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Sequence alignment

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.
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Sequence alignment

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

S1
13

A

~-ATTCG
CGGTAT

S, = ——A—CCGAATTCG
15

]
e
O
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Sequence alignment

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

S1 = AGGA-ATTCG So = —=A-CGAATTCG
17 = -GGACGGTAT Iy = GCGACCGTAT ——-
4 — z = #matches — 5
4 «—— x = #mismatches — 1
1 «~——  y = #insertions — 3
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Sequence alignment

Consider the sequences S = AGGAATTCG and T = GGACGGTAT.

Which of the following two alignments is better?

S1 = AGGA-ATTCG So = —-A-GGAATTCG
T, = -GGACGGTAT T, = GGACCGTAT-—-
— z = F —

4 «—— & = #mismatches — 1
1 «~——  y = #insertions — 3
One possible model: are rewarded by 1, mismatches are

penalized by «, and insertions are penalized by £.

— 4o — 3 «~—— score=z-—za—ys — —a— 30
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Inference functions for sequence alignment

® An optimal alignment is one with highest score.

Optimality depends on the values of the parameters « and 3.
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Optimality depends on the values of the parameters « and 3.

® For fixed parameters, we get a function that maps each pair of
sequences to their optimal alignment.

Such a map is called an inference function.
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Inference functions for sequence alignment

® An optimal alignment is one with highest score.

Optimality depends on the values of the parameters « and 3.

® For fixed parameters, we get a function that maps each pair of
sequences to their optimal alignment.

Such a map is called an inference function.

® The total number of maps from pairs of sequences of length n to
alignments is doubly exponential in n.

However, most of them are not inference functions for any
parameter values.
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Inference functions for sequence alignment

® An optimal alignment is one with highest score.

Optimality depends on the values of the parameters « and 3.

® For fixed parameters, we get a function that maps each pair of
sequences to their optimal alignment.

Such a map is called an inference function.

® The total number of maps from pairs of sequences of length n to
alignments is doubly exponential in n.

However, most of them are not inference functions for any
parameter values.

Problem: How many of them are inference functions?
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Hidden Markov model

X, X, X5
E } hidden variables X, €Y
} observed variables Y, e Y

Yl Y2 YS

Fori,j € 3,0 €,
0,y = transition probability from X, =:to0 Y, =/

0;; = transition probability from X =i t0 Xy 11 =

FPSAC 2006, San Diego — p.5



Hidden Markov model

Xl X2 XS
O } hidden variables X; € ¥ = {in,ex}
} observed variables Y; € ¥ ={A,C,G, T}
Y, Y, Y,

Fori,j € 3,0 €,
0,y = transition probability from X, =:to Y, =/

- - 12 parameters
0;; = transition probability from X} =i to X1 = j

This model can be used to determine what parts of the genome are
iIntrons and what parts are exons.
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Hidden Markov model

Xl X2 XS
n i € } hidden variables X; € ¥ ={in,ex}

} observed variables Y; € ¥ ={A,C,G, T}
Y, Y, Y,

The model is represented by a polynomial map

f - RlZ N R64
(Qin,inaein,eX79in,A7 .. ) — (fAAA7fAACafAAGyfAATafACAa .. )
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Hidden Markov model

Xl ><2 XS
n (i € } hidden variables X; € ¥ ={in, ex}

} observed variables Y; € ¥ ={A,C,G, T}
Yl Y2 Y3

The model is represented by a polynomial map

f - RlZ N R64
(ein,inaein,eX79in,A7 .. ) — (fAAA7fAACafAAGyfAATafACAa .. )

1 1

fATT — §Hin,Aein,ingin,THin,inein,T + 5Qin,AHin,inein,Tgin,exgex,T + -
\ . _J/ \ . _J/
TV VO
X1=X2=X3=in X1:X2:in, X3:ex

(each coordinate gives the probability of an outcome)
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Hidden Markov model

