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San Diego, California 2006

Representation theories of some towers of algebras related to the symmetric

groups and their Hecke algebras

Florent Hivert and Nicolas M. Thiéry

Abstract. We study the representation theory of three towers of algebras which are related to the symmet-
ric groups and their Hecke algebras. The first one is constructed as the algebras generated simultaneously
by the elementary transpositions and the elementary sorting operators acting on permutations. The two
others are the monoid algebras of nondecreasing functions and nondecreasing parking functions. For these

three towers, we describe the structure of simple and indecomposable projective modules, together with the
Cartan map. The Grothendieck algebras and coalgebras given respectively by the induction product and
the restriction coproduct are also given explicitly. This yields some new interpretations of the classical bases
of quasi-symmetric and noncommutative symmetric functions as well as some new bases.

Résumé. Nous étudions la théorie des représentations de trois tours d’algèbres liées aux groupes symétriques
et à leurs algèbres de Hecke. La première est formée des algèbres engendrées par les transpositions élémen-
taires ainsi que les opérateurs de tris élémentaires agissant sur les permutations. Les deux autres sont formées
des algèbres des monöıdes des fonctions croissantes et des fonctions de parking croissantes. Pour ces trois
tours, nous donnons la structure des modules simples et projectifs indécomposables ainsi que l’application
de Cartan. Nous calculons également explicitement les algèbres et cogèbres de Grothendieck pour le produit
d’induction et le coproduit de restriction. Il en découle de nouvelles interprétations de bases connues des
fonctions quasi-symétriques et symétriques noncommutatives ainsi que des nouvelles bases.
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1. Introduction

Given an inductive tower of algebras, that is a sequence of algebras

(1) A0 ↪→ A1 ↪→ · · · ↪→ An ↪→ · · · ,

with embeddings Am ⊗An ↪→ Am+n satisfying an appropriate associativity condition, one can introduce two
Grothendieck rings

(2) G(A) :=
⊕

n≥0

G0(An) and K(A) :=
⊕

n≥0

K0(An) ,
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where G0(A) and K0(A) are the (complexified) Grothendieck groups of the categories of finite-dimensional
A-modules and projective A-modules respectively, with the multiplication of the classes of an Am-module
M and an An-module N defined by the induction product

(3) [M ] · [N ] = [M⊗̂N ] = [M ⊗ N ↑
Am+n

Am⊗An
] .

If Am+n is a projective Am ⊗ An modules, one can define a coproduct on these rings by means of
restriction of representations, turning these into coalgebras. Under favorable circumstances the product and
the coproduct are compatible turning these into mutually dual Hopf algebras.

The basic example of this situation is the character ring of the symmetric groups (over C), due to
Frobenius. Here the An := C[Sn] are semi-simple algebras, so that

(4) G0(An) = K0(An) = R(An) ,

where R(An) denotes the vector space spanned by isomorphism classes of indecomposable modules which,
in this case, are all simple and projective. The irreducible representations [λ] of An are parametrized by
partitions λ of n, and the Grothendieck ring is isomorphic to the algebra Sym of symmetric functions under
the correspondence [λ] ↔ sλ, where sλ denotes the Schur function associated with λ. Other known examples
with towers of group algebras over the complex numbers An := C[Gn] include the cases of wreath products
Gn := Γ oSn (Specht), finite linear groups Gn := GL(n, Fq) (Green), etc., all related to symmetric functions
(see [11, 16]).

