Bounds on the number of inference functions of a graphical model

Sergi Elizalde

Kevin Woods

Dartmouth College

UC Berkeley

FPSAC 2006

- Background
 - Sequence alignment
 - Hidden Markov model
 - Graphical models
 - Inference functions
- Upper bound on the number of inference functions Sketch of the proof:
 - From inference functions to vertices of a polytope
 - The number of vertices of a Minkowski sum of polytopes
- Lower bound on the number of inference functions
- Application to sequence alignment

Consider the sequences $S = \mathtt{AGGAATTCG}$ and $T = \mathtt{GGACGGTAT}$.

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

$$S_1 = AGGA-ATTCG$$
 $S_2 = --A-GGAATTCG$ $T_1 = -GGACGGTAT$ $T_2 = GGACGGTAT---$

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

$$S_1 = AGGA-ATTCG$$
 $S_2 = --A-GGAATTCG$ $T_1 = -GGACGGTAT$ $T_2 = GGACGGTAT---$

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

$$S_1 = AGGA-ATTCG$$
 $S_2 = --A-GGAATTCG$ $T_1 = -GGACGGTAT$ $T_2 = GGACGGTAT---$

One possible model: matches are rewarded by 1, mismatches are penalized by α , and insertions are penalized by β .

$$4 - 4\alpha - \beta$$
 \longleftarrow score:= $z - x\alpha - y\beta$ \longrightarrow $5 - \alpha - 3\beta$

An optimal alignment is one with highest score.

Optimality depends on the values of the parameters α and β .

- An optimal alignment is one with highest score.
 - Optimality depends on the values of the parameters α and β .
- For fixed parameters, we get a function that maps each pair of sequences to their optimal alignment.
 - Such a map is called an *inference function*.

- An optimal alignment is one with highest score.
 - Optimality depends on the values of the parameters α and β .
- For fixed parameters, we get a function that maps each pair of sequences to their optimal alignment.
 - Such a map is called an *inference function*.
- ullet The total number of maps from pairs of sequences of length n to alignments is doubly exponential in n.
 - However, most of them are not inference functions for any parameter values.

An optimal alignment is one with highest score.

Optimality depends on the values of the parameters α and β .

For fixed parameters, we get a function that maps each pair of sequences to their optimal alignment.

Such a map is called an *inference function*.

ullet The total number of maps from pairs of sequences of length n to alignments is doubly exponential in n.

However, most of them are not inference functions for any parameter values.

Problem: How many of them are inference functions?

For $i, j \in \Sigma$, $\ell \in \Sigma'$,

 $\theta_{i\ell} = ext{transition probability from } X_k = i ext{ to } Y_k = \ell$

 $\theta_{ij} = \text{transition probability from } X_k = i \text{ to } X_{k+1} = j$

For
$$i, j \in \Sigma$$
, $\ell \in \Sigma'$,

$$egin{array}{ll} heta_{i\ell} &= ext{ transition probability from } X_k = i ext{ to } Y_k = \ell \ heta_{ij} &= ext{ transition probability from } X_k = i ext{ to } X_{k+1} = j \end{array}
ight\}$$
 12 parameters

This model can be used to determine what parts of the genome are introns and what parts are exons.

The model is represented by a polynomial map

$$\mathbf{f}: \qquad \mathbb{R}^{12} \qquad \longrightarrow \qquad \mathbb{R}^{64}$$

$$(\theta_{\mathrm{in,in}}, \theta_{\mathrm{in,ex}}, \theta_{\mathrm{in,A}}, \ldots) \qquad \mapsto \qquad (f_{\mathtt{AAA}}, f_{\mathtt{AAC}}, f_{\mathtt{AAG}}, f_{\mathtt{AAT}}, f_{\mathtt{ACA}}, \ldots)$$

