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“Elliptic” enumeration of nonintersecting lattice paths

Michael Schlosser

ABSTRACT. We enumerate lattice paths in Z? consisting of unit vertical and horizontal steps in the positive
direction using elliptic weights, composed of appropriately chosen products of theta functions. The “elliptic”
generating function of paths from a given starting point to a given end point evaluates, by virtue of Riemann’s
addition formula for theta functions and induction, to an elliptic generalization of the binomial coefficient.
Convolution gives an identity equivalent to Frenkel and Turaev’s 10Vo summation. (This appears to be the
first combinatorial proof of the latter, and at the same time of some important degenerate cases including
Jackson’s g¢p7 and Dougall’s 7 Fg summation.) We then turn to nonintersecting lattice paths in Z? where,
using the Lindstrom—Gessel-Viennot theory combined with an elliptic determinant evaluation by Warnaar,
we compute the elliptic generating function of selected families of paths with given starting points and end
points. Here convolution gives a multivariate extension of the 10V9 summation which turns out to be a
special case of an identity originally conjectured by Warnaar, later proved by Rosengren. We conclude with
discussing some future perspectives.

RESUME. On énumere les chemins dans le réseau Z2, dont chaque pas unitaire est vertical ou horizontal
dans le sens positif, par rapport & un poids elliptique, qui est produit choisis de fagon apropriée de fonctions
théta. L’évaluation de la fonction génératrice ”elliptique” des chemins d’un point de départ donné a un point
d’arrivée donné, a I’aide de la formule d’addition de Riemann pour fonctions theta et récurrence, donne lieu
a une généralization du coefficient binomial. La formule de convolution donne une identitée équivalente a la
formule sommatoire 19V de Frenkel and Turaev. (Il semble que c’est la premiére preuve combinatoire de la
derniére, et en méme temps de certains cas importants dégénérés comprenant les formules sommatoires g¢7
de Jackson et 7Fs de Dougall.) On tourne ensuite vers les chemins non intersectant dans Z2. En utilisant la
théorie de Lindstrom—Gessel-Viennot couplée avec I’évaluation d’un déterminant elliptique de Warnaar, on
calcule la fonction génératrice elliptique de certaines familles choisies de chemins avec les points de départs
et d’arrivées donnés. Dans ce cas la formule de convolution donne une extension multivariée de la formule
sommatoire 190Vy qui s’est avéré un cas particulier d’une identité originalement conjecturée par Warnaar, et
puis démontrée par Rosengren. On conclut avec quelques discussions sur la perspective d’avenir.

1. Preliminaries

1.1. Lattice paths in Z2. We consider lattice paths in the plane integer lattice Z? consisting of unit
horizontal and vertical steps in the positive direction. Given points u and v, we denote the set of all lattice
paths from u to v by P(u — v). If u = (u1,...,u,) and v = (v1,...,v,) are vectors of points, we denote the
set of all r-tuples (P, ..., P.) of paths where P; runs from u; to v;, ¢ = 1,...,7, by P(u — v). A set of paths
is nonintersecting if no two paths have a point in common. The set of all nonintersecting paths from u to v
is denoted P (u — v). Let w be a function which assigns to each horizontal edge e in Z? a weight w(e). The
weight w(P) of a path P is defined to be the product of the weights of all its horizontal steps. The weight
w(P) of an r-tuple P = (Py,..., P,) of paths is defined to be the product [[;_, w(F;) of the weights of all
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the paths in the r-tuple. For any weight function w defined on a set M, we write w(M;w) := > _\ w(x)
for the generating function of the set M with respect to the weight w.

For u = (uy,...,u,) and a permutation o € S, we denote U, = (Uy(1),. .., Us(r)). We say that u is
compatible to v if no families (P,...,P,) of nonintersecting paths from u, to v exist unless o = ¢, the
identity permutation.

We need the following theorem which is a special case (sufficient for the purposes of the present exposi-
tion) of the Lindstrém—Gessel-Viennot theorem of nonintersecting lattice paths (cf. [12] and [10]).

THEOREM 1.1. Let u,v € (Z?)". If u is compatible to v, then
(1.1) w(Pr(u—v);w) = det w(P(u; — v;)).
1<i,j<r

1.2. Ordinary, basic and elliptic hypergeometric series. For the following material, we refer to
Gasper and Rahman’s texts [8]. For motivation, we first define (ordinary) hypergeometric series and basic
hypergeometric series, and only then elliptic hypergeometric series, although we will mainly be interested in
the latter type of series (being the most general of the three).

For any (complex) parameter a and nonnegative integer k, the shifted factorial is defined as

(a)p:=ala+1)---(a+k—1).
(This definition can also be extended to the case where k is a negative integer.) It is convenient to use the
compact notation

(a1, yam)k == (a1)k -+ (@m)k,
for products of shifted factorials.

We call a series > cx a hypergeometric series if g(k) = cx41/ck is a rational function of k. Without loss
of generality, we may assume that

Cht1 _ (a1 + k)(ag + k) ... (ar + k)
Ck (I+k)b1+Ek)...(bs + k)
The general form of a hypergeometric series is thus

A1y...,0p > (a17a27'~'7ar)k k
s ; = 1 n 1N, ~
[bl,...,bs Z] kZ:O L,01. bk -

where aq,...,a, are the upper parameters, by, ...,bs the lower parameters, and z is the argument of the
series. Several important summation theorems for hypergeometric series include the binomial theorem,
the Chu-Vandermonde summation, the Gaufl summation, the Pfaff-Saalschiitz summation and Dougall’s
very-well-poised 7 Fg summation, to name a few.