Examples involving non-semisimple specializations of Hecke algebras have also been worked out. Finite
Hecke algebras of type A at roots of unity (An = Hn(ζ), ζr = 1) yield quotients and subalgebras of Sym [10].
The Ariki-Koike algebras at roots of unity give rise to level r Fock spaces of affine Lie algebras of type A [2].
The 0-Hecke algebras An = Hn(0) correspond to the pair Quasi-symmetric functions / Noncommutative

symmetric functions, G = QSym, K = NCSF [9]. Affine Hecke algebras at roots of unity lead to U(ŝlr)

and U(ŝlr)
∗ [1], and the case of affine Hecke generic algebras can be reduced to a subcategory admitting as

Grothendieck rings U(ĝl∞) and U(ĝl∞)∗ [1]. Further interesting examples are the tower of 0-Hecke-Clifford
algebras [13, 3] giving rise to the peak algebras [15], and a degenerated version of the Ariki-Koike algebras [7]
giving rise to a colored version of QSym and NCSF.

The goal of this article is to study the representation theories of several towers of algebras which are
related to the symmetric groups and their Hecke algebras Hn(q). We describe their representation theory
and the Grothendieck algebras and coalgebras arising from them. Here is the structure of the paper together
with the main results.

In Section 3, we introduce the main object of this paper, namely a new tower of algebras denoted HSn.
Each HSn is constructed as the algebra generated by both elementary transpositions and elementary sorting
operators acting on permutations of {1, . . . , n}. We show that this algebra is better understood as the algebra
of antisymmetry preserving operators; this allows us to compute its dimension and give an explicit basis.
Then, we construct the projective and simple modules and compute their restrictions and inductions. This
gives rise to a new interpretation of some bases of quasi-symmetric and noncommutative symmetric functions
in representation theory. The Cartan matrix suggests a link between HSn and the incidence algebra of the
boolean lattice. We actually show that these algebra are Morita equivalent. We conclude this section by
discussing some links with a certain central specialization of the affine Hecke algebra.

In Sections 4 and 5 we turn to the study of two other towers, namely the towers of the monoids algebras
of nondecreasing functions and of nondecreasing parking functions. In both cases, we give the structure
of projective and simple modules, the cartan matrices, and the induction and restrictions rules. We also
show that the algebra of nondecreasing parking functions is isomorphic to the incidence algebra of some
lattice. Finally, we prove that those two algebras are the respective quotients of HSn and Hn(0), through
their representations on exterior powers. The following diagram summarizes the relations between all the
mentioned towers of algebras:

(5)

Hn(−1)

����

# � ,,
Hn(0)

����

#
�

,,
Hn(1) = C[Sn]

����

# �

--Hn(q)

����

� � // HSn

����

Temperley-Liebn � { 22C[NDPFn] � { 11C[Sn] ↪→
∧·

Cn
� | 11Hn(q) ↪→

∧·
Cn � � // C[NDFn]
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This paper mostly reports on a computation driven research using the package MuPAD-Combinat by the
authors of the present paper [8]. This package is designed for the computer algebra system MuPAD and is freely
available from http://mupad-combinat.sf.net/. Among other things, it allows to automatically compute
the dimensions of simple and indecomposable projective modules together with the Cartan invariants matrix
of a finite dimensional algebra, knowing its multiplication table.

2. Background

2.1. Compositions and sets. Let n be a fixed integer. Recall that each subset S of {1, . . . , n − 1}
can be uniquely identified with a p-tuple K := (k1, . . . , kp) of positive integers of sum n:

(6) S = {i1 < i2 < · · · < ip} 7−→ C(S) := (i1, i2 − i1, i3 − i2, . . . , n − ip) .

We say that K is a composition of n and we write it by K � n. The converse bijection, sending a composition
to its descent set, is given by:

(7) K = (k1, . . . , kp) 7−→ Des(K) = {k1 + · · · + kj , j = 1, . . . , p − 1} .

The number p is called the length of K and is denoted by `(K).
The notions of complementary of a set Sc and of inclusion of sets can be transfered to compositions,

leading to the complementary of a composition Kc and to the refinement order on compositions: we say that
I is finer than J , and write I�J , if and only if Des(I) ⊇ Des(J).

