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Abstract. We complete the enumeration of Dumont permutations of the second kind avoiding a pattern
of length 4 which is in turn a Dumont permutation of the second kind. We also consider some combinatorial
statistics on Dumont permutations avoiding certain patterns of length 3 and 4 and give a natural bijection
between 3142-avoiding Dumont permutations of the second kind and noncrossing partitions that uses cycle
decomposition, as well as bijections between 132-, 231- and 321-avoiding Dumont permutations and Dyck
paths.

Résumé. Nous complétons l’énumeration des permutations Dumont de deuxième espèce évitant un motif de
longueur 4 étant elle-même une permutation Dumont de deuxième espèce. Nous considérons aussi quelques
statistiques combinatoires sur les permutations Dumont évitant certains motifs de longueur 3 et 4 et nous

démontrons une bijection naturelle entre les permutations Dumont de deuxième espèce évitant le motif 3142
et les partitions non-croisées via le biais de décompositions cycliques, aussi bien qu’une bijection entre les
permutations Dumont de deuxième espèce évitant les motifs 132, 231, 321 et les chemins de Dyck.

1. Preliminaries

The main goal of this paper is to give analogues of known enumerative results on certain classes of
permutations characterized by pattern-avoidance. Instead of taking the symmetric group Sn, we consider
the subset of Dumont permutations (see definition below), and we identify classes of restricted permutations
with enumerative properties that are analogous to the case of general permutations. More precisely, we study
the number of Dumont permutations of length 2n avoiding either a 3-letter pattern or a 4-letter pattern.
We also give direct bijections between equinumerous sets of restricted Dumont permutations of length 2n
and other objects such as restricted permutations of length n, Dyck paths of semilength n, or noncrossing
partitions of [n] = {1, 2 . . . , n}.

1.1. Patterns. Let σ ∈ Sn and τ ∈ Sk be two permutations. We say that τ occurs in σ, or that σ
contains τ , if σ has a subsequence (σ(i1), . . . , σ(ik)), 1 ≤ i1 < · · · < ik ≤ n, that is order-isomorphic to
τ (in other words, for any j1 and j2, σ(ij1) ≤ σ(ij2) if and only if τ(j1) ≤ τ(j2)). Such a subsequence is
called an occurrence (or an instance) of τ in σ. In this context, the permutation τ is called a pattern. If τ
does not occur in σ, we say that σ avoids τ , or is τ-avoiding. We denote by Sn(τ) the set of permutations
in Sn avoiding a pattern τ . If T is a set of patterns, then Sn(T ) =

⋂

τ∈T Sn(τ), i.e. Sn(T ) is the set of
permutations in Sn avoiding all patterns in T .

The first results in the extensive body of research on permutations avoiding a 3-letter pattern are due
to Knuth [9], but the intensive study of patterns in permutations began with Simion and Schmidt [16],
who considered permutations and involutions avoiding each set T of 3-letter patterns. One of the most
frequently considered problems is the enumeration of Sn(τ) and Sn(T ) for various patterns τ and sets of
patterns T . The inventory of cardinalities of |Sn(T )| for T ⊆ S3 is given in [16], and a similar inventory
for |Sn(τ1, τ2)|, where τ1 ∈ S3 and τ2 ∈ S4 is given in [23]. Some results on |Sn(τ1, τ2)| for τ1, τ2 ∈ S4 are
obtained in [22]. The exact formula for |Sn(1234)| and the generating function for |Sn(12 . . . k)| are found
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in [7]. Bóna [2] has found the exact value of |Sn(1342)| = |Sn(1423)|, and Stankova [18, 19] showed that
|Sn(3142)| = |Sn(1342)|. For a survey of results on pattern avoidance, see [1, 8].

Another problem is finding equinumerously avoided (sets of) patterns, i.e. sets T1 and T2 such that
|Sn(T1)| = |Sn(T2)| for any n ≥ 0. Such (sets of) patterns are called Wilf-equivalent and said to belong to
the same Wilf class. The following symmetry operations on Sn map every pattern onto a Wilf-equivalent
pattern:

• reversal r: r(τ)(i) = τ(n + 1 − i), i.e. r(τ) is τ read right-to-left.
• complement c: c(τ)(i) = n+ 1 − τ(i), i.e. c(τ) is τ read upside down.
• r ◦ c = c ◦ r: r ◦ c(τ)(i) = n+ 1 − τ(n+ 1 − i), i.e. r ◦ c(τ) is τ read right-to-left upside down.

The set of patterns 〈r, c〉(τ) = {τ, r(τ), c(τ), r(c(τ)) = c(r(τ))} is called the symmetry class of τ .
Sometimes we will represent a permutation π ∈ Sn by placing dots on an n × n board. For each

i = 1, . . . , n we will place a dot with abscissa i and ordinate π(i) (the origin of the board is at the bottom-
left corner).

1.2. Dumont permutations. In this paper we give a complete answer for the above problems when
we restrict our attention to the set of Dumont permutations. A Dumont permutation of the first kind is a
permutation π ∈ S2n where each even entry is followed by a descent and each odd entry is followed by an
ascent or ends the string. In other words, for every i = 1, 2, . . . , 2n,

π(i) is even =⇒ i < 2n and π(i) > π(i+ 1),

π(i) is odd =⇒ π(i) < π(i+ 1) or i = 2n.

A Dumont permutation of the second kind is a permutation π ∈ S2n where all entries at even positions
are deficiencies and all entries at odd positions are fixed points or excedances. In other words, for every
i = 1, 2, . . . , n,

π(2i) < 2i,

π(2i− 1) ≥ 2i− 1.

We denote the set of Dumont permutations of the first (resp. second) kind of length 2n by D
1
2n (resp.

D
2
2n). For example, D

1
2 = D

2
2 = {21}, D

1
4 = {2143, 3421, 4213}, D

2
4 = {2143, 3142, 4132}. We also define

D
1-Wilf-equivalence and D

2-Wilf-equivalence similarly to the Wilf-equivalence on Sn. Dumont [4] showed
that

|D1
2n| = |D2

2n| = G2n+2 = 2(1 − 22n+2)B2n+2,

where Gn is the nth Genocchi number, a multiple of the Bernoulli number Bn. Lists of Dumont permutations
D

1
2n and D

2
2n for n ≤ 4 as well as some basic information and references for Genocchi numbers and Dumont

permutations may be obtained in [15] and [17, A001469]. The exponential generating functions for the
unsigned and signed Genocchi numbers are as follows:

∞
∑

n=1

G2n
x2n

(2n)!
= x tan

x

2
,

∞
∑

n=1

(−1)nG2n
x2n

(2n)!
=

2x

ex + 1
− x = −x tanh

x

2
.