Xl ><2 XS
n (i € } hidden variables X; € ¥ ={in, ex}

} observed variables Y; € ¥ ={A,C,G, T}
Yl Y2 Y3

The model is represented by a polynomial map

f - RlZ N R64
(Qin,inaein,eX79in,A7 .. ) — (fAAA7fAACafAAGyfAATafACAa .. )

1 1
fATT — §Hin,Aein,ingin,THin,inein,T + 5Qin,AHin,inein,Tein,exgex,T + -
X1=X2=X3=in X1:X2:in, X3:ex

(each coordinate gives the probability of an outcome)

Given an observation (e.g. ATT), one wants to find the most likely
values of X, X5, X3.
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More generally:

Ox

5

2 ®
< e

X, J\
o 0o

w

Hidden:
Observed:

Graphical models

X1, Xo, ..
Yi,Ys,..

L, X, €Y
LY, ey’
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More generally:

(UG B I
& g b
Xb Y, /O\

o SO

f R4

Hidden:
Observed:

Graphical models

Xl,XQ,...,Xq >
V.Y, .Y, €%
R(l/)n
Frvo)
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Graphical models

More generally:

X1 X2 X3
A
6
Yl% XS
X%) g /O\ Hidden: Xl,XQ,...,Xq c X
© O Observed: Y1,Y5,...)Y, €%’
‘ Yy Y
Ys 5
f: R4 —s RO

(91,92,~-,9d) = (fTa'”)
For each observation 7 € (¥/)",

fr=Prob(Y=7)= Y Prob(X=hY =7)
he>la

monomial in 04,05, ...,0,
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Inference functions
Basic inference problem: Given an observation 7, determine the value

of the hidden data h that maximizes

Prob(X =h,Y = 7).
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Inference functions

Basic inference problem: Given an observation 7, determine the value
of the hidden data h that maximizes

Prob(X =h,Y = 7).

® The solution h is called an explanation of 7, and it depends on the
values of the parameters 6,6, ...,0,.
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Inference functions

Basic inference problem: Given an observation 7, determine the value
of the hidden data h that maximizes

Prob(X =h,Y = 7).

® The solution h is called an explanation of 7, and it depends on the
values of the parameters 6,6, ...,0,.

Definition. An inference function is a map

(Zn — X

T — h

that sends each observation to its explanation.

® Each choice of parameter values defines an inference function.
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Inference functions

Basic inference problem: Given an observation 7, determine the value
of the hidden data h that maximizes

Prob(X =h,Y = 7).

® The solution h is called an explanation of 7, and it depends on the
values of the parameters 6,6, ...,0,.

Definition. An inference function is a map

(Zn — X

T — h

that sends each observation to its explanation.
® Each choice of parameter values defines an inference function.

In the previous example, an inference function is a map
{A,C,G, T} — {in, ex}". These are called gene finding functions.
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The number of inference functions

In general, if [ =|%  there are in total [?¢)" functions

= ‘E/
(X" — X9,
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The number of inference functions

In general, if [ =|%  there are in total [?¢)" functions

= ‘E/
(X" — X9,

However, most of these maps are not inference functions for any value
of the parameters.
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The number of inference functions

In general, if [ =|%  there are in total [?¢)" functions

= ‘E/
(X" — X9,

However, most of these maps are not inference functions for any value
of the parameters.

Problem: How many of them are inference functions?

Main Theorem. Fix d > 0. Consider a graphical model with d para-
meters, and let £ be the number of edges of the underlying graph.
Then, the number of inference functions of the model is at most

O(ENI=1),
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The number of inference functions

In general, if [ =|%  there are in total [?¢)" functions

= ‘E/
(X" — X9,

However, most of these maps are not inference functions for any value
of the parameters.

Problem: How many of them are inference functions?

Main Theorem. Fix d > 0. Consider a graphical model with d para-
meters, and let £ be the number of edges of the underlying graph.
Then, the number of inference functions of the model is at most

O(ENI=1),

Usually, E is a linear in n, so the number of inference functions is in fact O(n@(d—1)),
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Geometric interpretation of the inference problem

Definition. The Newton polytope of

fr(01,6a,....00) =) 67 03> 05,

(f7), is the convex hull of the vectors (a1 4,2, ..., 04;) € RY.
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Geometric interpretation of the inference problem

Definition. The Newton polytope of

fr(01,6a,....00) =) 67 03> 05,

(f7), is the convex hull of the vectors (a1 4,2, ..., 04;) € RY.

