
Formal Power Series and Algebraic Combinatorics
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Abstract. While counting lattice points in octahedra of different dimensions n and m, it is an interest-
ing question to ask, how many octahedra exist containing equally many such points. This gives rise to
the Diophantine equation Pn(x) = Pm(y) in rational integers x, y, where {Pk(x)} denote special Meixner

polynomials {M
(β,c)
k

(x)} with β = 1, c = −1. We join the purely algebraic criterion of Y. Bilu and
R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288) with a famous
result of P. Erdös and J. L. Selfridge (The product of consecutive integers is never a power, Illinois J.
Math. 19 (1975), 292–301) and prove that

M
(β,c1)
n (x) = M

(β,c2)
m (y)

with m, n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n, m) + 1} and c1, c2 ∈ Q \ {0, 1} only admits a finite number of
integral solutions x, y. Some more results on polynomial families in three-term recurrences are presented.

Résumé. Dans l’étude du dénombrement de sommets d’octaèdres de dimensions n et m se pose la question
intéressante de connâıtre combien d’octaèdres existent possédant le même nombre de sommets. Ce problème
se traduit par l’équation diophantienne Pn(x) = Pm(y), avec x, y entiers relatifs et où {Pk(x)} sont les
polynômes spéciaux de Meixner avec β = 1, c = −1. Nous joignons au critère purement algébrique de
Y. Bilu et R. F. Tichy (The Diophantine equation f(x) = g(y), Acta Arith. 95 (2000), no. 3, 261–288)
un fameux résultat dû à P. Erdös et J. L. Selfridge (The product of consecutive integers is never a power,
Illinois J. Math. 19 (1975), 292–301) et prouvons que

M
(β,c1)
n (x) = M

(β,c2)
m (y)

avec m, n ≥ 3, β ∈ Z \ {0,−1,−2,−max(n, m) + 1} et c1, c2 ∈ Q \ {0, 1} n’admet qu’un nombre fini de
solutions entières x, y. De plus, nous présentons quelques résultats portant sur des familles polynômiales
avec triple récurrence.

1. Introduction

An n-dimensional octahedron of radius r is the convex body in Rn defined by |x1| + · · · + |xn| ≤ r. In
this talk we investigate the following problem and some algebraic generalizations:

Problem: Given distinct positive integers n, m, how often can two octahedrons of dimensions n and
m, respectively, contain equally many integral points?

Obviously, it is sufficient to consider octahedrons of integral radius r. Also, any positive odd number can
occur as the number of integers in the “one-dimensional octahedron” [−r, r]. Hence, it is natural to assume
that n, m ≥ 2.

Denote by Pn(r) the number of integral points (x1, . . . , xn) ∈ Zn satisfying |x1| + · · · + |xn| ≤ r. In
1967, Erhardt [5] proved that Pn(r) is a polynomial in r of degree n indeed for any general lattice polytope
described by

|x1|

a1
+

|x2|

a2
+ · · · +

|xn|

an
≤ r,
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where a1, . . . , an are positive integers. In general, the Ehrhart polynomial is difficult to access and its
coefficients involve Dedekind sums and their higher analogues [1]. However, in the special case of symmetric
octahedra, which we are dealing with here, Kirschenhofer, Pethö and Tichy [10] could show that Pn(r) can
be made explicit, namely

(1.1) Pn(r) =
n

∑

i=0

2i

(

n

i

)(

r

i

)

= 2F1

[

−n,−r
1

; 2

]

,

where

2F1

[

a, b
c

; z

]

=

∞
∑

k=0

(a)k(b)k

(c)k
zk

is the Gauss hypergeometric function with (a)0 = 1 and (a)k = a(a+1) . . . (a+k−1) the Pochhammer symbol.
Thus, the original combinatorial counting problem can be restated by means of a polynomial Diophantine
equation:

Problem, restated: How many solutions x, y ∈ Z can the equation Pn(x) = Pm(y) have?

According to the modern Askey-scheme [14] and (1.1), we note that

(1.2) Pk(x) = M
(1,−1)
k (x),

where

M
(β,c)
k (x) = 2F1

[

−k,−x
β

; 1 −
1

c

]

denote the well-known Meixner polynomials.