Some cardinalities of sets of restricted Dumont permutations of length 2n parallel those of restricted permu-
tations of length n. For example, the following results were obtained in [3, 11]:

• |D1
2n(τ)| = Cn for τ ∈ {132, 231, 312}, where Cn = 1

n+1

(

2n
n

)

is the n-th Catalan number.

• |D2
2n(321)| = Cn.

• |D1
2n(213)| = Cn−1, so r, c and r ◦ c do not necessarily produce D

1-Wilf-equivalent patterns.
• |D2

2n(231)| = 2n−1, while |D2
2n(312)| = 1 and |D2

2n(132)| = |D2
2n(213)| = 0 for n ≥ 3, so r, c and

r ◦ c do not necessarily produce D
2-Wilf-equivalent patterns either.

• |D2
2n(3142)| = Cn.

• |D1
2n(1342, 1423)| = |D1

2n(2341, 2413)| = |D1
2n(1342, 2413)| = sn+1, the (n + 1)-st little Schröder

number [17, A001003], given by s1 = 1, sn+1 = −sn + 2
∑n

k=1 sksn−k (n ≥ 2).
• |D1

2n(2413, 3142)| = C(2;n), the generalized Catalan number (see [17, A064062]).

Note that the these results parallel some enumerative avoidance results in Sn, where the same or similar
cardinalities are obtained:

• |Sn(τ)| = Cn = 1
n+1

(

2n
n

)

, the nth Catalan number, for any τ ∈ S3.
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• |Sn(123, 213)| = |Sn(132, 231)| = 2n−1.
• |Sn(3142, 2413)| = |Sn(4132, 4231)| = |Sn(2431, 4231)| = rn−1, the (n−1)-st large Schröder number

[17, A006318], given by r0 = 1, rn = rn−1 +
∑n−1

j=0 rkrn−k, or by rn = 2sn for n ≥ 1.

In this paper, we establish several enumerative and bijective results on restricted Dumont permutations.
In Section 2 we give direct bijections between D

1
2n(132), D

1
2n(231), D

2
2n(321) and the class of Dyck paths

of semilength n (paths from (0, 0) to (2n, 0) with steps u = (1, 1) and d = (1,−1) that never go below the
x-axis). This allows us to consider some permutation statistics, such as length of the longest increasing (or
decreasing) subsequence, and study their distribution on the sets D

1
2n(132), D

1
2n(231) and D

2
2n(321).

In Section 3, we consider Dumont permutations of the second kind avoiding patterns in D
2
4. Note

that [3] showed that |D2
2n(3142)| = Cn using block decomposition (see [12]), which is very surprising given

that it is by far a more difficult task to count all permutations avoiding a single 4-letter pattern (e.g., see
[2, 7, 18, 19, 21]).

Furthermore, we prove that D
2
2n(4132) = D

2
2n(321) and, thus, |D2

2n(4132)| = Cn. The fact that per-
mutations of different lengths are equinumerously avoided is another striking difference between restricted
Dumont permutations and restricted permutations.

Refining the result |D2
2n(3142)| = Cn in [3], we consider some combinatorial statistics on D

2
2n(3142) such

as the number of fixed points and 2-cycles, and give a natural bijection between permutations in D
2
2n(3142)

with k fixed points and the set NC(n, n− k) of noncrossing partitions of [n] into n− k parts that uses cycle
decomposition. This is yet another surprising difference since pattern avoidance on permutations so far has
not been shown to be related to their cycle decomposition in any natural way.

Finally, we prove that |D2
2n(2143)| = anan+1, where a2m = 1

2m+1

(

3m
m

)

and a2m+1 = 1
2m+1

(

3m+1
m+1

)

. This
allows us to relate 2143-avoiding Dumont permutations of the second kind with pairs of northeast lattice
paths from (0, 0) to (2n, n) and (2n+ 1, n) that do not get above the line y = x/2.

Thus, we complete the enumeration problem of D
2
2n(τ) for all τ ∈ D

2
4.

2. Dumont permutations avoiding a single 3-letter pattern

In this section we consider some permutation statistics and study their distribution on certain classes of
restricted Dumont permutations. We focus on the sets D

1
2n(132), D

1
2n(231) and D

2
2n(321), whose cardinality

is given by the Catalan numbers, as shown in [3, 11]. We construct direct bijections between these sets and
the class of Dyck paths of semilength n, which we denote Dn.

2.1. 132-avoiding Dumont permutations of the first kind. Here we present a bijection f1 between
D

1
2n(132) and Sn(132), which will allow us to enumerate 132-avoiding Dumont permutations of the first kind

with respect to the length of the longest increasing subsequences. The bijection is defined as follows. Let
π = π1π2 · · ·π2n ∈ D

1
2n(132). First delete all the even entries of π. Next, replace each of the remaining

entries πi by (πi +1)/2. Note that we only obtain integer numbers since the πi that were not erased are odd.
Clearly, since π was 132-avoiding, the sequence f1(π) that we obtain is a 132-avoiding permutation, that is,
f1(π) ∈ Sn(132). For example, if π = 64357821, then deleting the even entries we get 3571, so f1(π) = 2341.

To see that f1 is indeed a bijection, we now describe the inverse map. Let σ ∈ Sn(132). First replace
each entry σi with σ′

i := 2σi − 1. Now, for every i from 1 to n, proceed according to one of the two following
cases. If σ′

i > σ′
i+1, insert σ′

i + 1 immediately to the right of σ′
i. Otherwise (that is, σ′

i < σ′
i+1 or σ′

i+1 is not
defined), insert σ′

i + 1 immediately to the right of the rightmost element to the left of σ′
i that is bigger than

σ′
i, or to the beginning of the sequence if such element does not exist. For example, if σ = 546231, after the

first step we get (9, 7, 11, 3, 5, 1), so f−1
1 (σ) = (9, 10, 8, 7, 11, 12, 4, 3, 5, 6, 2, 1).