The model is represented by a polynomial map

$$\mathbf{f}: \qquad \mathbb{R}^{12} \longrightarrow \qquad \mathbb{R}^{64}$$

$$(\theta_{\mathrm{in,in}}, \theta_{\mathrm{in,ex}}, \theta_{\mathrm{in,A}}, \dots) \longmapsto \qquad (f_{\mathtt{AAA}}, f_{\mathtt{AAC}}, f_{\mathtt{AAG}}, f_{\mathtt{AAT}}, f_{\mathtt{ACA}}, \dots)$$

$$f_{\mathtt{ATT}} = \underbrace{\frac{1}{2}\theta_{\mathrm{in,A}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}}_{X_1 = X_2 = X_3 = \mathrm{in}} + \underbrace{\frac{1}{2}\theta_{\mathrm{in,A}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}\theta_{\mathrm{in,ex}}\theta_{\mathrm{ex,T}}}_{X_1 = X_2 = \mathrm{in}, X_3 = \mathrm{ex}} + \dots$$

(each coordinate gives the probability of an outcome)

The model is represented by a polynomial map

$$\mathbf{f}: \qquad \mathbb{R}^{12} \longrightarrow \qquad \mathbb{R}^{64}$$

$$(\theta_{\mathrm{in,in}}, \theta_{\mathrm{in,ex}}, \theta_{\mathrm{in,A}}, \dots) \longmapsto \qquad (f_{\mathtt{AAA}}, f_{\mathtt{AAC}}, f_{\mathtt{AAG}}, f_{\mathtt{AAT}}, f_{\mathtt{ACA}}, \dots)$$

$$f_{\mathtt{ATT}} = \underbrace{\frac{1}{2}\theta_{\mathrm{in,A}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}}_{X_1 = X_2 = X_3 = \mathrm{in}} + \underbrace{\frac{1}{2}\theta_{\mathrm{in,A}}\theta_{\mathrm{in,in}}\theta_{\mathrm{in,T}}\theta_{\mathrm{in,ex}}\theta_{\mathrm{ex,T}}}_{X_1 = X_2 = \mathrm{in}, X_3 = \mathrm{ex}} + \dots$$

(each coordinate gives the probability of an outcome)

Given an observation (e.g. ATT), one wants to find the most likely values of X_1, X_2, X_3 .

Graphical models

More generally:

Hidden: $X_1, X_2, \dots, X_q \in \Sigma$

Observed: $Y_1, Y_2, \dots, Y_n \in \Sigma'$

Graphical models

More generally:

Hidden: $X_1, X_2, \dots, X_q \in \Sigma$ Observed: $Y_1, Y_2, \dots, Y_n \in \Sigma'$

$$\mathbf{f}: \qquad \mathbb{R}^d \qquad \longrightarrow \qquad \mathbb{R}^{(l')^n}$$
$$(\theta_1, \theta_2, \dots, \theta_d) \qquad \mapsto \qquad (f_{\tau}, \dots)$$

Graphical models

More generally:

Hidden: $X_1, X_2, \dots, X_q \in \Sigma$ Observed: $Y_1, Y_2, \dots, Y_n \in \Sigma'$

$$\mathbf{f}: \qquad \mathbb{R}^d \qquad \longrightarrow \qquad \mathbb{R}^{(l')^n}$$
$$(\theta_1, \theta_2, \dots, \theta_d) \qquad \mapsto \qquad (f_{\boldsymbol{\tau}}, \dots)$$

For each observation $\tau \in (\Sigma')^n$,

$$f_{\tau} = \operatorname{Prob}(\mathbf{Y} = \tau) = \sum_{\mathbf{h} \in \Sigma^q} \underbrace{\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \tau)}_{\mathbf{monomial in}} \underbrace{\theta_1, \theta_2, \dots, \theta_d}$$

Basic inference problem: Given an observation τ , determine the value of the hidden data h that maximizes

$$\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \boldsymbol{\tau}).$$

Basic inference problem: Given an observation τ , determine the value of the hidden data h that maximizes

$$\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \boldsymbol{\tau}).$$

● The solution $\hat{\mathbf{h}}$ is called an *explanation* of τ , and it depends on the values of the parameters $\theta_1, \theta_2, \dots, \theta_d$.