Example.

f(01,02) = 03 + 0205 + 60,05 + 0, + 05
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Geometric interpretation of the inference problem

Definition. The Newton polytope of

fr(01,6a,....00) =) 67 03> 05,

(f7), is the convex hull of the vectors (a1 4,2, ..., 04;) € RY.

Example.

f(01,02) = 03 + 0205 + 60,05 + 0, + 05

For fixed parameters 6;, if we let v; = log6;, then
the explanation h maximizing Prob(X = h, Y = 7) is given by
the vertex of NP(f,) that maximizes vyx1 + ... + vqxq.
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Geometric interpretation of the inference problem

Definition. The Newton polytope of

fr(01,6a,....00) =) 67 03> 05,

(f7), is the convex hull of the vectors (a1 4,2, ..., 04;) € RY.

Example.

f(01,02) = 03 + 0205 + 60,05 + 0, + 05

60, =0.6, 6, =04,
v = (log6,log6y) = (—0.51,—0.92)

For fixed parameters 6;, if we let v; = log 6, then
the explanation h maximizing Prob(X = h, Y = 7) is given by
the vertex of NP(f,) that maximizes vyx1 + ... + vqxq.
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The normal fan

Let D, : (Z/)n — >4

denote the inference function where v = (log(6;), ... ,log(84)) € R,
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The normal fan

Let P, : (X)) — 2

denote the inference function where v = (log(6;), ... ,log(84)) € R,

Definition. The normal fan ]:(P) of a polytope P is the decomposition of the

space according to the directions in which each face is maximal.
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The normal fan

Let D, : (E/)n — >4

denote the inference function where v = (log(6;), ... ,log(84)) € R,

Definition. The normal fan F(P) of a polytope P is the decomposition of the

space according to the directions in which each face is maximal.

o, (1) = &y (7) Iff v and v’ belong to the same cone of F(NP(f.)).
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Common refinement of fans

v and v’ belong to the
same cone of F(NP(f,))
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Common refinement of fans

B v and v’ belong to the
Oy(7) = Ov(1) = same cone of F(NP(f,))
v and v’ belong to the
same cone of F(NP(f,))
for all observations 7 € (X')"

b, = &, as
inference functions
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Common refinement of fans

B v and v’ belong to the
Oy(7) = Ov(1) = same cone of F(NP(f,))
v and v’ belong to the
same cone of F(NP(f,))
for all observations 7 € (X')"

)

v and v’ belong to the same

coneof A\ F(NP(f))
ZE(Z’)”

common refinement of fans

b, = &, as
inference functions

4
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Common refinement of fans

B v and v’ belong to the
Oy(7) = Ov(1) = same cone of F(NP(f,))
v and v’ belong to the
same cone of F(NP(f,))
for all observations 7 € (X')"

)

v and v’ belong to the same

coneof A\ F(NP(f))
ZE(Z’)”

Ve

b, = &, as
inference functions

4

common refinement of fans

The number of inference functions equals the number of cones in the
common refinement of fans
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Minkowski sum of polytopes

The common refinement of the normal fans is the normal fan of the
Minkowski sum of polytopes:

TE(X)™ TE(X )™
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Minkowski sum of polytopes

The common refinement of the normal fans is the normal fan of the
Minkowski sum of polytopes:

TE(X)™ TE(X )™

Definition. Minkowski sum: Q & Q' :={x+x':x € Q, x' € Q'}.

Q+Q

&

4
-
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Minkowski sum of polytopes

The common refinement of the normal fans is the normal fan of the
Minkowski sum of polytopes:

TE(X)™ TE(X )™

Definition. Minkowski sum: Q & Q' :={x+x':x € Q, x' € Q'}.