2. Historical remarks

Hajdu [7, 8] studied the problem for small n and m. For the cases

(n, m) ∈ {(3, 2), (4, 2), (6, 2), (4, 3), (6, 4)}

he completely determined all integral solutions of Pn(x) = Pm(y). He also conjectured that the equation
has finitely many solutions when n > m = 2. This was confirmed by Kirschenhofer, Pethő and Tichy [10],
who reduced it to the Siegel–Baker theorem about the hyperelliptic equation y2 = f(x) in order to give a
computable bound for integral solutions x, y of the equation Pn(x) = P2(y). Moreover, finiteness is also
shown in the following three cases: m = 4; 2 ≤ m < n ≤ 103; n 6≡ m mod 2. The two latter results are
no longer effective (i.e., no upper bound for x, y can be retrieved from the proof), because they depend on
the non-effective Davenport–Lewis–Schinzel [4] theorem about the Diophantine equation f(x) = g(y). The
general answer to the problem has been obtained in [2]:

Theorem 2.1 (Bilu-Stoll-Tichy, 2000). Let n and m be distinct integers satisfying m, n ≥ 2. Then the
equation

Pn(x) = Pm(y)

has only finitely many solutions in rational integers x, y.

In other words, sufficiently large octahedra of distinct dimensions n, m cannot have equally many lattice
points. The proof of Theorem 2.1 is based on a non-effective result of Bilu and Tichy [3], thus, we cannot
make “sufficiently large” more explicit.

3. Generalizations

Several new questions arise in this context. For instance, it is well-known that the general family

{M
(β,c)
k (x)} defines a discrete orthogonal polynomial family if and only if β > 0 and 0 < c < 1. Since the

original case β = 1, c = −1 (see (1.2)) does not fit in, we are interested in a more general statement, which
handles both the original and the orthogonal case.

Question 1: Is it possible to derive a similar result to Theorem 2.1 for more general β and c, including
the orthogonal case?
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Furthermore, one may also ask, whether it is possible to replace the family of Meixner polyomials by
some other polynomial family {pk(x)}. Since orthogonal polynomials are closely related to polynomials in
three-term recurrences by Favard’s theorem, the following question seems of interest.

Question 2: Let {pk(x)} be a sequence of polynomials defined by

p0(x) = 1(3.1)

p1(x) = x − c0

pk+1(x) = (x − ck)pn(x) − dkpk−1(x), k = 1, 2, . . . ,

where ck and dk are parameters depending only on k. For which ck, dk the equation pn(x) = pm(y) only has
finitely many integral solutions x, y?

Note again, that by the Askey scheme, the Meixner polynomials satisfy a normalized recurrence relation
with ck = (k + (k + β)c)/(c − 1) and dk = (k(k + β − 1)c)/(c − 1)2.

Diophantine equations of the form pm(x) = pn(y) with polynomials in three-term recurrences have been
studied recently by Kirschenhofer and Pfeiffer [11, 12]. They point out several striking connections to
enumeration problems (for instance, to permutations with coloured cycles).

4. Main results

4.1. Concerning ’Question 1’. Question 1 is settled by the following result [17]:

Theorem 4.1. Let n and m be distinct integers satisfying m, n ≥ 3, further let c1, c2 ∈ Q \ {0, 1} and
β ∈ Z \ {0,−1,−2,−max(n, m) + 1}. Then the equation

M (β,c1)
n (x) = M (β,c2)

m (y)

has only finitely many solutions in integers x, y.

Denote by K
(p,N)
n (x) the two-parametric Krawtchouk polynomials given in [14]:

K(p,N)
n (x) = 2F1

[

−n,−x
−N

;
1

p

]

n = 0, 1, 2, . . . , N.

Since
K(p,N)

n (x) = M (−N,p/(p−1))
n (x),

we also have

Theorem 4.2. Let n and m be distinct integers satisfying m, n ≥ 3, further let N ≥ max(m, n) and
p1, p2 ∈ Q \ {0, 1}. Then the equation

(4.1) K(p1,N)
n (x) = K(p2,N)

m (y)

has only finitely many solutions in integers x, y.