Basic inference problem: Given an observation τ , determine the value of the hidden data h that maximizes

$$\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \boldsymbol{\tau}).$$

● The solution $\hat{\mathbf{h}}$ is called an *explanation* of τ , and it depends on the values of the parameters $\theta_1, \theta_2, \dots, \theta_d$.

Definition. An *inference function* is a map

$$\begin{array}{ccc} (\Sigma')^n & \longrightarrow & \Sigma^q \\ \hline \tau & \mapsto & \widehat{\mathbf{h}} \end{array}$$

that sends each observation to its explanation.

Each choice of parameter values defines an inference function.

Basic inference problem: Given an observation τ , determine the value of the hidden data h that maximizes

$$\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \boldsymbol{\tau}).$$

▶ The solution $\widehat{\mathbf{h}}$ is called an *explanation* of τ , and it depends on the values of the parameters $\theta_1, \theta_2, \dots, \theta_d$.

Definition. An *inference function* is a map

$$\begin{array}{ccc} (\Sigma')^n & \longrightarrow & \Sigma^q \\ \hline \tau & \mapsto & \widehat{\mathbf{h}} \end{array}$$

that sends each observation to its explanation.

Each choice of parameter values defines an inference function.

In the previous example, an inference function is a map $\{A, C, G, T\}^n \longrightarrow \{in, ex\}^n$. These are called *gene finding functions*.

In general, if $l=|\Sigma|,\ l'=|\Sigma'|$, there are in total $l^{q(l')^n}$ functions $(\Sigma')^n\longrightarrow \Sigma^q.$

In general, if $l=|\Sigma|$, $l'=|\Sigma'|$, there are in total $l^{q(l')^n}$ functions $(\Sigma')^n \longrightarrow \Sigma^q$.

However, most of these maps are not inference functions for any value of the parameters.

In general, if $l=|\Sigma|,\ l'=|\Sigma'|$, there are in total $l^{q(l')^n}$ functions $(\Sigma')^n\longrightarrow \Sigma^q.$

However, most of these maps are not inference functions for any value of the parameters.

Problem: How many of them are inference functions?

In general, if $l=|\Sigma|,\ l'=|\Sigma'|$, there are in total $l^{q(l')^n}$ functions $(\Sigma')^n\longrightarrow \Sigma^q.$

However, most of these maps are not inference functions for any value of the parameters.

Problem: How many of them are inference functions?

Main Theorem. Fix d > 0. Consider a graphical model with d parameters, and let E be the number of edges of the underlying graph. Then, the number of inference functions of the model is at most

$$O(E^{d(d-1)}).$$

In general, if $l=|\Sigma|,\ l'=|\Sigma'|$, there are in total $l^{q(l')^n}$ functions $(\Sigma')^n\longrightarrow \Sigma^q.$

However, most of these maps are not inference functions for any value of the parameters.

Problem: How many of them are inference functions?

Main Theorem. Fix d > 0. Consider a graphical model with d parameters, and let E be the number of edges of the underlying graph. Then, the number of inference functions of the model is at most

$$O(E^{d(d-1)}).$$

Usually, E is a linear in n, so the number of inference functions is in fact $O(n^{d(d-1)})$.

Definition. The Newton polytope of

$$f_{\tau}(\theta_1, \theta_2, \dots, \theta_d) = \sum_i \theta_1^{a_{1,i}} \theta_2^{a_{2,i}} \cdots \theta_d^{a_{d,i}},$$

 $NP(f_{\tau})$, is the convex hull of the vectors $(a_{1,i}, a_{2,i}, \dots, a_{d,i}) \in \mathbb{R}^d$.