Q+Q

&

4
-

Let P = @TE(Z/)n NP(fT)
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Minkowski sum of polytopes

The common refinement of the normal fans is the normal fan of the
Minkowski sum of polytopes:

TE(X)™ TE(X )™

Definition. Minkowski sum: Q & Q' :={x+x':x € Q, x' € Q'}.

Q+Q

&

4
-

Let P = ®T€(E/)n NP(f7->
The number of inference functions equals the number of vertices of P.
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Edges of (fr)

® Foreach T,
(f-) € [0, E]%,

since each 0, can appear as a factor of a monomial of f, at most
FE times.
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Edges of (fr)

® Foreach T,
(f-) € [0, E]%,

since each 0, can appear as a factor of a monomial of f, at most
FE times.

® Besides, (f-) is a lattice polytope (i.e., its vertices have integral
coordinates).
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Edges of (fr)

® Foreach T,
(f-) € [0, E]%,

since each 0, can appear as a factor of a monomial of f, at most
FE times.

® Besides, (f-) is a lattice polytope (i.e., its vertices have integral
coordinates).

I

Edges of NI’(f,) are vectors where each coordinate is an integer
between —F and E.
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Edges of (fr)

® Foreach T,
(f-) € [0, E]%,

since each 0, can appear as a factor of a monomial of f, at most
FE times.

® Besides, (f-) is a lattice polytope (i.e., its vertices have integral
coordinates).

I

Edges of NI’(f,) are vectors where each coordinate is an integer
between —F and E.

I

The polytopes NIP’(f,) have at most (2F + 1) nonparallel edges in
total.
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Vertices of P

The polytopes NP(f,) have at most (2E + 1)¢ nonparallel edges in
total.

H [Gritzmann, Sturmfels]

The number of vertices of P = @ ¢ 5/y» NP(f-) is at most

Qd‘l ((2E +1)4 — 1>.

J

N

o

J:
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Vertices of P

The polytopes NP(f,) have at most (2E + 1)¢ nonparallel edges in
total.

H [Gritzmann, Sturmfels]

The number of vertices of P = @ ¢ 5/y» NP(f-) is at most

QZ(2E+ 1)

As E — oo, the dominant term is % pd(d—1)
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Vertices of P

The polytopes NP(f,) have at most (2E + 1)¢ nonparallel edges in
total.

H [Gritzmann, Sturmfels]

The number of vertices of P = @ ¢ 5/y» NP(f-) is at most

QZ(2E+ 1)

As E — oo, the dominant term is % pd(d—1)

I

The number of inference functions is O(E£(4=1)), O
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A lower bound

Theorem. The above upper bound O(Ed(d_l)) on the number of inference
functions is tight.

FPSAC 2006, San Diego — p.16



A lower bound

Theorem. The above upper bound O(Ed(d_l)) on the number of inference
functions is tight.

ldea of the proof:

® Construct an HMM M,, of length n with d parameters s.t. for any
a=(ay,...,aq) € Z% with Y. a; < n, there is an observed
sequence which has one explanation if
a1v1 +---+aqug >0 and another explanation if
a1v1 + - -+ aqug < 0, where v; = log(6;).
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A lower bound

Theorem. The above upper bound O(Ed<d_1)) on the number of inference
functions is tight.

ldea of the proof:

® Construct an HMM M,, of length n with d parameters s.t. for any
a=(ay,...,aq) € Z% with Y. a; < n, there is an observed
sequence which has one explanation if
a1v1 +---+aqug >0 and another explanation if
a1v1 + - -+ aqug < 0, where v; = log(6;).

® Show that the hyperplane arrangement consisting of the
hyperplanes of the form {z : (a,z) = 0} with a € Z¢ and

>~ a; < n has at least Q(n4(4=1) chambers.

® So, M,, has Q(n?d=1)) = Q(E4-1)) distinct inference functions.
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Application to sequence alignment

® The 2-parameter model for sequence alignment is a particular
case of a pair hidden Markov model.
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Application to sequence alignment
® The 2-parameter model for sequence alignment is a particular
case of a pair hidden Markov model.