Now consider ¢ to be a complex parameter, called the “base”, usually with 0 < |¢| < 1. For a nonnegative
integer k, the g-shifted factorial is defined as

(a; @) = (1 —a)(1 —ag)--- (1 —ag" ™).
(This definition can also be extended to the case where k is a negative integer.) It is convenient to use the
compact notation

Z.

(a1, .-y am; @k = (a1;Q)k -~ (am; @,
for products of g-shifted factorials. Note that

U
lim ——— = (a)k-
g—1- (1 —¢q)* (@
In this sense the g-shifted factorials generalize the (ordinary) shifted factorials.
We call a series Y ci a q-hypergeometric or basic hypergeometric series if g(k) = cp11/ck is a rational

function of ¢*. Without loss of generality, we may assume that
Ck+1 _ (1 - alqk)(l - aqu) s (1 - aqu) (_qk)1+s—r
C (1= q*)(1 = brg¥)... (1 —bsq)
The general form of a basic hypergeometric series is thus

ai,...,ar S (al,U/Q,.-.,Clr;q)k( k (k))1+87r k
r¥Ps 4,2 | 1= —1 2 2",
¢ |:b17-"7bs a } 1;:0 AR (=1)%

zZ.
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where aq,...,a, are the upper parameters, bi,...,bs the lower parameters, ¢ is the base, and z is the
argument of the series. Several important summation theorems for basic hypergeometric series include the
g-binomial theorem, the ¢-Chu—Vandermonde summation, the ¢g-Gaufi summation, the g-Pfaff-Saalschiitz
summation and Jackson’s very-well-poised g¢7 summation, to name a few.

For the elliptic case, define a modified Jacobi theta function with argument x and nome p by

(1.2) 0(z;p) = (2,p/7;P)cc = (T;P) o0 (P/T;P) oo » 0(z1,. . zm;p) = 0(z1;p) . .. O(T1m; p),

where z,z1,...,2m # 0, |p| <1, and (2;p)oc = [[1e(1 — zp*). We note the following useful properties of
theta functions:

1
(1.3) 0(x;p) = —x0(1/z;p), 0(pw;p) = —— 0(z;p),
and Riemann’s addition formula
(1.4) O(xy, /)y, uv,u/v;p) — 0(av, z/v, uy,u/y;p) = % 0(yv, y/v,zu, z/u; p)

(cf. [24, p. 451, Example 5]).
Further, define a theta shifted factorial analogue of the g-shifted factorial by

HZ;&G(aqk;p), n=12,...,
(1.5) (a;¢,p)n = { 1, n =0,

1/ 1‘[,;20‘1 O(aq"t*;p), n=-1,-2,...,
and let

(a1, a2, .., am; ¢, P)n = (0154, P)n - - - (A3 Qs P)n;

where a,aq,...,a, # 0. Notice that 6(z;0) = 1 — z and, hence, (a;¢,0), = (a;¢)n is a g-shifted factorial
in base ¢q. The parameters ¢ and p in (a; ¢, p), are called the base and nome, respectively, and (a;q,p), is
called the q, p-shifted factorial. Observe that

(1.6) (pa; ¢, P = (~1)"a "¢~ ) (a3, p)a,
which follows from (1.3). A list of other useful identities for manipulating the ¢, p-shifted factorials is given
in [8, Sec. 11.2].

We call a series Y ¢ an elliptic hypergeometric series if g(k) = cx+1/ck is an elliptic function of k with
k considered as a complex variable; i.e., the function g(x) is a doubly periodic meromorphic function of the
complex variable z. Without loss of generality, by the theory of theta functions, we may assume that

(2) = Aa" 024", -, as114":p)
g 9(q1+$7b1qw7"'7bsq$;p)

where the elliptic balancing condition, namely

3

a1az - - Gsy1 = qbrby - - - by,

holds. If we write ¢ = €*™, p = 2™" with complex o, 7, then g(z) is indeed periodic in  with periods
ol and ro~ 1.

The general form of an elliptic hypergeometric series is thus

s .
A1y, Q541 ] .:Z(041;042;...7as+17(bp)kzk

lE 34, P52
st s bl;--'abs =0 (Q7b1--'abS;Q7p)k

provided ajas - - - asy1 = gbibs - - - bs. Here aq,...,a, are the upper parameters, by, ..., bs the lower param-
eters, g is the base, p the nome, and z is the argument of the series. For convergence reasons, one usually
requires asy1 = ¢~ " (n being a nonnegative integer), so that the sum is in fact finite.

Very-well-poised elliptic hypergeometric series are defined as

1 1 1 1 1
2 2 2 /05 2.5
. . . L ai, qaf, —qaf,qaf /p2,—qaip2,a6,. .., as41 .
s+1‘/s(a17a/67"'7as+17Qap7z) '_S+1ES % % % 1 % 1 y4,p; —=
af,—af,afp?,—ai /p?,a1q/as,...,a1q/ast+1

e 2k . .

0(a1q 7p) (alaaﬁa"-vas+laQ7p)k k

(1.7) = (g2)",

= 0(a;p) (g,019/a6, .-, 019/ 05115, D)k
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where
q2a§a$ . -CL§+1 = (alq)575.
It is convenient to abbreviate
s+1Vs(arsae, .. as41;¢,p) == s Vs(ar; as, - - -y asy1; ¢, 05 1).
Note that in (1.7) we have used
1 1 1 1 1 1
0(ag®;p) _ (qa%,—qa2,qa?/p>, —qazpz;q,p)i, .y
0(a;p) (a2, —az,a2pz,—a2/p;q,p)k ’

which shows that in the elliptic case the number of pairs of numerator and denominator paramters involved
in the construction of the very-well-poised term is four (whereas in the basic case this number is two, in the
ordinary case only one).