Recall Krattenthaler’s bijection between 132-avoiding permutations and Dyck paths [10]. We denote it
by ϕ : Sn(132) → Dn, and it can be defined as follows. Given a permutation π ∈ Sn(132) represented as an
n× n board, where for each entry π(i) there is a dot in the i-th column from the left and row π(i) from the
bottom, consider a lattice path from (n, 0) to (0, n) not above the antidiagonal y = n−x that leaves all dots
to the right and stays as close to the antidiagonal as possible. Then ϕ(π) is the Dyck path obtained from
this path by reading an u every time the path goes west and a d every time it goes north. Composing f1
with the bijection ϕ we obtain a bijection ϕ ◦ f1 : D

1
2n(132) → Dn.

Again through ϕ, the set S2n(132) is in bijection with D2n. Considering D
1
2n(132) as a subset of S2n(132),

we observe that g1 := ϕ ◦ f−1
1 ◦ϕ−1 is an injective map from Dn to D2n. Here is a way to describe it directly

only in terms of Dyck paths. Recall that a valley in a Dyck path is an occurrence of du, and that a tunnel
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is a horizontal segment whose interior is below the path and whose endpoints are lattice points belonging
to the path (see [5, 6] for more precise definitions). Let D ∈ Dn. For each valley in D, consider the tunnel
whose left endpoint is at the bottom of the valley. Mark the up-step and the down-step that delimit this
tunnel. Now, replace each unmarked down-step d with dud. Replace each marked up-step u with uu, and
each marked d with dd. The path that we obtain after these operations is precisely g1(D) ∈ D2n. The
reason is that through ϕ, each entry of the permutation has an associated tunnel in the path (as described
in [5]), and these operations on the steps of the path create tunnels that correspond to the even elements of
f−1
1 (ϕ−1(D)).

For example, if D = uduududd, then underlining the marked steps we get uduududd, so g1(D) =
ududuuududuudddd.

Denote by lis(π) (resp. lds(π)) the length of the longest increasing (resp. decreasing) subsequence of π.
Using the above bijections we obtain the following result.

Theorem 2.1. Let Lk(z) :=
∑

n≥0 |{π ∈ D
1
2n(132) : lis(π) ≤ k)}| zn be the generating function for

{132, 12 · · · (k + 1)}-avoiding Dumont permutations of the first kind. Then we have the recurrence

Lk(z) = 1 +
zLk−1(z)

1 − zLk−2(z)
,

with L−1(z) = 0 and L0(z) = 1.

Proof. As shown in [10], the length of the longest increasing subsequence of a permutation π ∈ S2n(132)
corresponds to the height of the path ϕ(π) ∈ D2n. Next we describe the statistic, which we denote λ, on
the set of Dyck paths Dn that, under the injection g1 : Dn ↪→ D2n, corresponds to the height in D2n. Let
D ∈ Dn. For each peak p of D, define λ(p) to be the height of p plus the number of tunnels below p
whose left endpoint is at a valley of D. Now let λ(D) := maxp{λ(p)} where p ranges over all the peaks of
D. From the description of g1 it follows that for any D ∈ Dn, height(g1(D)) = λ(D). Thus, enumerating
permutations in D

1
2n(132) according to the parameter lis is equivalent to enumerating paths in Dn according

to the parameter λ. More precisely, Lk(z) =
∑

D∈D:λ(D)≤k z
|D|. To find an equation for Lk, we use that

every nonempty Dyck path D can be uniquely decomposed as D = AuBd, where A,B ∈ D. We obtain that

Lk(z) = 1 + zLk−1(z) + z(Lk(z) − 1)Lk−2(z),

where the term zLk−1(z) corresponds to the case where A is empty (for then λ(uBd) = λ(B) + 1, and
z(Lk(z) − 1)Lk−2(z) to the case there A is not empty. From this we obtain the recurrence

Lk(z) = 1 +
zLk−1(z)

1 − zLk−2(z)
,

where L−1(z) = 0 and L0(z) = 1 by definition. �

It also follows from the definition of ϕ that the length of the longest decreasing subsequence of π ∈
S2n(132) corresponds to the number of peaks of the path ϕ(π) ∈ D2n. Looking at the description of g1,
we see that a peak is created in g1(D) for each unmarked down-step of d. The number of marked down-
steps is the number of valleys of D. Therefore, if D ∈ Dn, we have that the number of peaks of g1(D)
is peaks(g1(D)) = peaks(D) + n − valleys(D) = n + 1. Hence, we have that for every π ∈ D

1
2n(132),

lds(π) = n+ 1.

2.2. 231-avoiding Dumont permutations of the first kind. As we did in the case of 132-avoiding
Dumont permutations, we can give the following bijection f2 between D

1
2n(231) and Sn(231). Let π ∈

D
1
2n(231). First delete all the odd entries of π. Next, replace each of the remaining entries πi by πi/2.

Note that we only obtain integer entries since the remaining πi were even. Compare this to the analogous
transformation described in Section 3.1 for Dumont permutations of the second kind. Clearly the sequence
f2(π) that we obtain is a 231-avoiding permutation (since so was π), that is, f2(π) ∈ Sn(231). For example,
if π = (2, 1, 10, 8, 4, 3, 6, 5, 7, 9), then deleting the odd entries we get (2, 10, 8, 4, 6), so f2(π) = 15423.

To see that f2 is indeed a bijection, we define the inverse map as follows. Let σ ∈ Sn(231). First
replace each entry k with 2k. Now, for every i from 1 to n − 1, insert 2i − 1 immediately to the left of
the first entry to the right of 2i that is bigger than 2i (if such an entry does not exist, insert 2i − 1 at
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the end of the sequence). For example, if σ = 7215346, after the first step we get (14, 4, 2, 10, 6, 8, 12), so
f−1
2 (σ) = (14, 4, 2, 1, 3, 10, 6, 5, 8, 7, 9, 12, 11, 13).

Consider now the bijection ϕR : Sn(231) −→ Dn that is obtained by composing ϕ defined above with
the reversal operation that sends π = π1π2 · · ·πn ∈ Sn(231) to πR = πn · · ·π2π1 ∈ Sn(132).

Through ϕR, the set S2n(231) is in bijection with D2n, so we can identify D
1
2n(231) with a subset of D2n.

The map g2 := ϕR ◦f−1
2 ◦ (ϕR)−1 is an injection from Dn to D2n. Here is a way to describe it directly only in

terms of Dyck paths. Given D ∈ Dn, all we have to do is replace each down-step d of D with udd. The path
that we obtain is precisely g2(D) ∈ D2n. For example, if D = uduuududdd (this example corresponds to
the same σ given above), then g2(D) = uudduuuudduudduddudd. Given g2(D), one can easily recover
D by replacing every udd by d.