4.2. Concerning ’Question 2’. We obtain sufficient conditions on ck and dk in order to state an
again more general finiteness theorem [18]:

Theorem 4.3. Let {pk(x)} be a polynomial sequence satisfying (3.1). Assume one of the following
conditions (A, B, C ∈ Q)

(1) c0 = A, ck = A, dk = B with A 6= 0 and B > 0,
(2) c0 = A + B, ck = A, dk = B2 with B 6= 0,
(3) c0 = A, ck = Bk + A, dk = 1

4B2k2 + Ck with C > − 1
4B2.

Then the Diophantine equation
Apm(x) + Bpn(y) = C

with m > n ≥ 4, A,B, C ∈ Q, AB 6= 0 has at most finitely many solutions in rational integers x, y.

Note that, for instance, in case (3) there are the six rational parameters A,B, C, A, B, C involved, thus,
the generality of Theorem 4.3 should well fit specific combinatorial applications. Furthermore, well-known
orthogonal families are covered by the statement. So, for example, in the first case of Theorem 4.3 we
deal with (shifted) Jacobi polynomials, while the third case corresponds to modified Hermite and Laguerre
polynomials.
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5. Methods and tools

5.1. The Bilu-Tichy method. The proofs of Theorem 4.1, Theorem 4.2 and Theorem 4.3 are basically
algebraic, as they are based on an explicit algorithmic criterion of Bilu and Tichy [3], which only involves
knowledge of the coefficients of the polynomials under consideration. In order to state that result, we have
to introduce some more notation.

Let γ, δ ∈ Q\{0}, q, s, t ∈ Z>0, r ∈ Z≥0 and v(x) ∈ Q[x] a non-zero polynomial (which may be constant).
Further let Ds(x, γ) denote the Dickson polynomials which can be defined via

Ds(x, γ) =

bs/2c
∑

i=0

ds,ix
s−2i with ds,i =

s

s − i

(

s − i

i

)

(−γ)i.

The pair (f(x), g(x)) or viceversa (g(x), f(x)) is called a standard pair over Q if it can be represented by an
explicit form listed below. In such a case we call (f, g) a standard pair of the first, second, third, fourth, fifth
kind, respectively.

kind explicit form of (f, g) resp. (g, f) parameter restrictions
first (xq , γxrv(x)q) with 0 ≤ r < q, (r, q) = 1, r + deg v > 0
second (x2, (γx2 + δ)v(x)2) –
third (Ds(x, γt), Dt(x, γs)) with (s, t) = 1
fourth

(

γ−s/2Ds(x, γ),−δ−t/2Dt(x, δ)
)

with (s, t) = 2
fifth

(

(γx2 − 1)3, 3x4 − 4x3
)

–

These standard pairs are important in view of the following characterization result [3].

Theorem 5.1 (Bilu-Tichy, 2000). Let p(x), q(x) ∈ Q[x] be non-constant polynomials. Then the following
two assertions are equivalent:

(a) The equation p(x) = q(y) has infinitely many rational solutions with a bounded denominator.
(b) We can express p ◦ κ1 = φ ◦ f and q ◦ κ2 = φ ◦ g where κ1, κ2 ∈ Q[x] are linear, φ(x) ∈ Q[x], and

(f, g) is a standard pair over Q.

If we are able to get contradictions for decompositions of p and q as demanded in (b) of Theorem 5.1 then
finiteness of number of integral solutions x, y of the original Diophantine equation p(x) = q(y) is guaranteed.
Note that this approach is basically an algebraic one and does involve an accurate comparison of coefficients.

5.2. Erdös-Selfrdige tool. As an additional tool, we restate a well-known result obtained by Erdös
and Selfridge [6]:

Theorem 5.2 (Erdös-Selfridge, 1975). The equation

x(x + 1) · · · (x + k − 1) = yl

has no solution in rational integers x > 0, k > 1, l > 1, y > 1.

Interestingly, simple comparison of the leading coefficients of the Meixner polynomials gives an equation
very similar to that of Theorem 5.2. Therefore, there are no parameters that satisfy such a coefficient
equation. In other words, we can easily derive a contradiction if we suppose a higher degree polynomial
representation in Theorem 5.1.