The above definitions for 511 Fs and 4y1V; series are due to Spiridonov [20], see [8, Ch. 11].

In their study of elliptic 65 symbols (which are elliptic solutions of the Yang—Baxter equation found by
Baxter [2] and Date et al. [6]), Frenkel and Turaev [7] came across the following 12V7; transformation:

(1.8) 12Vii(a;b,¢,d,e, f,haq" ! Jef,q™"; ¢,p)
_ (ag,aq/ef, Ma/e, g/ f; ¢, p)n
(ag/e,aq/f, Xq/ef, Aq; ¢ p)n
where A = a?q/bed. This is an extension of Bailey’s very-well-poised 199 transformation [8, Eq. (2.9.1)], to
which it reduces when p = 0.
The 12V41 transformation in (1.8) appeared as a consequence of the tetrahedral symmetry of the elliptic
67 symbols. Frenkel and Turaev’s transformation contains as a special case the following summation formula,

(aq, aq/bc, aq/bd, ag/cd; g, p)n

(aq/b,aq/c, aq/d, aq/bed; q,p)n’

where a2¢"t! = bede, see also (2.14). The 10Vo summation is an elliptic analogue of Jackson’s g¢7 summation
formula [8, Eq. (2.6.2)] (or of Dougall’s 7 Fs summation formula [8, Eq. (2.1.6)]). A striking feature of elliptic
hypergeometric series is that already the simplest identities involve many parameters. The fundamental
identity at the “bottom” of the hierarchy of identities for elliptic hypergeometric series is the 19Vy summation.
When keeping the nome p arbitrary (while |p| < 1) there is no way to specialize (for the sake of obtaining
lower order identities) any of the free parameters of an elliptic hypergeometric series in form of a limit tending
to zero or infinity, due to the issue of convergence. For the same reason, elliptic hypergeometric series are
only well-defined as complex functions if they are terminating (i.e., the sums are finite). See Gasper and
Rahman’s texts [8, Ch. 11] for more details.

12V11()‘; )\b/CL, )‘C/av )‘d/aa €, f7 )‘aqn+1/ef7 q—n; qap)a

(19) 10‘/9(01;(), ¢, daeaq_n;(LP) =

2. Elliptic enumeration of lattice paths

The identity responsible for g-calculus to “work” is the simple factorization
(2.1) ¢" =g =(1-q4q"
This (almost embarrassingly simple) identity underlies not only g¢-integration (cf. [1, Eq. (2.12)]), but also
the recursion(s) for the ¢-binomial coefficient (see (2.8) at the end of this section). As g-binomial coefficients
can be combinatorially interpreted as generating functions of lattice paths in Z? (from a given starting point
to a given end point), one may wonder whether any suitable generalization of (2.1) would give rise to a
corresponding extension of g-binomial coefficients with meaningful combinatorial interpretation. Indeed, by
using the much more general identity (1.4), rather than (2.1), as the underlying three term relation, we
obtain such an extension. In particular, we shall be considering elliptic binomial coefficients, resulting from
the enumeration of lattice paths with respect to elliptic weights. The expressions and series occurring in our
study belong to the world of elliptic hypergeometric series, which we just introduced in the previous section.

The most important ingredient for this analysis to work out is the particular “clever” choice of weight
function in (2.2). This choice was made, on one hand, by matching the general indefinite sum (2.9) with the
known indefinite sum in (2.11), such that induction can be applied (with appeal to the three term relation
(1.4), actually a special case of (2.11)). One the other hand, factorization of the elliptic binomial coefficient
w(P((l,k) — (n,m))) was sought in general, in particular also when (I, k) # (0,0). Once the right choice
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of weight function is made, everything becomes easy and a matter of pure verification. Nevertheless, at
the conceptual level things remain interesting. For instance, the elliptic binomial coefficient w(P((l, k) —
(n,m))) indeed depends on I, k, n, m (besides other parameters), and is not a mere multiple of w(P((0,0) —
(n —1,m —k))), contrary to the basic (“q”) or classical case.

Let a, b, q, p be arbitrary (complex) parameters with a,b,q # 0 and |p| < 1. We define the (“standard”)

elliptic weight function on horizontal edges (n — 1,m) — (n,m) of Z? as follows.

0(ag" ™, bg®", bg®" ", ag" " /b, ag"/b; p)
0(&(]", qun+rn7 qun—i-m—l7 aq1+m—n/b7 aqm—n/b;p)

m

(2.2) w(n,m) = w(n,m;a,b;q,p) :=

Our terminology is perfectly justified as the weight function defined in (2.2) is indeed elliptic (i.e., doubly

periodic meromorphic), even independently in each log, a, log, b, n and m (viewed as complex parameters).

If we write ¢ = €?™7, p = €>™7, q = ¢® and b = ¢° with complex o, 7, a and (3, then the weight w(n,m)

is clearly periodic in a with period o~!. A simple calculation involving (1.6) further shows that w(n,m) is
also periodic in o with period 7o~! (the latter means that w(n,m) is invariant with respect to a — pa).
The same applies to w(n, m) viewed as a function in 8 (or n or m) with the same two periods oc~! and
7o~ L. Spiridonov [20] calls expressions such as (2.2) where all free parameters have equal periods of double
periodicity totally elliptic. In this respect we can also refer to (2.2) as a totally elliptic weight.