Some properties of ϕ trivially translate to properties of ϕR. In particular, the length of the longest
increasing subsequence of a 231-avoiding permutation π equals the number of peaks of ϕR(π), and the
length of the longest decreasing subsequence of π is precisely the height of ϕR(π).

It follows from the description of g2 in terms of Dyck paths that for any D ∈ Dn, g2(D) has exactly n
peaks (one for each down-step of D). Therefore, for any π ∈ D

1
2n(231), the number of right-to-left minima

of π is rlm(π) = n. In fact it is not hard to see directly from the definition of 231-avoiding Dumont
permutations that the right-to-left minima of π ∈ D

1
2n(231) are precisely its odd entries, which necessarily

form an increasing subsequence.
Also from the description of g2 we see that height(g2(D)) = height(D) + 1. In terms of permutations,

this translates to the fact that if π ∈ Sn(231), then lds(f2(π)) = lds(π) + 1. This allows us to enumerate
231-avoiding Dumont permutations with respect to the statistic lds. Indeed, |{π ∈ D

1
2n(231) : lds(π) = k}| =

|{D ∈ Dn : height(D) = k − 1}|.

2.3. 321-avoiding Dumont permutations of the second kind. Let us first notice that a permu-
tation π ∈ D

2
2n(321) cannot have any fixed points. Indeed, assume that πi = i. Then, if we write π = σiτ ,

the fact that π is 321-avoiding implies that σ is a permutation of {1, 2, . . . , i− 1} and τ is a permutation of
{i + 1, i + 2, . . . , n}. Since π ∈ D

2
2n, i must be odd, but then the first element of τ is in an even position,

and it is either a fixed point or an excedance, which contradicts the definition of Dumont permutations of
the second kind.

It is known (see e.g. [14]) that a permutation is 321-avoiding if and only if both the subsequence
determined by its excedances and the one determined by the remaining elements are increasing. It follows
that a permutation in D

2
2n(321) is uniquely determined by the values of its excedances. Another consequence

is that if π ∈ D
2
2n(321), then lis(π) = n.

We can give a bijection between D
2
2n(321) and Dn. We define it in two parts. For the first part, we use

the bijection ψ between Sn(321) and Dn that was defined in [5], and which is closely related to the bijection
between Sn(123) and Dn given in [10]. Given π ∈ Sn(321), consider again the n × n board with a dot in
the i-th column from the left and row π(i) from the bottom, for each i. Take the path with north and east
steps that goes from (0, 0) to the (n, n), leaving all the dots to the right, and staying always as close to the
diagonal as possible. Then ψ(π) is the Dyck path obtained from this path by reading an up-step every time
the path goes north and a down-step every time it goes east.

If we apply ψ to a permutation π ∈ D
2
2n(321) we get a Dyck path ψ(π) ∈ D2n. The second part

of our bijection is just the map g−1
2 defined above, which consists in replacing every occurrence of udd

with a d. It is not hard to check that π 7→ g−1
2 (ψ(π)) is a bijection from D

2
2n(321) to Dn. For example,

for π = (3, 1, 5, 2, 6, 4, 9, 7, 10, 8), we have that ψ(π) = uuudduuddudduuuddudd, and g−1
2 (ψ(π)) =

uududduudd.

3. Dumont permutations avoiding a single 4-letter pattern

In this section we will determine the structure of permutations in D
2
2n(τ) and find the cardinality |D2

2n(τ)|
for each τ ∈ D

2
4 = {2143, 3142, 4132}.

It was shown in [3] that |D2
2n(3142)| = Cn. In Section 3.1, we refine this result with respect to the

number of fixed points and 2-cycles in permutations in D
2
2n(3142) and use cycle decomposition to give

a natural bijection between permutations in D
2
2n(3142) with k fixed points and the set NC(n, n − k) of

noncrossing partitions of [n] into n−k parts. In Section 3.2, we prove that D
2
2n(4132) = D

2
2n(321) and, thus,
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|D2
2n(4132)| = Cn. Finally, in Section 3.3 we prove that |D2

2n(2143)| = anan+1, where a2m = 1
2m+1

(

3m
m

)

and a2m+1 = 1
2m+1

(

3m+1
m+1

)

. Thus, we can relate permutations in D
2
2n(2143) and pairs of northeast lattice

paths from (0, 0) to (2n, n) and (2n+ 1, n) that stay on or below y = x/2. This completes the enumeration
problem of D

2
2n(τ) for τ ∈ D

2
4.

3.1. Avoiding 3142. It was shown in [3] that |D2
2n(3142)| = Cn; moreover, the permutations π ∈

D
2
2n(3142) can be recursively described as follows:

(3.1) π = (2k, 1, r ◦ c(π′) + 1, π′′ + 2k),

where π′ ∈ D
2
2k−2(3142) and π′′ ∈ D

2
2n−2k(3142) (see Figure 1). From this block decomposition, it is easy

to see that the subsequence of odd integers in π is increasing. Moreover, the odd entries are exactly those
on the main diagonal and the first subdiagonal (i.e. those i for which π(i) = i or π(i) = i− 1).

Figure 1. The block decomposition of a permutation in D2
2n(3142).

In subsections 3.1.1 and 3.1.2 we use the above decomposition to derive two bijections from D
2
2n(3142)

to sets of cardinality Cn.

3.1.1. Subsequence of even entries. The first bijection is φ : D
2
2n(3142) → En ⊂ Sn, where

En =
{

(1/2)πev | π ∈ D
2
2n(3142)

}

,

and πev (resp. πov) is the subsequence of even (resp. odd) values in π. (Here 1
2πev is the permutation

obtained by dividing all entries in πev by 2; in other words, if σ = 1
2πev, then σ(i) = πev(i)/2 for all i ∈ [n].)

Define φ(π) = 1
2πev for each π ∈ D

2
2n(3142).

Permutations in En have a block decomposition similar to those in D
2
2n(3142), namely,

σ ∈ En ⇐⇒ σ = (k, r ◦ c(σ′), k + σ′′) for some σ′ ∈ Ek−1 and σ′′ ∈ En−k.

The inverse φ−1 : En → D
2
2n(3142) is easy to describe. Let σ ∈ En. Then π = φ−1(σ) is obtained as

follows: let πev = 2σ (i.e. πev(i) = 2σ(i) for all i ∈ [n]), then for each i ∈ [n] insert 2i−1 immediately before
2σ(i) if σ(i) < i or immediately after 2σ(i) if σ(i) ≥ i. For instance, if σ = 3124 ∈ E4, then πev = 6248 and
π = 61 32 54 87 ∈ D

2
8(3142).