Definition. The Newton polytope of

$$f_{\tau}(\theta_1, \theta_2, \dots, \theta_d) = \sum_i \theta_1^{a_{1,i}} \theta_2^{a_{2,i}} \cdots \theta_d^{a_{d,i}},$$

 $\operatorname{NP}(f_{\tau})$, is the convex hull of the vectors $(a_{1,i}, a_{2,i}, \dots, a_{d,i}) \in \mathbb{R}^d$.

Example.

$$f(\theta_1, \theta_2) = \theta_1^3 + \theta_1^2 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1^4 \theta_2^4$$

Definition. The Newton polytope of

$$f_{\tau}(\theta_1, \theta_2, \dots, \theta_d) = \sum_i \theta_1^{a_{1,i}} \theta_2^{a_{2,i}} \cdots \theta_d^{a_{d,i}},$$

 $\operatorname{NP}(f_{\tau})$, is the convex hull of the vectors $(a_{1,i}, a_{2,i}, \dots, a_{d,i}) \in \mathbb{R}^d$.

Example.

$$f(\theta_1, \theta_2) = \theta_1^3 + \theta_1^2 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1^4 \theta_2^4$$

For fixed parameters θ_i , if we let $v_i = \log \theta_i$, then the explanation $\hat{\mathbf{h}}$ maximizing $\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \tau)$ is given by the vertex of $\operatorname{NP}(f_{\tau})$ that maximizes $v_1x_1 + \ldots + v_dx_d$.

Definition. The Newton polytope of

$$f_{\tau}(\theta_1, \theta_2, \dots, \theta_d) = \sum_{i} \theta_1^{a_{1,i}} \theta_2^{a_{2,i}} \cdots \theta_d^{a_{d,i}},$$

 $\operatorname{NP}(f_{\tau})$, is the convex hull of the vectors $(a_{1,i}, a_{2,i}, \dots, a_{d,i}) \in \mathbb{R}^d$.

Example.

$$f(\theta_1, \theta_2) = \theta_1^3 + \theta_1^2 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1 \theta_2^2 + \theta_1^4 \theta_2^4$$

$$\theta_1 = 0.6, \quad \theta_2 = 0.4,$$
 $\mathbf{v} = (\log \theta_1, \log \theta_2) = (-0.51, -0.92)$

For fixed parameters θ_i , if we let $v_i = \log \theta_i$, then the explanation $\hat{\mathbf{h}}$ maximizing $\operatorname{Prob}(\mathbf{X} = \mathbf{h}, \mathbf{Y} = \tau)$ is given by the vertex of $\operatorname{NP}(f_{\tau})$ that maximizes $v_1x_1 + \ldots + v_dx_d$.

The normal fan

Let

$$\Phi_{\mathbf{v}}: (\Sigma')^n \longrightarrow \Sigma^q$$

denote the inference function where $\mathbf{v} = (\log(\theta_1), \dots, \log(\theta_d)) \in \mathbb{R}^d$.

$$\Phi_{\mathbf{v}}: (\Sigma')^n \longrightarrow \Sigma^q$$

denote the inference function where $\mathbf{v} = (\log(\theta_1), \dots, \log(\theta_d)) \in \mathbb{R}^d$.

Definition. The *normal fan* $\mathcal{F}(P)$ of a polytope P is the decomposition of the space according to the directions in which each face is maximal.

$$\Phi_{\mathbf{v}}: (\Sigma')^n \longrightarrow \Sigma^q$$

denote the inference function where $\mathbf{v} = (\log(\theta_1), \dots, \log(\theta_d)) \in \mathbb{R}^d$.

Definition. The *normal fan* $\mathcal{F}(P)$ of a polytope P is the decomposition of the space according to the directions in which each face is maximal.