For p = 0 (2.2) reduces to

(1—ag™™m)(1 —bg*)(1 — b )1 —ag" /L)1 —ag"/b)
(1 _ Clq”)(l _ bq2n+m)(1 _ bq2n+m—1)(1 _ aq1+m—n/b)(1 _ aqm—n/b)

If we further let @ — 0 and then b — 0 (in this order; or take b — 0 and then a — oc0) this reduces to the
standard g-weight ¢"™ (counting the height of, or the area below, the horizontal edge (n — 1,m) — (n,m)).
By an elliptic generating function we mean, of course, a generating function with respect to an elliptic
weight function (and in particular, we shall always take the weight defined in (2.2) unless stated otherwise).
It is clear that an elliptic generating function is elliptic as a function in its free parameters.
The particular choice of our elliptic weight in (2.2) is justified by the following nice result.

m

(2.3) w(n,m;a,b;q,0) =

THEOREM 2.1. Let I, k,n,m be four integers with n —l+m —k > 0. The elliptic generating function of
paths running from (1, k) to (n,m) is

(ql—i-n—l, aq1+n+2k’ bq1+n+k+l, aql—i-k—n/b; q,p)

m—k

(q, ag" T2k bg +2ntk aq R /b g, p)m—i
o (a2 a7 /b ag ™" /b, p)nt (b4 g p)an— o e
(ag™*, agt R /b, agh =" /b; q, p)n—i (bg*FF25 g, p)an—2

PRrROOF. First, if £ > m (there is no path in this case), the expression in (2.4) vanishes due to the factor
(g; q,p);l_k. On the other hand, if m > k but [ > n (again there is no path) the expression vanishes due to
the factor (¢'*" 7% q, p)m_# since n — I +m — k > 0. We may therefore assume, besides n — [ +m — k > 0,
that n > [ and m > k. The statement is now readily proved by induction on n —{+m — k. For n = [ one has
w(P((l,k) — (I,m))) =1 as desired. For m = k one readily verifies w(P((l,k) — (n,k))) = [T\, , w(i, k).
(In both cases there is just one path.) Next assume n > [ and m > k. We are done if we can verify the
recursion

25 wP((k) = (n,m))) = w(P({(,k) = (n,m = 1)) + w(P((l,k) = (n —1,m))) w(n,m).

(The final step of a path is either vertical or horizontal.) However, this reduces to the addition formula
(1.4). O

(2.4) w(P((l; k) = (n,m))) =

Aside from the recursion (2.5), we also (automatically) have
(2.6) w(P((l, k) — (n,m))) =w(P((l,k+1) — (n,m))) + w(l + 1,k) w(P((l+1,k) — (n,m))).

(The first step of a path is either vertical or horizontal.) In the limit p — 0, @ — 0, b — 0 (in this order),
the recursions (2.5) and (2.6) reduce to

n—Il+m-—k e n—Il+m-—k—-1 e n—Il+m-—k—-1 n—l— m
{ n—I ] d l)k:[ n—I ] 7 l)k+[ g
q q
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and

n—Il+m-—k (n—k _ n—Il+m-—k-1 (n—1)(k+1) n—Il+m-—k—1 (n—1—1)k+k
[ n—1 Lq o n—1 qq + n—1-1 q ’

respectively, where
n (¢ @)n
2.7 =
27 M 0 @GOG Dn—k

is the g-binomial coefficient, defined for nonnegative integers n, k with n > k. This pair of recursions is of
course equivalent to the well-known pair

v L)k BLPLe),

We may therefore refer to the factored expression in (2.4) as an elliptic binomial coefficient (which should
not be confused with the much simpler definition given in [8, Eq. (11.2.61)] which is a straightforward theta
shifted factorial extension of (2.7) but actually not elliptic). In fact, it is not difficult to see that the
expression in (2.4) is totally elliptic, i.e. elliptic in each log, a, log, b, I, k, n and m (viewed as complex
parameters) which again fully justifies the notion “elliptic”.

2.1. Immediate consequences. Let us consider the elliptic generating function of lattice paths in Z?2
from (0,0) to (n,m). (In what follows, there is in fact no loss of generality in choosing the starting point to
be the origin.) We may distinguish paths by the height of their last step. This gives the simple identity

m

(2.9) w(P((0,0) — (n,m))) = Zw(P((0,0) — (n—1,k)))w(n, k).

k=0
In explicit terms, this is
(¢ " ag"t™ bg"* ", ag' ™" /b g, p)m
(¢, aq, bg' 2, afJ/b'q P)m

Z (q",aq",bq",aq®> " /b;q,p)i  0(aq" ¥, bg®, bg>" 1 ag " /b,aq™" /bsp)
B (q,aq,b¢*" 1, aq/b; q,p)r  0(aq™, bg> T+, b +tr=1 agltk=n/b agk="/b;p)

k=0
which, after simplifying the summand, is

(q1+n CquJrn bq1+n Cqu n/b q p i 0 aqn+2k

2.10
(2.10) (¢,aq,bq* 2", aq/b;q,p)m

p)(aq",q",bq", aq™" /b;q, p)r J
) .

e (¢, aq, aq/b,bg"T2"; ¢, p)k

By analytic continuation to replace g™ by an arbitrary complex parameter ((2.10) is true for all n > 0, etc.;
see Warnaar [23, Proof of Thms. 4.7-4.9] for a typical application of the identity theorem in the elliptic
case) and substitution of variables, one gets the indefinite summation

(2.11) (ag, bq, cq, aq/bc; g, p)m _ x~ _0(ag®*;p)(a,b,c,a/be;q,p)i
(¢,aq/b,aq/c,beq; ¢, p)m = 0(a;p)(q, aq/b, agq/c, beg; ¢, p)k

(cf. [8, Eq. (11.4.10)]).