It is not difficult to show that En consists of exactly those permutations that, written in cyclic form,
correspond to noncrossing partitions of [n] by replacing pairs of parentheses with slashes. We remark that
En is also the set of permutations whose tableaux (see [20]) have a single 1 in each column.

Theorem 3.1. For a permutation ρ, define

fix(ρ) = |{i | ρ(i) = i}|, exc(ρ) = |{i | ρ(i) > i}|,

fix
−1

(ρ) = |{i | ρ(i) = i− 1}|, def(ρ) = |{i | ρ(i) < i}|.

Then for any π ∈ D
2
2n(3142) and σ = φ(π) ∈ En, we have

fix(π) + fix
−1

(π) = n,(3.2)

fix(π) = def(σ),(3.3)

fix
−1

(π) = exc(σ) + fix(σ),(3.4)

fix(σ) = # 2-cycles in π.(3.5)
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Proof. Equation (3.2) follows from the fact that odd integers in π are exactly those on the main
diagonal and first subdiagonal.

Let π and σ be as above and let i ∈ [n]. Then there are two cases: either 2i−1 = π(2i) or 2i−1 = π(2i−1).
Case 1: π(2i) = 2i− 1. Then π(2i− 1) ≥ 2i, and hence π(2i− 1) must be even.
Case 2: π(2i− 1) = 2i− 1. Then π(2i) ≤ 2i− 2, and hence π(2i) must be even.

In either case, for each i ∈ [n], we have {π(2i− 1), π(2i)} = {2i− 1, 2si} for some si ∈ [n]. Define σ(i) = si.
Then σ(i) ≥ i if 2i− 1 ∈ fix

−1
(π), and σ(i) ≤ i− 1 if 2i− 1 ∈ fix(π). This proves (3.3) and (3.4).

Finally, let i ∈ [n] be such that σ(i) = i. Since 2σ(i) ∈ {π(2i− 1), π(2i)} and π(2i) < 2i, it follows that
2i = 2σ(i) = π(2i− 1), so 2i− 1 = π(2i), and thus π contains a 2-cycle (2i− 1, 2i).

Conversely, let (ab) be a 2-cycle of π, and assume that b > a. Then π(a) > a, so a must be odd, say
a = 2i − 1 for some i ∈ [n]. Then b = π−1(a) ∈ {2i − 1, 2i}, so b = 2i, and thus (ab) = (2i − 1, 2i). This
proves (3.5). �

Theorem 3.2. Let A(q, t, x) =
∑

n≥0

∑

π∈D2

2n
(3142) q

fix(π)t# 2-cycles in πxn be the generating function for

3142-avoiding Dumont permutations of the second kind with respect to the number of fixed points and the
number of 2-cycles. Then

(3.6) A(q, t, x) =
1 + x(q − t) −

√

1 − 2x(q + t) + x2((q + t)2 − 4q)

2xq(1 + x(1 − t))
.

Proof. By the correspondences in Theorem 3.1, it follows that

A(q, t, x) =
∑

n≥0

∑

σ∈En

qdef(σ)tfix(σ)xn.

For convenience, let us define a related generating function B(q, t, x) =
∑

n≥0

∑

σ∈En
qdef(σ)tfix

−1
(σ)xn. From

the block decomposition of permutations σ ∈ En as σ = (k, r ◦ c(σ′), k+σ′′) for some σ′ ∈ Ek−1, σ
′′ ∈ En−k,

it follows that

(3.7) A(q, t, x) = 1 + xtA(q, t, x) + x(B(1/q, t, xq) − 1)A(q, t, x).

The term xtA(q, t, x) corresponds to the case k = 1, in which σ′ is empty and k is a fixed point. When
k > 1, σ′′ still contributes as A(q, t, x), and the contribution of σ′ is B(1/q, t, xq) − 1, since elements with
σ′(i) = i− 1 become fixed points of σ, and all elements of σ′ other than its deficiencies become deficiencies
of σ.

A similar reasoning gives the following equation for B(q, t, x):

B(q, t, x) = 1 + xA(1/q, t, xq)B(q, t, x).

Solving for B we have B(q, t, x) = 1
1−xA(1/q,t,xq) , and plugging B(1/q, t, xq) = 1

1−xqA(q,t,x) into (3.7) gives

A(q, t, x) = 1 + x

(

1

1 − xqA(q, t, x)
+ t− 1

)

A(q, t, x).

Solving this quadratic equation gives the desired formula for A(q, t, x). �

3.1.2. Cycle decomposition. Letting t = 1 in (3.6), we obtain

Corollary 3.3. We have
∑

n≥0

∑

π∈D2

2n
(3142)

qfix(π)xn = A(q, 1, x) =
1 + x(q − 1) −

√

1 − 2x(q + 1) + x2(q − 1)2

2xq
,

i.e. the number of permutations in π ∈ D
2
2n(3142) with k fixed points is the Narayana number N(n, k) =

1
n

(

n
k

)(

n
k+1

)

, which is also the number of noncrossing partitions of [n] into n− k parts.

Proof. Even though the generating function is an immediate consequence of Theorem 3.2, we will give
a combinatorial proof of the corollary, by exhibiting a natural bijection ψ : D

2
2n(3142) → NC(n), where

NC(n) is the set of noncrossing partitions of [n]. We start by considering a permutation π ∈ D
2
2k(3142).

Iterating the block decomposition (3.1), we obtain

π = (2k1, 1, c ◦ r(π1) + 1, 2k2, 2k1 + 1, c ◦ r(π2) + 2k1 + 1, · · · , 2kr, 2kr−1 + 1, c ◦ r(πr) + 2kr−1 + 1)

= (2k1, 1, 2k1 − r(π1), 2k2, 2k1 + 1, 2k2 − r(π2), · · · , 2kr, 2kr−1 + 1, 2kr − r(πr)),
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where 1 ≤ k1 < k2 < · · · < kr = k, πi ∈ D
2
2(ki−ki−1−1)(3142) (1 ≤ i ≤ r), and we define k0 = 0. Note that

each permutation c ◦ r(πi) + 2ki−1 + 1 = 2ki − r(πi) of [2ki−1 + 2, 2ki − 1] occurs at positions [2ki−1 + 3, 2ki]
in π.

Now consider

π′ = (2k + 2, 1, c ◦ r(π) + 1) = (2kr + 2, 1, 2kr + 2 − r(π)).