 $\Phi_{\mathbf{v}}(\boldsymbol{\tau}) = \Phi_{\mathbf{v}'}(\boldsymbol{\tau})$ iff \mathbf{v} and \mathbf{v}' belong to the same cone of $\mathcal{F}(\mathrm{NP}(f_{\boldsymbol{\tau}}))$.

Common refinement of fans

$$\Phi_{\mathbf{v}}(\mathbf{\tau}) = \Phi_{\mathbf{v}'}(\mathbf{\tau}) \iff \mathbf{v} \text{ and } \mathbf{v}' \text{ belong to the same cone of } \mathcal{F}(\mathrm{NP}(f_{\mathbf{\tau}}))$$

Common refinement of fans

$$\Phi_{\mathbf{v}}({\color{blue}\boldsymbol{\tau}}) = \Phi_{\mathbf{v}'}({\color{blue}\boldsymbol{\tau}}) \quad \Longleftrightarrow \quad$$

 ${\bf v}$ and ${\bf v}'$ belong to the same cone of ${\mathcal F}({\rm NP}(f_{{\color{blue} au}}))$

$$\Phi_{\mathbf{v}} \equiv \Phi_{\mathbf{v}'}$$
 as inference functions

 ${\bf v}$ and ${\bf v}'$ belong to the same cone of ${\mathcal F}({\mathbf {NP}}(f_{\pmb{ au}}))$ for all observations ${\pmb{ au}}\in (\Sigma')^n$

Common refinement of fans

$$\Phi_{\mathbf{v}}({\color{blue}\boldsymbol{\tau}}) = \Phi_{\mathbf{v}'}({\color{blue}\boldsymbol{\tau}}) \quad \Longleftrightarrow \quad$$

 ${\bf v}$ and ${\bf v}'$ belong to the same cone of ${\mathcal F}({\rm NP}(f_{{\color{blue} au}}))$

$$\Phi_{\mathbf{v}} \equiv \Phi_{\mathbf{v}'}$$
 as inference functions

 $\mathbf{v} \text{ and } \mathbf{v}' \text{ belong to the} \\ \text{ same cone of } \mathcal{F}(\mathrm{NP}(f_{\pmb{\tau}})) \\ \text{ for all observations } \pmb{\tau} \in (\Sigma')^n \\$

v and v' belong to the same cone of $\bigwedge_{\pmb{\tau} \in (\Sigma')^n} \mathcal{F}(\mathbf{NP}(f_{\pmb{\tau}}))$ common refinement of fans

Common refinement of fans

$$\begin{split} \Phi_{\mathbf{v}}(\tau) &= \Phi_{\mathbf{v}'}(\tau) &\iff & \text{v and } \mathbf{v}' \text{ belong to the same cone of } \mathcal{F}(\mathrm{NP}(f_\tau)) \\ \Phi_{\mathbf{v}} &\equiv \Phi_{\mathbf{v}'} \text{ as inference functions} &\iff & \text{v and } \mathbf{v}' \text{ belong to the same cone of } \mathcal{F}(\mathrm{NP}(f_\tau)) \\ &\text{for all observations } \tau \in (\Sigma')^n \\ && \qquad \qquad \downarrow \\ & \text{v and } \mathbf{v}' \text{ belong to the same cone of } & \bigwedge_{\tau \in (\Sigma')^n} \mathcal{F}(\mathrm{NP}(f_\tau)) \\ && \qquad \qquad \downarrow \\ && \qquad \qquad \downarrow \\ && \qquad \qquad \downarrow \\ && \qquad \downarrow \\ &&$$

The number of inference functions equals the **number of cones in the common refinement of fans**.