More generally, for a fixed I, 1 <[ < n, we may distinguish paths running from (0, 0) to (n,m) by the
height k they have when they first reach a point on the vertical line x = [ (right after the horizontal step
(I-1,k) — (I,k)). This refined enumeration reads, in terms of elliptic generating functions,

m

(2.12) w(P((0,0) — (n,m))) = Zw(P((0,0) — (I —1K)wl, k)wP((l, k) — (n,m))).

k=0

Explicitly, this is (after some simplifictions)

)

(2 13) (q1+n CquJrl bql+n aql l/b q, p Z l+2k Cqu bq q aq n/b aqlJrner qu;q’p)k .
' (g*t"=t aq, bg* "+ aq/b; ¢, p)m 6(aq'; p) q,a(J/b aq, bgttntl gl=n=—m qql+ltm. g p),
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which after analytic continuation (first to replace ¢", then ¢', by complex parameters) and substitution of
variables becomes

(ag, ag/be, aq/bd, aq/cd; g, p)m Z kop)(a,b, ¢, d, a2 fbed, g™ g, p)k
(ag/b,aq/c,aq/d, aq/bed; g, p)m 6(a; p) q,aq/b aq/c,aq/d,bedg=/a, aq " ¢, )i

The result is Frenkel and Turaev’s 10Vo summation ([7]; cf. [8, Eq. (11.4.1)]), the elliptic extension of
Jackson’s very-well-poised balanced g¢7 summation (cf. [8, Eq. (2.6.2)]), the latter of which is a ¢g-analogue
of Dougall’s 7 Fg summation theorem.

We briefly sketch two other ways how to obtain the 19Vy sum from Theorem 2.1 by convolution (and
analytic continuation). For a fixed k, 1 < k < m, we may distinguish paths running from (0, 0) to (n,m) by
the abscissa [ they have when they first reach a point on the horizontal line y = k (right after the vertical
step (I, k — 1) — (I, k)). This refined enumeration reads, in terms of elliptic generating functions,

(2.14)

(2.15) w(P((0,0) — Zw = (Lk=1))w(P({l k) = (n,m))).

On the other hand, we may also fix an antidiagonal running through (k,0) and (0,k), 0 < k < n+m. We
can then distinguish paths running from (0,0) to (n,m) by where they cut the antidiagonal. This refined
enumeration reads, in terms of elliptic generating functions,

min(k,n)

(2.16) w(P((0,0) — (n,m))) = Z w(P((0,0) = ([, k—1))w(P((l,k—1) — (n,m))).

1=0
The last two identities both constitute, when written out explicitly using Theorem 2.1, variants of Frenkel
and Turaev’s 19Vy summation (like (2.12)) both of which can be extended to (2.14) by analytic continuation.

2.2. Determinant evaluations and elliptic generating functions for nonintersecting lattice
paths. For obtaining explicit results the following determinant evaluation from [23, Cor. 5.4] is crucial.

LEMMA 2.2 (Warnaar). Let A, B, C, and X1,...,X, be indeterminate. Then there holds

(AX;, AC/Xi;q,D)r—j ) N = (BJA, ABCq* =% q,p)i1
det :A(2)q(3) X, 0(X:/X;,C/X: X p .
1<, j<r <(BXiaBC/Xi;qap)rj 1§i1;£§7’ ! ( / I / J ) zl;[l (BX;‘,BC/XE(]ap)Tfl

As a consequence of Theorem 1.1 and Lemma 2.2, we have the following explicit formulae which generalize
Theorem 2.1:

ProOPOSITION 2.1. (a) Let I, k,n, mq,...,m, be integers such that my > mg > -+ > m, andn — 1 +
m; —k >0 foralli =1,...,r. Then the elliptic generating function for nonintersecting lattice paths with
starting points (I + i,k — 1) and end points (n,m;), it =1,...,r, is

(217) | det  (w(P((+5.k —j) = (n,m:)))

<i,5,<r

_ qB(r-é—l)_i_(T+3—2)+T(n_l)k—(n_l)(r+2-1)_r2k+zz~:1(i_l)mi H o(qm,ﬁmj,aqlJrnerierj ;p)

1<i<j<r
T @ T ) ki (ag T g ) ki (0 T g p)
bl (@5 @, P)m;—k+r (aq 2570 g, P, —kgei(aq T ¢, p) i

r (bq2+n+k+l Q. :q, p)mikar (bq1+2l+21 q p)2n 2l—3i
(bq1+2n+k—z7q’p)7m_k+z(bql+2l+k+z q, p)Qn 21—2i

(ag" ™ "7 /b g, p)ms—r+i(ag" " /b ag” " /bs g, p)n—i—i
=1 (a’qkilii/b; q,p)mi—kJri (aqlJrkinii/ba aqkinii/b; q;p)nflfi '
(b) Let l,k,m, ni,...,n., be integers such that ny < ng < --- < n,. andn;, —l+m—%k > 0 for

all i = 1,...,r. Then the elliptic generating function for nonintersecting lattice paths with starting points
(l+1i,k—1) and end points (n;,m), i=1,...,r, is

i=1

X
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(2.18)  det (w(P((L+ 4,k —j) — (ni,m)))) = 2UE)H=r+D (7T —rtk+ T, (k—i)ns

1<i,g,<r
X ("5 4 P)m—kt1 (g™ P g )1 rpi(ag' R g p) 1
=1 @) m-kti(ad T g, p)mkg 1t (ag T P -1
O
1<i<j<r =1 4 14 P)m—t+i(bg 00 P)znc—2i-24
x H (aq" " /b; ¢, p)m—rs1(aq* ™™ /b, aq™™ /b; ¢, P)n,—1—i