Let k′i = k− ki = kr − ki. By (3.1), we have π ∈ D
2
2k+2(3142), πi ∈ D

2
2(k′

i−1
−k′

i
−1)(3142) (1 ≤ i ≤ r), k′r = 0,

k′0 = k, and

π′ = (2k+ 2, 1, πr + 2, 2k′r−1 + 1, 2, πr−1 + 2k′r−1 + 2, 2k′r−2 + 1, 2k′r−1 + 2, . . . , π1 + 2k′1 + 2, 2k+ 1, 2k′1 + 2).

Note that, for each i = 1, 2, . . . , r, the permutation πi + 2k′i + 2 of [2k′i + 3, 2k′i−1] occurs at positions
[2k′i + 3, 2k′i−1] in π′. Moreover, the entries 2k′i + 1 (0 ≤ i ≤ r − 1) occur at positions 2k′i + 1 in π′, and
thus are fixed points of π′. Finally, each entry 2k′i + 2 (1 ≤ i ≤ r) occurs at position 2k′i−1 + 2, 1 occurs at
position 2 = 2k′r + 2, and 2k + 2 = 2k′0 + 2 occurs at position 1.

Thus, γ = (2k′0 +2, 2k′1+2, 2k′2+2, . . . , 2k′r−1+2, 2k′r +2, 1) = (2k+2, 2k′1+2, 2k′2+2, . . . , 2k′r−1+2, 2, 1)
is a cycle of π′, and each remaining nontrivial cycle of π′ is completely contained in some πi +2k′i +2, which
is a 3142-avoiding Dumont permutation of the second kind of [2k′i + 3, 2k′i−1]. Note that

2k′i + 2 < 2k′i + 3 < 2k′i−1 < 2k′i−1 + 2,

so all entries of each remaining cycle of π′ are contained between two consecutive entries of γ.
Now let G be the subset of [2k + 2] consisting of the entries of γ. Then, clearly,

G/{2k′r−1 + 1}/ . . . /{2k′1 + 1}/{2k′0 + 1}/[2k′r + 3, 2k′r−1]/ . . . /[2k
′
1 + 3, 2k′0]

is a noncrossing partition of [2k+ 2]. Now it is easy to see by induction on the size of π′ that the subsets of
π′ formed by entries of the cycles in cycle decomposition of π′ form a noncrossing partition of π′. Moreover,
all the entries of G except the smallest entry are even, so likewise the cycle decomposition of π′ determines
a unique noncrossing partition of π′

ev , hence a unique noncrossing partition of [n].
Finally, any permutation π̂ ∈ D

2
2n(3142) can be written as π̂ = (π′, π′′ + 2k + 2), where π′ is as above

and π′′ ∈ D
2
2n−2k−2(3142), so the cycles of any permutation in D

2
2n(3142) determine a unique noncrossing

partition of [n].
Notice also that each cycle in the decomposition of π̂ contains exactly one odd entry, the least entry in

each cycle, so the number of odd entries of π̂ which are not fixed points, fix
−1

(π̂) = n−fix(π̂), is the number
of parts in ψ(π̂). This finishes the proof. �

For example, if

π̂ = 12, 1, 6, 3, 5, 4, 7, 2, 10, 9, 11, 8, 16, 13, 15, 14

= (12, 8, 2, 1)(6, 4, 3)(10, 9)(16, 14, 13)(15)(11)(7)(5) ∈ D
2
16(3142),

then ψ(π̂) = 641/32/5/87 ∈ NC(8). Note also that π̂ev = 63215487 = (641)(32)(5)(87).

3.2. Avoiding 4132. For Dumont permutations of the second kind avoiding the pattern 4132 we have
the following result.

Theorem 3.4. For any n ≥ 0, D
2
2n(4132) = D

2
2n(321). Moreover, |D2

2n(4132)| = Cn, where Cn is the
nth Catalan number. Thus, 4132 and 3142 are D

2-Wilf-equivalent.

Proof. The pattern 321 is contained in 4132. Therefore, if π avoids 321, then π avoids 4132, so
D

2
2n(321) ⊆ D

2
2n(4132). Now let us prove that D

2
2n(4132) ⊆ D

2
2n(321). Let n ≥ 4 and let π ∈ D

2
2n(4132)

contain an occurrence of 321. Choose the leftmost occurrence of 321 in π, namely, π(i1) > π(i2) > π(i3) with
1 ≤ i1 < i2 < i3 ≤ 2n such that i1+i2+i3 is minimal. If i1 is an even number, then π(i1−1) ≥ i1−1 ≥ π(i1),
so the occurrence π(i1 − 1)π(i1)π(i2) of pattern 321 contradicts minimality of our choice. Therefore, i1 is
odd. If i2 6= i1 + 1, then from the minimality of the occurrence we get that π(i1 + 1) < π(i3). Hence, π
contains 4132 a contradiction. So i2 = i1 + 1. If i3 is odd, then π(i3) ≥ i3 > i1 + 1 ≥ π(i1 + 1), which
contradicts the fact that π(i1) > π(i1 + 1) > π(i3). So i3 is even.

Therefore, the leftmost occurrence of 321 is given by π(2i+ 1)π(2i+ 2)π(j) where 4 ≤ 2i+ 2 ≤ j ≤ 2n
(since π(2) = 1, we must have i ≥ 1). By minimality of the occurrence, we have π(m) ≤ 2i for all m ≤ 2i.
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On the other hand, π(i3) < π(2i+ 2) ≤ 2i+ 1 which means that π(i3) ≤ 2i. Hence, π must contain at least
2i+ 1 letters smaller than 2i, a contradiction.

Therefore, if π ∈ D
2
2n(4132) then π ∈ D

2
2n(321). The rest is a consequence of [11, Theorem 4.3]. �

3.3. Avoiding 2143. Dumont permutations of the second kind that avoid 2143 are enumerated by the
following theorem, which we prove in this section.

Theorem 3.5. For any n ≥ 0, |D2
2n(2143)| = anan+1, where

a2m =
1

2m+ 1

(

3m

m

)

,

a2m+1 =
1

2m+ 1

(

3m+ 1

m+ 1

)

=
1

m+ 1

(

3m+ 1

m

)

.