5.3. Lesky tool. There is a close connection beween three-term recurrences and Sturm-Liouville dif-
ferential equations [13]:

Theorem 5.3 (Koepf-Schmersau, 2002). The following conditions are equivalent:

(1) The second-order Sturm-Liouville differential equation (k ≥ 0)

(5.1) σ(x)p′′k(x) + τ(x)p′k(x) − k((k − 1)a + d)pk(x) = 0,

with σ(x) = ax2 + bx + c 6≡ 0, τ = dx + e, a, b, c, d, e ∈ R, d 6= −ta for all t ∈ Z≥0 has a (up to a
factor depending on k) unique infinite polynomial family solution {pk(x)}of exact degree k.
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(2) The family {pk(x)} satifies a three-term recurrence of type (3.1) with

c0 = −

e

d
,

ck = −

2kb((k − 1)a + d) − e(2a − d)

(2ka + d)((2k − 2)a + d)
,

dk =
k((k − 2)a + d)

((2k − 1)a + d)((2k − 3)a + d)

„

−c +
((k − 1)b + e)(((k − 1)a + d)b − ae)

((2k − 2)a + d)2

«

.

The properties of Theorem 5.3 are shared by all classical orthogonal polynomials (Jacobi, Laguerre,
Hermite). On the other hand, one has by Favard’s Theorem (see for instance [19]), that all polynomial
families defined by a three-term recurrence of shape (3.1) are orthogonal with respect to some moment
functional. If one demands orthogonality with respect to a positive definite moment functional (in order to
use all known facts about zeros of orthogonal polynomials etc.), then one exactly gets only Jacobi, Laguerre
and Hermite up to a linear transformation x 7→ ν1x + ν2 with ν1, ν2 ∈ R (see the results of Lesky in [15]).
Hence, one can completely characterize all positive definite orthogonal solutions of (5.1) just by looking at
the coefficients a, b, c, d, e (see [9]). This can be translated into conditions on ck and dk for the general
equation

Apm(x) + Bpn(y) = C.
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[9] Helmstädter-Rösner, Über Polynomlösungen Sturm-Liouvillescher Differential- bzw. Differenzengleichungen zweiter Ord-
nung - Dissertation, Polyfoto-Dr. Vogt KG, (Stuttgart, 1986).

[10] P. Kirschenhofer, A. Pethő, and R. F. Tichy, On analytical and Diophantine properties of a family of counting polynomials,
Acta Sci. Math. (Szeged) 65 (1999), no. 1-2, 47–59.

[11] P. Kirschenhofer and O. Pfeiffer, On a class of combinatorial Diophantine equations, Sém. Lothar. Combin. 44 (2000),

Art. B44h, 7 pp. (electronic).
[12] P. Kirschenhofer and O. Pfeiffer, Diophantine equations between polynomials obeying second order recurrences, Period.

Math. Hungar. 47 (2003), no. 1-2, 119–134.
[13] W. Koepf and D. Schmersau, Recurrence equations and their classical orthogonal polynomial solutions, Appl. Math.

Comput. 128(2-3) (2002) 303–327.
[14] R. Koekoek and R. F. Swarttouw, The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue.,

Delft, Netherlands, Report 98-17 (1998).
[15] P. Lesky, Die Charakterisierung der klassischen orthogonalen Polynome durch Sturm-Liouvillesche Differentialgleichungen.

Arch. Rational Mech. Anal. 10 (1962) 341–351.
[16] Th. Stoll and R. F. Tichy, Diophantine equations for classical continuous orthogonal polynomials, Indag. Math. (N.S.) 14

(2003), no. 2, 263–274.
[17] Th. Stoll and R. F. Tichy, Diophantine equations involving general Meixner and Krawtchouk polynomials, Quaest. Math.

28 (2005), no. 1, 105–115.
[18] Th. Stoll and R. F. Tichy, Diophantine equations for Morgan-Voyce and other modified orthogonal polynomials, submitted,

see http://dmg.tuwien.ac.at/stoll/publ.html.
[19] W. Van Assche, Orthogonal polynomials in the complex plane and on the real line, in: Special functions, q-series and

related topics (Toronto, ON, 1995), Amer. Math. Soc., Providence, RI, (1997) 211–245.



Th. Stoll and R. F. Tichy

Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Wiedner Hauptstraße 8–
10/104, A-1040 Vienna, Austria

E-mail address: stoll@dmg.tuwien.ac.at

URL: http://dmg.tuwien.ac.at/stoll/

Department of Mathematics A, Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria
E-mail address: tichy@tugraz.at

URL: http://finanz.math.tu-graz.ac.at/tichy/