"0 /b; ¢, )k 1 (@ /b3 @, P)ns 1124 (aqH T b5 G, D)y 120

(¢) Let l,k,m, ni,...,n, be integers such that n1 < ny < --- < n,. and m —1 —k > 0. Then the
elliptic generating function for nonintersecting lattice paths with starting points (I + i,k — i) and end points
(ni,m—m;),i=1,...,r, is

(219)  det_ (w(P((I+j.k =) = (niym = ny)))) = (3 H0TFDED ki i

1<4,5,<r

n;—l1 n; +2k—1 1+2k

Qs D)m—ni—k+i(ag™ 5 D)m—ni—k+1(aq 2% ¢, P)ny—1—i
(@54, P)m—n;s —ktr(@q 255 4, D)y k1 (0@ 5 ¢, D)y —i—i

T (bq1+ni+k+l

(¢

=1

;Q7p)mfni7k+i(bql+2l+217 q, p)2n172l 21

% 0 nJ—nl’ m—n;—mn; b7 ,
H / p) H (bq1+2ni+k_l; Q7p)m—7li—k+i (bq1+2l+k+la Q7p)2ni—2l—21

1<i<j<r i=1
y ﬁ (ag"t* ™ /b g, p)m—ni—kriag' ™" /b, aq"™ /by ¢, p)ni—1—i
=3 (agb /by g, p) ki (g T by g P —i—i (@@ T b g, )t —2i
(d) Let l,n,m, ki,...,k. be integers such that kv > ko > -+ > k. and n — 1+ m — k; > 0 for all
it =1,...,7. Then the elliptic generating function for nonintersecting lattice paths with starting points (I, k;)
and end points (n+i,m —1),i=1,...,r, is

(2.20) det_ (w(P((l,kj)—> (n+i,m —1)))) = g2imr (n=1HDk: H 0(q" % ag!Thitki; p)

1<4,5,<

1<i<j<r
y S (@ g ) ek —i(ag R g p) g, (ag TR g p)
=t (@@ P)mk—1(aq TR g, p) i —1(ag 5 g, p)n—t4

bq1+77,+k 4. 1+21.

> H 54, p)m ki—r— 1+1(bq y 4, p)Qn 20+21%
(bg' 2tk g, p)im—k,+i(bg" 2R ¢, p)an—2

« H (aq % =" /by q, p)m—ki—i—1(ag =" /b,aqg™" " /b; ¢, p)n—11i
(ag k=t /b q, p)m—k—i(ag Tk =" /by ¢, p)p—1(ag="=" /b; ¢, D) n—i4r

(e) Let k,n,m, li,...,l, be integers such that l; < lo < --- < l. andn—1l;+m—k > 0 for all
t=1,...,7. Then the elliptic generating function for nonintersecting lattice paths with starting points (I;, k)
and end points (n+i,m —1),i=1,...,r, is

(221)  det (w(P((lj, k) — (n+i,m — 0)))) = g TR, (k- Dl

1<4,5,<r
y S (@ T g p) ke (ag TR g p) g (ag TR g p) i,
bl (¢4, P)m—k—i(ag" i +2k; g, )i -1 (aq ™5 ¢, P i,
% H 0(qgli—! bqk+l +1 p)H (bq1+"+k+r+li'q p)m k—r(bq1+2li;Qap)2n+2i—2li
1<i<j<r ’ ’ i—1 (bg 24420 g, )i (DG TR 4, D) on2i— a1,

(ag"™™ "7 /b; ¢, p)m—k—1(aq" """ /b,aqg """ /by q, p) nti—t,
L (ag Rl by g, p)m— -1 (gt TR b agh T by g, p) i,
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(f) Let k,n,m, ly,... 1, be integers such that Iy <ly < --- <. and n+m —k > 0. Then the elliptic
generating function for nonintersecting lattice paths with starting points (1;, k—1;) and end points (n+i, m—1i),
i=1,...,r, is

(222)  det (w(P((j,k —1;) — (n+i,m—i)))) = ¢*(3 ) Frmh=Tin kit

1<i.5,<r
CTT @ G D)t (ag 2 g p) e, (0 g ),
b (¢, P)m—k+1,-1(ag 2=t g, p)im— k1, —i(aq 5 ¢, P)nyiot,
« H 6(gs aqkfl,ﬁlj/b,p)ﬁ (b g p) ok, —i (b 215 g, p)ang2i- 21,
1<idi<r ’ LR (bgt Rl g, p) et (BG TR g p)an 2,

T

1T (ag* T "=t b q, D)oty —im1 (ag =7 /b, ag T by 4, D) it
(agq'*t+=2L b q, D) m—ttis—1 (ag TF == b g, p)—i, (agF ===t /by ¢, P gr—1,

i=1

REMARK 2.3. In Proposition 2.1 we are considering generating functions for families of nonintersecting
lattice paths where the set of starting points or end points are consecutive points on an antidiagonal parallel
to z +y = ¢, for an integer ¢, such as (I +4,c — [ —4). What happens if, say, the starting points are instead
considered to be consecutive points on a horizontal (resp. vertical) line, such as (I +14,k) (resp. (I,k — 1)),
i =1,...,77 The answer is that the computation of the generating function is then readily reduced to the
previous case where the starting points are consecutive points on an antidiagonal, namely (I + i,k + 7 — )
(resp. I+i—1,k—14)),i=1,...,r. (We thank Christian Krattenthaler for reminding us of this simple fact;
during the preparations of this paper, we had namely computed these other determinants separately and
were originally planning to include them explicitly in the above list). In fact, it is easy to see that in this
case the second rightmost (resp. second highest) path must start with a vertical (resp. horizontal) step, the
third rightmost (resp. third highest) path with two vertical (resp. horizontal) steps, and the leftmost (resp.
lowest) path with r — 1 vertical (resp. horizontal) steps. Explicitly, we have