General graphical model Sequence alignment

observation 7 — pair of sequences of length n

explanation h — optimal alignment
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Application to sequence alignment

® The 2-parameter model for sequence alignment is a particular
case of a pair hidden Markov model.

General graphical model Sequence alignment
observation 7 — pair of sequences of length n
explanation h — optimal alignment

convex hull of points (z,y, z) where

Newton polytope NP(f,) +«—  x = #mismatches, y = #insertions,
2= # for each alignment

(this polytope lies on the plane x + y + z = n)
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Application to sequence alignment

® The 2-parameter model for sequence alignment is a particular
case of a pair hidden Markov model.

General graphical model Sequence alignment
observation 7 — pair of sequences of length n
explanation h — optimal alignment

convex hull of points (z,y, z) where

Newton polytope NP(f,) +«—  x = #mismatches, y = #insertions,
2= # for each alignment

(this polytope lies on the plane x + y + z = n)

By the Main Theorem, the number of inference functions of this model is
O(n4d=1) = O(n?).

In fact, it is ©(n?).
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Alignment graphs

® Alignments can be represented as paths from the upper-left to the
lower-right corner in the alignment graph:

ACCTTCCTTCCG

O oo 4400460 4

FPSAC 2006, San Diego — p.18



Alignment graphs
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Alignment graphs

® Alignments can be represented as paths from the upper-left to the
lower-right corner in the alignment graph:

ACCTTCCTTCCG

O oo 4400460 4

TG-TCCTTCCGCGEG
ACCTTCCTTCCG-
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Alignment graphs

® Alignments can be represented as paths from the upper-left to the
lower-right corner in the alignment graph:

ACCTTCCTTCCG

.
G
T x |y | z
C
C
T 6 | 1 |5
. 2 | 2 [8
C
C
G
G
G

TG-TCCTTCCGEG  TG-T-CCTTCCCG
ACCTTCCTTCCG-  ACCTTCCTTCCG--
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Alignment graphs

® Alignments can be represented as paths from the upper-left to the
lower-right corner in the alignment graph:

ACCTTCCTTCCG

.
G
T x |y | z
C
C
T 6 1 |5
. 2 | 2 [8
C 0| 319
C
G
G
G
TG-TCCTTCCEEG  TG-T-CCTTCCGELEG ——--TGICCTTCCEEG

ACCTTCCTTCCG-  ACCTTCCTTCCG--  ACCT-TCCTTCCG--
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OO0 00440040 4

The Newton polytope of a pair of sequences

ACCTTCCTTTCCSG

11

N

11

RPIW NP O

12

OO ©O|00 01|
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The Newton polytope of a pair of sequences
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Open problem

In the 2-parameter model for sequence alignment,

P = @ (f,) has ©(n?) vertices (= # inference functions).

Open: For fixed 7 = (5, T), how many vertices can NP (f.) have?
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Open problem

In the 2-parameter model for sequence alignment,

P = @ (f,) has ©(n?) vertices (= # inference functions).

Open: For fixed 7 = (5, T), how many vertices can NP (f.) have?

This is the number of different alignments of S and 7' that can be
optimal for some values of the parameters « and £.

FPSAC 2006, San Diego — p.20



Open problem

In the 2-parameter model for sequence alignment,

P = @ (f,) has ©(n?) vertices (= # inference functions).

Open: For fixed 7 = (5, T), how many vertices can NP (f.) have?

This is the number of different alignments of S and 7' that can be
optimal for some values of the parameters « and £.

Known to be O(n?/3). [Gusfield et al '94, Fernandez-Baca et al '02]
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Open problem

In the 2-parameter model for sequence alignment,
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optimal for some values of the parameters « and £.

Known to be O(n?/3). [Gusfield et al '94, Fernandez-Baca et al '02]

Conjecture: Itis O(y/n) for binary sequences.

Conjecture (?): Itis O(y/n) for sequences on any finite alphabet.
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