Remark 3.6. Note that the sequence {an} enumerates, among other objects, pairs of northeast lattice
paths from (0, 0) to (n, bn/2c) that do not get above the line y = x/2 (see [17, A047749] and references
therein). Also note that {a2m+1} is the convolution of {a2m} with itself, while the convolution of {a2m} with
{a2m+1} is {a2m+2}. Alternatively, if f(x) and g(x) are the ordinary generating functions for {a2m} and
{a2m+1}, then f(x) = 1 + xf(x)g(x) and g(x) = f(x)2, so f(x) = 1 + xf(x)3. Now the Lagrange inversion
applied to the last two equations yields the formulas for an.

Note that Theorem 3.5 implies that limn→∞ |D2
2n(2143)|

1

2n = 33

22 = 27
4 . In comparison, [13] and [21]

imply that |Sn(2143)| = |Sn(1234)| and hence limn→∞ |Sn(2143)|
1

n = limn→∞ |Sn(1234)|
1

n = (4 − 1)2 = 9.

Lemma 3.7. Let π ∈ D
2
2n(2143). Then the subsequence (π(1), π(3), . . . , π(2n − 1)) is a permutation of

{n+ 1, n+ 2, . . . , 2n} and the subsequence (π(2), π(4), . . . , π(2n)) is a permutation of {1, 2, . . . , n}.

Proof. Assume the lemma is false. Let i be the smallest integer such that π(2i) ≥ n + 1. Then
π(2i− 1) ≥ 2i− 1 ≥ π(2i) ≥ n+ 1. Therefore, if j ≥ i, then π(2j − 1) ≥ 2j − 1 ≥ 2i− 1 ≥ n+ 1. In fact,
note that for any 1 ≤ j ≤ n, π(2j − 1) ≥ 2j − 1 ≥ π(2j).

By minimality of i, we have π(2j) ≤ n for j < i, so if π(2j − 1) ≤ n for some j < i, then (π(2j −
1), π(2j), π(2i− 1), π(2i)) is an occurrence of pattern 2143 in π. Hence, π(2j − 1) ≥ n+ 1 for all j < i.

Thus, we have π(2j − 1) ≥ n + 1 for any 1 ≤ j ≤ n, and π(2i) ≥ n + 1, so π must have at least n + 1
entries between n+ 1 and 2n, which is impossible. The lemma follows. �

For π ∈ D
2
2n(2143), we denote πo = (π(1), π(3), . . . , π(2n − 1)) − n and πe = (π(2), π(4), . . . , π(2n)).

By Lemma 3.7, πo, πe ∈ Sn(2143). For example, given π = 71635482 ∈ D
2
8(2143), we have πo = 3214 and

πe = 1342. Note that π(2i− 1) = πo(i) + n and π(2i) = πe(i).

Lemma 3.8. For any permutation π ∈ D
2
2n(2143), and πo and πe defined as above, the following is true:

(1) πo ∈ Sn(132) and the entries of πo are on a board with n columns aligned at the top of sizes
2, 4, 6, . . . , 2bn

2 c, n, . . . , n from right to left (see the first and third boards in Figure 2).
(2) πe ∈ Sn(213) and the entries of πe are on a board with n columns aligned at the bottom of sizes

1, 3, 5, . . . , 2bn
2 c − 1, n, . . . , n from left to right (see the second and fourth boards in Figure 2).

Figure 2. The boards of Lemma 3.8 for n = 9 (left) and n = 10 (right).

Proof. If 132 occurs in πo at positions i1 < i2 < i3, then 2143 occurs in π at positions 2i1 − 1 < 2i1 <
2i2 − 1 < 2i3 − 1 since π(2i1) < π(2i1 − 1). Similarly, if 213 occurs in πe at positions i1 < i2 < i3, then 2143
occurs in π at positions 2i1 < 2i2 < 2i3 − 1 < 2i3 since π(2i3 − 1) > π(2i3). The rest simply follows from
the definition of D

2
2n and Lemma 3.7. �
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Let us call a permutation as in part (1) of Lemma 3.8 an upper board, and a permutation as in part
(2) of Lemma 3.8 a lower board. Note that πe(1) = 1 and 213 = r ◦ c(132). Hence it is easy to see that
πe = (1, r ◦ c(π′) + 1) with π′ ∈ Sn−1(132) of upper type. Let bn be the number of lower boards in Sn(213).
Then the number of upper boards in Sn(132) is bn+1.

Lemma 3.9. Let π1 ∈ Sn(132) be an upper board and π2 ∈ Sn(213) be a lower board. Let π ∈ S2n be
defined by π = (π1(1)+n, π2(1), π1(2)+n, π2(2), . . . , π1(n)+n, π2(n)) (i.e. such that πo = π1 and πe = π2).
Then π ∈ D

2
2n(2143).

Proof. Clearly π ∈ D
2
2n. It is not difficult to see that if π contains 2143, then “2” and “1” are

deficiencies (i.e., they are at even positions and come from π2) and “4” and “3” are excedances or fixed
points (i.e. they are at odd positions and come from π1). Such an occurrence is represented in Figure 3,
where an entry π(i) is plotted by a dot with abscissa i and ordinate π(i), and the two diagonal lines indicate
the positions of the fixed points and elements with π(i) = i− 1.

Say the pattern 2143 occurs at positions 2i1 < 2i2 < 2i3−1 < 2i4−1. We have π(2j) ≤ 2j−1 < 2i2−1
for any j < i2. On the other hand, the subdiagonal part of π avoids 213, so π(2j) < π(2i1) ≤ 2i1−1 < 2i2−1
for any j ≥ i2. Thus, π(2j) < 2i2 − 1 for any 1 ≤ j ≤ n. Similarly, π(2j − 1) ≥ 2j − 1 > 2i3 − 1 for any
j > i3, and π(2j − 1) > π(2i4) ≥ 2i4 − 1 > 2i3 − 1 for any j ≤ i3 since the superdiagonal part of π avoids
132. Thus, π(2j − 1) > 2i3 − 1 for any 1 ≤ j ≤ n.

Therefore, no entry of π lies in the interval [2i2− 1, 2i3− 1], which is nonempty since 2i2 < 2i3− 1. This
is, of course, impossible, so the lemma follows. �

?

Figure 3. This situation is impossible in Lemma 3.9: no value between the grey points
(inclusive) can occur in π.

Hence, there is a bijection between π ∈ D
2
2n(2143) and pairs (π1, π2), where π1 ∈ Sn(132) is an upper

board and π2 ∈ Sn(213) is a lower board. Thus, |D2
2n(2143)| = bnbn+1, where bn is the number of lower

boards π ∈ Sn(213) and bn+1 is the number of upper boards π ∈ Sn(132) (see the remark after Lemma 3.8).

