo(a1, as) = Zgllzl jjill 1, for any positive integers ay, as. Thus,
1 =1 (yé/ 1 =1 >81
1 z3 1 z3 1 1
I I
VIEAT D DI S o/ , and
s1=1 so=1 1 X3 1 I3
1 x2 ( , 1 x2 )
Ys S1
1 x3 1 x3 1 1
L2 L2
L(S) = ) > 1=f Y/
s1=1 s2=1 1 a3 T3

FPSAC, 2006

Fu Liu
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For any positive integers a;, as, if S = s1=1 2uso—1

Therefore, we define f>(aq, az) = > 0" “2°1 1, for any positive integers a;, a,. Thus,

s1=1 so=1
(yé/

T 1 =«
’ﬁ(sl)’: Z Z 1=f2 { ' ,yé ! , and

) 1 I 1 i)
L(Sy)| = > > o 1=45 s/

81:1 82:1 ]. Ig ]. 373

Hence, for case (i) 21 < x5 < 23 : [L(Q(P))| = |L(Q(F"))] = |L(51)] — [L(S2)]

1 x3

1 T 1 T 1 T9 1 i)
:f2 | 7yé/ _f2 73/;)/

T3 1 xr3 1 xr3 1 X3

FPSAC, 2006

ajaz, then |L(S)]=>"" w2

Fu Liu
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(ihry <23 < T9:

X1 ) X3
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(ihry <23 < T9:

X1 ) X3
P = v

—_~
|
<

[\l
|
<

W~
|
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(ihry <23 < T9:

/ 331
P = v

—_~
|
<
[N}
|
<
W~
|
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/ 331
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<
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<
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<
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(ihry <23 < T9:

/ 331
P = v

—_~
|
<
[N}
|
<
W~
|
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(ihry <23 < T9:

P =
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(ihry <23 < T9:

P =

—_~

Fu Liu
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(ihry <23 < T9:

U3
x x x
P = vy = ! LUy = ? LU = i
0 0 s
vl vy
QP =
1 x 1 x
Clearly |£(S))| = f» Ry ") butwhatis [£(Ss)]?
I3 1 I3
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For any negative integers a1, ao, if S = ajas
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;then [£(S)] =200 T 0B T

For any negative integers a1, ao, if S = ajas
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then [£(S)| = S0 @y e

s1=1 so=1

— 23_1621_1(—@281)

For any negative integers a1, ao, if S = ajas
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., then [L(S)] = Zs—fgl—l Dot
— 23_1621_1(—@281)

= —as3(—ar — 1)(—a)

For any negative integers a1, ao, if S = ajas
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For any negative integers a1, ao, if S = ajas

FPSAC, 2006

Fu Liu

then |£(S)| = 2.2 5 1
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., then [L(S)] = Zs—fgl—l Zs‘;‘jfl 1
=3 U (—assy)

—ay = —as5(—a1 — 1)(—ay)

For any negative integers a1, ao, if S = ajas

Recall that for any ai, a2 € N, fa(ag, as) = 2211:1 St

so=1
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., then [L(S)] = Z;ﬁfl Dot
— 23_1621_1(—@281)

—ay = —as5(—a1 — 1)(—ay)

For any negative integers a1, ao, if S = ajas

Recall thatforany aj, a2 € N, fo(ar,a2) = D 01 > 20 1 = 1 ags:
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For any negative integers a1, ao, if S = ajas

Recall that for any a1, a2 € N, fo(ay,az) = >

FPSAC, 2006

Fu Liu

then |£(S)]| = S @ty e

s1=1 so=1
— 23_1621_1(—@281)
= —as3(—ar — 1)(—a)

== —ag%(al + 1)

@251 1 = Zgll as2S1 = CLQ%(al + 1)
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., then [L(S)] = Z;ﬁfl Dot
— 23_1621_1(—@281)

—ay = —as5(—a1 — 1)(—ay)

For any negative integers a1, ao, if S = ajas

Recall thatforany a;, a2 € N, fo(ar,a2) = D 01 Y 20N 1 = M ags) = ax%(ay + 1).

so=1
Because a2a2_1<a1 + 1) is a polynomial in a1, as, we can extend the domain of fo from N2 to Z2 or

even R2,

FPSAC, 2006
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then [£(S)| = S0 @y e

s1=1 2usy=1
— 23_1621_1(—@281)

= —as5(—a1 — 1)(—ay)
= —ax%(a; + 1)

Recall that forany aj,as € N, fo(ar,az) =D 0 e — ZZ; azs1 = as%-(ar + 1).

s1=1 so=1

For any negative integers a1, ao, if S = ajas

Because a2a2_1<a1 + 1) is a polynomial in a1, as, we can extend the domain of fo from N2 to Z2 or

even R2,

Then
[L(S)] = —fa(ar, az).
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then [£(S)| = S0 @y e

s1=1 2usy=1
— 23_1621_1(—@281)

= —as5(—a1 — 1)(—ay)
= —ax%(a; + 1)

Recall that forany aj,as € N, fo(ar,az) =D 0 e — ZZ; azs1 = as%-(ar + 1).

s1=1 so=1

For any negative integers a1, ao, if S = ajas

Because a2a2_1<a1 + 1) is a polynomial in a1, as, we can extend the domain of fo from N2 to Z2 or

even R2,

Then
[L(S)] = —fa(ar, az).

: )81 1 i) 1 i)
HESEEY > 1=~/ s/

81:1 32:1 1 :Ug ]_ :Ug

Thus,
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. then [L£(S)[ = >0 1 Y
— 23_1621_1(—@281)
= —as5(—a1 — 1)(—ay)
= —ax%(a; + 1)

Recall that for any ai, a2 € N, fa(ag,as) = 2311:1 322:1 1 = Zgll azsy = as%-(a; + 1).