028) | det (wP(I+7K) — (m))) = det_ (wP(I+ jik+ 7 ) = (i),

and

(2.24)

et ((P(Uh—j) = mem))) = T wli+ik—i) det_ (@P(U+~1k=5) = (mm))).
S0pET 1<i<j<r S0LET

An analogous fact holds if one considers the end points instead of the starting points to be consecutive on a
horizontal (resp. vertical) line.
3. Identities for multiple elliptic hypergeometric series

It is straightforward to extend the convolution formulae in (2.12), (2.15), and (2.16), to the multivariate
setting using the interpretation of nonintersecting lattice paths. We have the following identities:

ProrosIiTION 3.1. Let I, k,n,m be integers such that n — Il +m —k > 0.
(a) Fiz an integer v such thatl +r+ 1 <v <n+ 1. Then we have

(3.1)  det  (w(P((l+j.k—j)— (n+im—1i)))

1<4,5,<r
= Z 15}3?9 (w(P((I44,k—j) — (v—1,t)))) H w(v,ts) 1§(i137t9 (w(P((v,t;) — (n+i,m—1)))).
t1>tp > >ty 1
ty<m—1,tp>k—r
(b) Fiz an integer v such that k < v < m —r. Then we have
3:2) | det (@(P(U+5k—) — (n+im—)
— t <t;.<t 1S(}7§FST (w(P((l +4,k—7) — (ti,v— 1)))) 1§(i137t9 (w(P((tj, v)— (n+i,m— 2))))

ty 2141t <ntr
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(¢) Fiz an integer v such that l +k < v <n+m. Then we have

(83) | det_ (w(P((I+j.k—j) = (n+im—1)))

- t1<t;<t 1§ci13'7tér (w(P((l +4.k—j)— (ti,v— tl)))) 1513_?9 (w(P((tj, v—t;)— (n+i,m— z))))
t1 21+ 1,0 <ntr

We could also have formulated more general versions of convolutions where the respective starting
and/or end points of the total paths are not consecutive on antidiagonals (in the above cases these points
are (I+i,k—i)and (n+i,m—1),i=1,...,r). However, the advantage of our specific choice is that all the
determinants involved in Proposition 3.1 factor into closed form, by virtue of the determinant evaluations
in Proposition 2.1. We thus obtain, writing out the identities (3.1), (3.2), and (3.3) explicitly, summations
which are particularly attractive since both the summands and the product sides are completely factored.
Each of the above three cases leads, after suitable substitution of variables, simplification, and analytic
continuation, to the same result. It is a special case of a multivariate 1oVy summation formula conjectured
by Warnaar (let x = ¢ in [23, Cor. 6.2]) which has subsequently been proved by Rosengren [16].

THEOREM 3.1 (A multivariate extension of Frenkel and Turaev’s 19 Vo summation formula). Let a,b, c,d
be indeterminates, let m be a nonnegative integer, and r > 1. Then we have

(3.4) > g=i= G T 0(¢F ™ agh o p)?

0<k; <ko<---<kr<m 1<z<J<r
« H ki p)(a,b, e, d,a’q> 2" [bed, g™ q, D),
0(a q,aq/b aq/c, aq/d, bedg® =™ Ja, aq "™, ¢, p)n.

()
_ 4 (2 boc.d. a2q3 2 [bed: )
q <bcdq) 1:[1((]7 ,C,a,a"q / C 7q7p)7,71

y H (¢, a; ¢, p)m (aq* ™t /bc, ag® " /bd, ag* " [ed; ¢, p)mt1—r
(q,aq/b,aq/c,aq/d,aq?>=2"+/bed; ¢, p)mt1—i

Note that the Vandermonde determinant-like factor appearing in the summand of (3.4) is squared.
This distinctive feature is reminiscent of certain Schur function and multiple g-series identities with similar
property (which can also be proved by the machinery of nonintersecting lattice paths), see e.g. [11, Thms. 5
and 6] and [3, Thms. 27-29].

The following result is the natural generalization of Theorem 3.1 to the higher level of transformations.
It is a special case of a multivariate 15V transformation formula conjectured by Warnaar (let z = ¢ in [23,
Conj. 6.1]) which has subsequently been proved (in more generality) by Rains [15] and, independently, by
Coskun and Gustafson [5].

THEOREM 3.2 (A multivariate extension of Frenkel and Turaev’s 12V4; transformation formula). Let
a,b,c,d, e, f be indeterminates, let m be a nonnegative integer, and r > 1. Then we have

ORI D i | T
0<k1<ka<---<kr,<m 1<i<j<r
H Mip)(a.b,c.de, f, Aag> " ef, g™ ¢, Pk,
0(a; p)( WQ/b aq/c,aq/d,aq/e,aq/ f,efq" 1=/ A ag t™; ¢, ),

T

H (b,c,d,ef/a;q,p)i—1(aq; ¢, p)m(aq/ef; g p)m+1—r(Ag/€; NG/ f; 4, P)mt1-i
bl (Ab/a, Acfa, Ad/a,ef /X q,p)i—1(Ag; ¢, D)m(Ng/ef; a4, P)m+1—r(ag/e,aq/ f; ¢, D) mr1—i