Lemma 3.10. Let F (x) =
∑∞

m=0 b2mx
m and G(x) =

∑∞
m=0 b2m+1x

m. Then we have b0 = 1 and

b2m =

m−1
∑

i=0

b2ib2m−2i−1, b2m+1 =

m
∑

i=0

b2ib2m−2i,

F (x) = 1 + xF (x)G(x), G(x) = F (x)2.

Proof. Let π ∈ Sn(213) be a lower board, and let i ≥ 0 be maximal such that π(i + 1) = 2i + 1.
Such an i always exists since π(1) = 1. Then π(j) ≤ 2j − 2 for j ≥ i+ 2. Furthermore, π avoids 213, so if
j1, j2 > i+ 1, and π(j1) > π(i+ 1) > π(j2), then j1 < j2. In other words, all entries of π greater than and
to the right of 2i+ 1 must come before all entries less than and to the right of 2i+ 1 (see Figure 4, the areas
that cannot contain entries of π are shaded). In addition, π(j) ≤ 2i+ 1 for j ≤ i+ 1, so π(j) > 2i+ 1 only
if j > i + 1. There are n − 2i − 1 values greater than 2i + 1 in π, hence they must occupy the n − 2i − 1
positions immediately to the right of π(i + 1), i.e. positions i + 2 through n − i. It is not difficult now to
see from the above argument that all entries of π greater than 2i+ 1 must lie on a board of lower type in
Sn−2i−1(213), while the entries less than 2i+ 1 in π must lie on two boards whose concatenation is a lower
board in S2i(213) (unshaded areas in Figure 4). �

Thus, we get the same generating function equations as in Remark 3.6, so F (x) = f(x), G(x) = g(x),
and hence bn = an for all n ≥ 0. This proves Theorem 3.5.
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Figure 4. A lower board π ∈ Sn(213) (n = 10 (even), left, and n = 11 (odd), right)
decomposed into two lower boards according to the largest i such that π(i + 1) = 2i + 1
(here i = 2).

We can give a direct bijection showing that bn = an. It is well-known that a2n (resp. a2n+1) is the
number of northeast lattice paths from (0, 0) to (2n, n) (resp. from (0, 0) to (2n + 1, n)) that do not get
above the line y = x/2. The following bijection uses the same idea as a bijection of Krattenthaler [10] from
the set of 132-avoiding permutations in Sn to Dyck paths of semilength n, which is described in Section 2.1.

We introduce a bijection between the set of lower boards in Sn(213) and northwest paths from (n, 0)
to (dn/2e, n) that stay on or above the line y = 2n − 2x (see Figure 5). Given a lower board in Sn(213)
represented as an n× n binary array, consider a lattice path from (n, 0) to (dn/2e, n) that leaves all dots to
the left and stays as close to the y = 2n− 2x as possible. We claim that such a path must stay on or above
the line y = 2n − 2x. Indeed, considering rows of a lower board from top to bottom, we see that at most
one extra column appears on the left for every two consecutive rows. Therefore, our path must shift at least
r columns to the right for every 2r consecutive rows starting from the top. The rest is easy to see.

Conversely, given a northwest path from (n, 0) to (dn/2e, n) not below the line y = 2n − 2x, fill the
corresponding board from top to bottom (i.e. from row n to row 1) so that the dots are in the rightmost
column to the left of the path that still contains no dots.

Figure 5. A bijection between lower boards in Sn(213), for n = 10 (left) and n = 11
(right), and northwest paths from (n, 0) to (dn/2e, n) not below y = 2n− 2x.

The median Genocchi number (or Genocchi number of the second kind) Hn [17, A005439] counts the
number of derangements in D

2
2n (also, the number of permutations in D

1
2n which begin with n or n + 1).

Using the preceding argument, we can also count the number of derangements in D
2
2n(2143).

Theorem 3.11. The number of derangements in D
2
2n(2143) is a2

n, where an is as in Theorem 3.5.

Proof. Notice that the fixed points of a permutation π ∈ D
2
2n(2143) correspond to the dots in the

lower right (southeast) corner cells on its upper board (except the lowest right corner when n is odd) (see
Figure 2). It is easy to see that deletion of those cells on an upper board produces a rotation of a lower
board by 180◦. This, together with the preceding lemmas, implies the theorem. �

The following theorem gives the generating function for the distribution of the number of fixed points
among permutations in D

2
2n(2143).

Theorem 3.12. We have

(3.8)
∑

π∈D2

2n
(2143)

qfix(π) = an[xn+1]

(

1

1 − xf(x2)
·

1

1 − qx2f(x2)2

)

.

where f(x) =
∑

n≥0 a2nx
n is a solution of f(x) = 1 + xf(x)3.
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Note that
∑

n≥0 a2nx
2n = f(x2) and g(x) =

∑

n≥0 a2n+1x
n = f(x)2 implies

∑

n≥0 a2n+1x
2n+1 =

xf(x2)2. Hence,
∑

n≥0

anx
n = f(x2) + xf(x2)2 =

1

1 − xf(x2)
.

Proof. Let π ∈ D
2
2n(2143). Note that all fixed points must be on the upper board of π. Therefore,

the lower board of π may be any 213-avoiding lower board. This accounts for the factor an. Now consider
the product of two rational functions on the right. This products corresponds to the fact that the upper
board B of π is a concatenation of two objects: the upper board B′ of rows below the lowest (smallest) fixed
point, and the upper board B′′ of rows not below the lowest fixed point. It is easy to see that B′ may be
any 132-avoiding upper board. Note that B′′ must necessarily have an even number of rows and that B′′ is
a concatenation of a sequence of “slices” between consecutive fixed points, where the ith slice consists of an
even number of rows below the (i+ 1)-th smallest fixed point but not below the ith smallest fixed point.

Thus, we obtain a block decomposition of the upper board B (similar to the one in the Figure 4 for lower
boards) into an possibly empty upper board B′ and a sequence B′′ of nonempty upper boards B′′

1 , B
′′
2 , . . . ,

where each B′′
i contains an even number of rows and exactly 1 fixed point of π. Taking generating functions

yields the product of functions on the right-hand side of (3.8). �

In conclusion, we note that not all results of the full paper fit in the length of this extended abstract.
Using the same methods as in [12], we may similarly obtain the generating function for the number of
Dumont permutations of the first kind simultaneously avoiding certain pairs of 4-letter patterns and another
pattern of arbitrary length in terms of Chebyshev polynomials.
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