Because a2a2_1(a1 + 1) is a polynomial in a1, as, we can extend the domain of f from N2 to Z? or

For any negative integers a1, ao, if S = ajas

even R?.
Then
[L(S)] = —f2(a, a2).
Thus,
I
1

i) 1 i)

L(S) = ) > L=—Fa| | s/

s1=1 so=1 I3 I 3

Hence, for case (i) 1 < x3 < xo : |L(QP))| = |L(QUP"))| = |L(S1)] + |[L(S2)] =
1 x 1 X1 1 X9 1 L2

f2 7yé/ _f2 7yé/
T3 1 I3 1 I3 1 I3

FPSAC, 2006

Fu Liu
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(i) r3 < xr1 < 29 :

,U/

T ) x3
P = v

—_~
|
i~

N~
|
<

W~
|
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(i) r3 < xr1 < 29 :

,U/

T ) x3
P = v

—_~
|
i~

N~
|
<

W~
|
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(i) r3 < xr1 < 29 :

,U/

/ _ ! /I __ I __
P _ vy = y Ug = y Uz =

QP =

As before, we have that |L(Q(P))| = |L(QUP))| = —|L(S1)| + |L£(Ss)]
1 T 1 T 1 i) 1 i)

:f2 7yé/ _f2 7yi/3/
1 x5 1 x5 1 x5 L 3
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Therefore, for any of the three cases,

IL(Q(P))] = [
Lz
I z3 ys

FPSAC, 2006

/

1

X1

X3

1{13'1

1.272

s/

1551

1373

— f2

1373

Fu Liu
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Therefore, for any of the three cases,

1 T ; 1 T 1 i) / 1 X2
’£<Q<P>)‘ — f2 7y3/ _f2 73/3/ )
1 T3 1 T3 1 T3 1 T3
Lz
p 1 I
whereys = | 1 x5 s |/
1 Io
L z3 ys

Recall that fy(ai, a2) = ax%- (a1 + 1), we can calculate that

Iz
1z yp | = Vol(P).

I x3 y3

L) =
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Therefore, for any of the three cases,

1 T 1 T 1 i) 1 X2
1 T3 1 T3 1 T3 1 T3
Lz
p 1 I
whereys = | 1 x5 s |/
1 Io
L z3 ys

Recall that fy(ai, a2) = ax%- (a1 + 1), we can calculate that

X I =z
!5(9(P>)\:§ 1 @z yo | = Vol(P).
1 23 ys

This completes the proof of Theorem 9 for dimension 2.
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| Further Discussion |

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition

we gave earlier. Indeed, a d-polytope on a vertex set V' is a lattice-face polytope if and only if for all
k:0<k<d-1,

(x) forany (k+ 1)-subsetU C V,
" ML(Hy)) =2,

where H{; is the affine space spanned by U. In other words, after dropping the last d — k coordinates

of the lattice of Hy;, we get the k-dimensional lattice.
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| Further Discussion |

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition

we gave earlier. Indeed, a d-polytope on a vertex set V' is a lattice-face polytope if and only if for all
k:0<k<d-1,

(x) forany (k+ 1)-subsetU C V,
" ML(Hy)) =2,

where H{; is the affine space spanned by U. In other words, after dropping the last d — k coordinates

of the lattice of Hy;, we get the k-dimensional lattice.

Note that in this definition, when & = 0, satisfying (%) is equivalent to saying that P is an integral

polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.
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| Further Discussion |

We have an alternative definition of lattice-face polytopes, which is equivalent to the original definition

we gave earlier. Indeed, a d-polytope on a vertex set V' is a lattice-face polytope if and only if for all
k:0<k<d-1,

(x) forany (k+ 1)-subsetU C V,
" ML(Hy)) =2,

where Hy; is the affine space spanned by U. In other words, after dropping the last d — £ coordinates

of the lattice of Hy;, we get the k-dimensional lattice.

Note that in this definition, when & = 0, satisfying (x) is equivalent to saying that P is an integral

polytope, which implies that the last coefficient of the Ehrhart polynomial of P is 1.

Therefore, one may ask

If P is a polytope that satisfies (x) for all k € K, where K is a fixed subset of {0, 1, ..., d—
1}, can we say something about the Ehrhart polynomial of P?
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| A conjecture I

A special set K can be chosen as the set of consecutive integers from 0 to d, where d’ is an integer

no greater than d — 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a
certain pattern, so we conjecture the following:

Conjecture 10. Given d’ < d — 1, if P is a d-polytope with vertex set VV suchthat Vk : 0 < k < d,
(%) is satisfied, then for 0 < k < d’, the coefficient of m” in i( P, m) is the same as in i (7%~ (P), m).

In other words,
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| A conjecture I

A special set K can be chosen as the set of consecutive integers from 0 to d, where d’ is an integer

no greater than d — 1. Based on some examples in this case, the Ehrhart polynomials seems to follow a

certain pattern, so we conjecture the following:

Conjecture 10. Given d’ < d — 1, if P is a d-polytope with vertex set VV suchthat Vk : 0 < k < d,
(%) is satisfied, then for 0 < k < d’, the coefficient of m” in i( P, m) is the same as in i (7%~ (P), m).

In other words,

i(P,m) = i(x"%(P),m) + 'Z cm’.

Example: P = conv{(0,0,0), (4,0,0),(3,6,0),(2,2,2)}. One can check that P satisfies (x) for
k =0, 1 but not for k = 2.
i(P,m) = 8m® 4 10m* 4 4m + 1,

where 4m + 1 is the Ehrhart polynomial of 72(P) = [0, 4].
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