The common refinement of the normal fans is the normal fan of the Minkowski sum of polytopes:

$$\bigwedge_{\boldsymbol{\tau} \in (\Sigma')^n} \mathcal{F}(\operatorname{NP}(f_{\boldsymbol{\tau}})) = \mathcal{F}(\bigoplus_{\boldsymbol{\tau} \in (\Sigma')^n} \operatorname{NP}(f_{\boldsymbol{\tau}}))$$

The common refinement of the normal fans is the normal fan of the Minkowski sum of polytopes:

$$\bigwedge_{\boldsymbol{\tau} \in (\Sigma')^n} \mathcal{F}(\operatorname{NP}(f_{\boldsymbol{\tau}})) = \mathcal{F}(\bigoplus_{\boldsymbol{\tau} \in (\Sigma')^n} \operatorname{NP}(f_{\boldsymbol{\tau}}))$$

Definition. Minkowski sum: $Q \oplus Q' := \{\mathbf{x} + \mathbf{x}' : \mathbf{x} \in Q, \ \mathbf{x}' \in Q'\}.$

The common refinement of the normal fans is the normal fan of the Minkowski sum of polytopes:

$$\bigwedge_{\boldsymbol{\tau} \in (\Sigma')^n} \mathcal{F}(\operatorname{NP}(f_{\boldsymbol{\tau}})) = \mathcal{F}(\bigoplus_{\boldsymbol{\tau} \in (\Sigma')^n} \operatorname{NP}(f_{\boldsymbol{\tau}}))$$

Definition. Minkowski sum: $Q \oplus Q' := \{\mathbf{x} + \mathbf{x}' : \mathbf{x} \in Q, \ \mathbf{x}' \in Q'\}.$

Let
$$P := \bigoplus_{\tau \in (\Sigma')^n} \operatorname{NP}(f_{\tau})$$
.

The common refinement of the normal fans is the normal fan of the Minkowski sum of polytopes:

$$\bigwedge_{\boldsymbol{\tau} \in (\Sigma')^n} \mathcal{F}(\operatorname{NP}(f_{\boldsymbol{\tau}})) = \mathcal{F}(\bigoplus_{\boldsymbol{\tau} \in (\Sigma')^n} \operatorname{NP}(f_{\boldsymbol{\tau}}))$$

Definition. Minkowski sum: $Q \oplus Q' := \{\mathbf{x} + \mathbf{x}' : \mathbf{x} \in Q, \ \mathbf{x}' \in Q'\}.$

Let
$$P := \bigoplus_{\tau \in (\Sigma')^n} \operatorname{NP}(f_{\tau})$$
.

The number of inference functions equals the number of vertices of P.

• For each τ ,

$$NP(f_{\tau}) \subseteq [0, E]^d$$
,

since each θ_i can appear as a factor of a monomial of f_{τ} at most E times.

 \blacksquare For each τ ,

$$NP(f_{\tau}) \subseteq [0, E]^d$$

since each θ_i can appear as a factor of a monomial of f_{τ} at most E times.

Besides, $NP(f_{\tau})$ is a lattice polytope (i.e., its vertices have integral coordinates).

 \blacksquare For each τ ,

$$NP(f_{\tau}) \subseteq [0, E]^d$$

since each θ_i can appear as a factor of a monomial of f_{τ} at most E times.

▶ Besides, $NP(f_{\tau})$ is a lattice polytope (i.e., its vertices have integral coordinates).

Edges of $NP(f_{\tau})$ are vectors where each coordinate is an integer between -E and E.

• For each τ ,

$$NP(f_{\tau}) \subseteq [0, E]^d$$

since each θ_i can appear as a factor of a monomial of f_{τ} at most E times.

▶ Besides, $NP(f_{\tau})$ is a lattice polytope (i.e., its vertices have integral coordinates).

Edges of $NP(f_{\tau})$ are vectors where each coordinate is an integer between -E and E.

$$\prod$$

The polytopes $NP(f_{\tau})$ have at most $(2E+1)^d$ nonparallel edges in total.

The polytopes $NP(f_{\tau})$ have at most $(2E+1)^d$ nonparallel edges in total.