X Z q ie 1(2l 1 H 0 ki— k],Aqkb+k];p)2

0<ki<ks<---<k,.<m 1<i<j<r

ﬁ O(Ag?"i;p)(\, Ab/a, Aefa, Md/a, e, f, Xag> "™ [ef, a7 q, p)k,
0(\;p)(q,aq/b,aq/c,aq/d, Aq/e, Mg/ f,efq = =™ /X, Ag* ™ q, p)k,

where A = a*¢*>~" /bed.
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The r = 1 case of Theorem 3.2 is Frenkel and Turaev’s 12V]; transformation theorem [7], an ellip-
tic extension of Bailey’s 19¢9 transformation [8, Eq. (2.9.1)]. Again, the Vandermonde determinant-like
factor appearing in the summand of (3.5) is squared. (Similar identities but with a simple Vandermonde
determinant-like factor appearing in the summand have been derived in [17].) Due to symmetry the range of
summations on both sides of (3.5) can also be taken over all integers 0 < k1,...,k, < m. If welet ¢ = aq/bin
(3.5), the left-hand side reduces to a multivariate 19Vy series. On the right-hand side, since A\d/a = ¢*~", the
sum boils down to just a single term, with the indices k; =i —1, 1 < ¢ < r. The result, after simplifications,
is of course Theorem 3.1.

It would be particularly interesting to find a combinatorial proof of (3.5) involving nonintersecting lattice
paths. Even for » = 1 we so far failed to find a lattice path proof.

4. Future perspectives

4.1. Tableaux and plane partitions. It is quite clear how one can enumerate objects such as tableaux
or (various classes of) plane partitions with respect to elliptic weights. First, one has to translate the
respective combinatorial objects via a standard bijection into a set of nonintersecting lattice paths (see [10]
or [21]). The translation back, in order to obtain an explicit definition for the weight of the corresponding
combinatorial object, is not difficult. In the simplest cases the elliptic generating function is then expressed,
by Theorem 1.1, as a determinant which may be computed by Proposition 2.1. If the starting and/or end
points of the lattice paths are not fixed, one applies instead of Theorem 1.1 a result by Okada [14] (see also
Stembridge [21]), which expresses the generating function as a Pfaffian. Since the square of a Pfaffian is a
determinant of a skew symmetric matrix, this again involves the computation of a determinant. It needs to
be explored which of the classical results can be extended to the elliptic setting. Some elliptic determinant
evaluations, other than Warnaar’s in Lemma 2.2, which might be useful in this context have been provided
by Rosengren and present author [18].

4.2. Elliptic Schur functions. One can replace (2.2) by the more general weight
f(azy,q", bg*" bg* ! ag" " /b,ag™" /b p)
x
0(aq", brmg®™, brmg® =", axmq' =" /b, azpmg=" b;p) "

(4.1) w(z;n,m) :=

(defined on horizontal steps (n — 1,m) — (n,m) of Z?), and enumerate nonintersecting lattice paths, corre-
sponding to tableaux, with respect to (4.1). The result is an elliptic extension of Schur functions (which may
no longer be orthogonal) which, when “principally specialized” (z; — ¢°, i > 0) factors into closed form in
view of Proposition 2.1. On one hand it should be investigated whether these elliptic Schur functions have
other nice properties (as they do have in the classical case, see [13]). It appears that they are not related to
any of the BC-symmetric functions considered in [5] or [15].

4.3. Other weight functions. We were able to disguise Frenkel and Turaev’s 19Vy summation for-
mula as a convolution identity of elliptic binomial coefficients (see also Rains [15, Sec. 4] and Coskun and
Gustafson [5]). In our case this involved lattice paths with respect to elliptic weights. Similarly, it should
also be feasible to reproduce other known convolution formulae (such as Abel’s generalization of the bino-
mial theorem or the Hagen—Rothe summation, cf. [19], or others) using lattice paths with appropriately
chosen weights. The three types of convolutions, displayed in (2.12), (2.15), and (2.16), still hold, but may
then lead to mutually different identities. One can also try to work with bibasic weights (either elliptic or
non-elliptic), in order to recover some of the identities in [8, Secs. 3.6 and 3.8] and in [23]. It seems likely
that in the non-elliptic case (here we mean that there is no nome p, or p = 0) Bill Gosper used exactly
this method to first derive his “strange evaluations” (which were later subsumed/generalized in [8, Secs. 3.6
and 3.8]). Of course, whatever identities or other results one obtains by lattice path interpretation, one can
check for possible related determinant evaluations. Also the other direction should be investigated, e.g. does
Warnaar’s quadratic elliptic determinant in [23, Thm. 4.17] correspond to a specific set of nonintersecting
lattice paths with quadratic elliptic weight function?

4.4. “Elliptic” combinatorics. We believe that the results presented in this paper do not stand alone,
i.e., that elliptic enumeration is not necessarily restricted to lattice paths. In the same way as the generating
functions for various classes of combinatorial objects (most notably, of partitions, which correspond to paths)
can be expressed in terms of g-series, closed form elliptic generating functions for several of these classes
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should exist as well. The main idea would be to replace g-weights by suitable elliptic weights (and then
make the further analysis works out). There are certainly restrictions to the elliptic approach (besides that
the objects counted should be finite). Already when considering paths in Z2, techniques involving André’s
reflection principle (cf. [4, p. 22]) or shifting paths (as in [9, Prop. 1]) are not applicable as they are not
anymore weight invariant. A good area where to look for elliptic extensions would be a general combinatorial
theory such as Viennot’s theory of heaps [22].
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