The number of vertices of $P=\bigoplus_{{m au}\in(\Sigma')^n} {\mathrm{NP}}(f_{{m au}})$ is at most

$$2\sum_{j=0}^{d-1} {(2E+1)^d - 1 \choose j}.$$

The polytopes $NP(f_{\tau})$ have at most $(2E+1)^d$ nonparallel edges in total.

The number of vertices of $P = \bigoplus_{\tau \in (\Sigma')^n} \mathrm{NP}(f_{\tau})$ is at most

$$2\sum_{j=0}^{d-1} \binom{(2E+1)^d - 1}{j}.$$

As $E \to \infty$, the dominant term is $\frac{2^{d^2-d+1}}{(d-1)!} E^{d(d-1)}$.

The polytopes $NP(f_{\tau})$ have at most $(2E+1)^d$ nonparallel edges in total.

The number of vertices of $P = \bigoplus_{\tau \in (\Sigma')^n} \mathrm{NP}(f_{\tau})$ is at most

$$2\sum_{j=0}^{d-1} {(2E+1)^d - 1 \choose j}.$$

As $E \to \infty$, the dominant term is $\frac{2^{d^2-d+1}}{(d-1)!} E^{d(d-1)}$.

The number of inference functions is $O(E^{d(d-1)})$.

A lower bound

Theorem. The above upper bound $O(E^{d(d-1)})$ on the number of inference functions is tight.

Theorem. The above upper bound $O(E^{d(d-1)})$ on the number of inference functions is tight.

Idea of the proof:

• Construct an HMM \mathcal{M}_n of length n with d parameters s.t. for any $a=(a_1,\ldots,a_d)\in\mathbb{Z}_+^d$ with $\sum_i a_i < n$, there is an observed sequence which has one explanation if $a_1v_1+\cdots+a_dv_d>0$ and another explanation if $a_1v_1+\cdots+a_dv_d<0$, where $v_i=\log(\theta_i)$.

Theorem. The above upper bound $O(E^{d(d-1)})$ on the number of inference functions is tight.

Idea of the proof:

- Construct an HMM \mathcal{M}_n of length n with d parameters s.t. for any $a=(a_1,\ldots,a_d)\in\mathbb{Z}_+^d$ with $\sum_i a_i < n$, there is an observed sequence which has one explanation if $a_1v_1+\cdots+a_dv_d>0$ and another explanation if $a_1v_1+\cdots+a_dv_d<0$, where $v_i=\log(\theta_i)$.
- Show that the hyperplane arrangement consisting of the hyperplanes of the form $\{x: \langle a,x\rangle=0\}$ with $a\in\mathbb{Z}_+^d$ and $\sum_i a_i < n$ has at least $\Omega(n^{d(d-1)})$ chambers.
- So, \mathcal{M}_n has $\Omega(n^{d(d-1)}) = \Omega(E^{d(d-1)})$ distinct inference functions.

The 2-parameter model for sequence alignment is a particular case of a pair hidden Markov model.

The 2-parameter model for sequence alignment is a particular case of a pair hidden Markov model.

General graphical model Sequence alignment observation au \longleftrightarrow pair of sequences of length n explanation $\widehat{\mathbf{h}}$ \longleftrightarrow optimal alignment

The 2-parameter model for sequence alignment is a particular case of a pair hidden Markov model.

The 2-parameter model for sequence alignment is a particular case of a pair hidden Markov model.

By the Main Theorem, the number of inference functions of this model is $O(n^{d(d-1)}) = O(n^2)$.

In fact, it is $\Theta(n^2)$.

Alignments can be represented as paths from the upper-left to the lower-right corner in the alignment graph:

Alignments can be represented as paths from the upper-left to the lower-right corner in the alignment graph:

y	z
0	1

TGTCCTTCCGGG ACCTTCCTTCCG

Alignments can be represented as paths from the upper-left to the lower-right corner in the alignment graph:

\boldsymbol{x}	y	z
11	0	1
6	1	5

TGTCCTTCCGGG ACCTTCCTTCCG

TG-TCCTTCCGGG

ACCTTCCTTCCG-

Alignments can be represented as paths from the upper-left to the lower-right corner in the alignment graph:

x	y	z
11	0	1
6	1	5
2	2	8

TGTCCTTCCGGG ACCTTCCTTCCG

TG-TCCTTCCGGG

TG-T-CCTTCCGGG ACCTTCCTTCCG- ACCTTCCTTCCG--

Alignments can be represented as paths from the upper-left to the lower-right corner in the alignment graph:

x	y	z
11	0	1
6	1	5
2	2	8
0	3	9
•		

TGTCCTTCCGGG ACCTTCCTTCCG TG-TCCTTCCGGG
ACCTTCCTTCCG-

TG-T-CCTTCCGGG
ACCTTCCTTCCG--

---TGTCCTTCCGGG
ACCT-TCCTTCCG--

The Newton polytope of a pair of sequences

\boldsymbol{x}	y	z
11	0	1
6	1	5
2	2	8
0	3	9
11	1	0
0	12	0

The Newton polytope of a pair of sequences

\boldsymbol{x}	y	z
11	0	1
6	1	5
2	2	8
0	3	9
11	1	0
0	12	0

The Newton polytope of a pair of sequences

\boldsymbol{x}	y	z
11	0	1
6	1	5
2	2	8
0	3	9
11	1	0
0	12	0

In the 2-parameter model for sequence alignment,

$$P = \bigoplus_{\tau} \operatorname{NP}(f_{\tau})$$
 has $\Theta(n^2)$ vertices (= # inference functions).

Open: For fixed $\tau = (S, T)$, how many vertices can $NP(f_{\tau})$ have?

In the 2-parameter model for sequence alignment,

$$P = \bigoplus_{\tau} \operatorname{NP}(f_{\tau})$$
 has $\Theta(n^2)$ vertices (= # inference functions).

Open: For fixed $\tau = (S, T)$, how many vertices can $NP(f_{\tau})$ have?

This is the number of different alignments of S and T that can be optimal for some values of the parameters α and β .

In the 2-parameter model for sequence alignment,

$$P = \bigoplus_{\tau} \operatorname{NP}(f_{\tau})$$
 has $\Theta(n^2)$ vertices (= # inference functions).

Open: For fixed $\tau = (S, T)$, how many vertices can $NP(f_{\tau})$ have?

This is the number of different alignments of S and T that can be optimal for some values of the parameters α and β .

Known to be $O(n^{2/3})$.

[Gusfield et al '94, Fernández-Baca et al '02]

In the 2-parameter model for sequence alignment,

$$P = \bigoplus_{\tau} \operatorname{NP}(f_{\tau})$$
 has $\Theta(n^2)$ vertices (= # inference functions).

Open: For fixed $\tau = (S, T)$, how many vertices can $NP(f_{\tau})$ have?

This is the number of different alignments of S and T that can be optimal for some values of the parameters α and β .

Known to be $O(n^{2/3})$. [Gusfield et al '94, Fernández-Baca et al '02]

Conjecture: It is $O(\sqrt{n})$ for binary sequences.

In the 2-parameter model for sequence alignment,

$$P = \bigoplus_{\tau} \operatorname{NP}(f_{\tau})$$
 has $\Theta(n^2)$ vertices (= # inference functions).

Open: For fixed $\tau = (S, T)$, how many vertices can $NP(f_{\tau})$ have?

This is the number of different alignments of S and T that can be optimal for some values of the parameters α and β .

Known to be $O(n^{2/3})$. [Gusfield et al '94, Fernández-Baca et al '02]

Conjecture: It is $O(\sqrt{n})$ for binary sequences.

Conjecture (?): It is $O(\sqrt{n})$ for sequences on any finite alphabet.