2.2. Symmetric groups and Hecke algebras. Take n ∈ N and let Sn be the n-th symmetric group.
It is well known that it is generated by the n − 1 elementary transpositions σi which exchange i and i + 1,
with the relations

σ2
i = 1 (1 ≤ i ≤ n − 1) ,

σiσj = σjσi (|i − j| ≥ 2) ,(8)

σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2) .

The last two relations are called the braids relations. A reduced word for a permutation µ is a decomposition
µ = σi1 · · ·σik

of minimal length. When denoting permutations we also use the word notation, where µ is
denoted by the word µ1µ2 · · ·µn := µ(1)µ(2) · · ·µ(n). For a permutation µ, the set {i, µi > µi+1} of its
descents is denoted Des(µ). The descents of the inverse of µ are called the recoils of µ and their set is denoted
Rec(µ). For a composition I, we denote by SI := Si1 ×· · ·×Sip

the standard Young subgroup of Sn, which
is generated by the elementary transpositions σi where i /∈ Des(I).

Recall that the (Iwahori-) Hecke algebra Hn(q) of type An−1 is the C-algebra generated by elements Ti

for i < n with the braids relations together with the quadratic relations:

(9) T 2
i = (q − 1)Ti + q ,

where q is a complex number.
The 0-Hecke algebra is obtained by setting q = 0 in these relations. Then, the first relation becomes

T 2
i = −Ti [12, 9]. In this paper, we prefer to use another set of generators (πi)i=1...n−1 defined by πi := Ti+1.

They also satisfy the braids relations together with the quadratic relations π2
i = πi.

Let σ =: σi1 · · ·σip
be a reduced word for a permutation σ ∈ Sn. The defining relations of Hn(q) ensures

that the element Tσ := Ti1 · · ·Tip
(resp.: πσ := πi1 · · ·πip

) is independent of the chosen reduced word for
σ. Moreover, the well-defined family (Tσ)σ∈Sn

(resp.: (πσ)σ∈Sn
) is a basis of the Hecke algebra, which is

consequently of dimension n!.

2.3. Representation theory. In this paper, we mostly consider right modules over algebras. Conse-
quently the composition of two endomorphisms f and g is denoted by fg = g ◦f and their action on a vector
v is written v · f . Thus g ◦ f(v) = g(f(v)) is denoted v · fg = (v · f) · g.

It is known that Hn(0) has 2n−1 simple modules, all one-dimensional, and naturally labelled by com-
positions I of n [12]: following the notation of [9], let ηI be the generator of the simple Hn(0)-module SI

associated with I in the left regular representation. It satisfies

(10) ηI · Ti :=

{
−ηI if i ∈ Des(I),

0 otherwise,
or equivalently ηI · πi :=

{
0 if i ∈ Des(I),

ηI otherwise.
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The bases of the indecomposable projective modules PI associated to the simple module SI of Hn(0) are
indexed by the permutations σ whose descents composition is I.

The Grothendieck rings of Hn(0) are naturally isomorphic to the dual pair of Hopf algebras of quasi-
symmetric functions QSym of Gessel [6] and of noncommutative symmetric functions NCSF [5] (see [9]).
The reader who is not familiar with those should refer to these papers, as we will only recall the required
notations here.

The Hopf algebra QSym of quasi-symmetric functions has two remarkable bases, namely the monomial
basis (MI)I and the fundamental basis (also called quasi-ribbon) (FI)I . They are related by

(11) FI =
∑

I�J

MJ or equivalently MI =
∑

I�J

(−1)`(I)−`(J)FJ .

The characteristic map SI 7→ FI which sends the simple Hn(0) module SI to its corresponding fundamental
function FI also sends the induction product to the product of QSym and the restriction coproduct to the
coproduct of QSym.

The Hopf algebra NCSF of noncommutative symmetric functions [5] is a noncommutative analogue of
the algebra of symmetric functions [11]. It has for multiplicative bases the analogues (ΛI)I of the elementary
symmetric functions (eλ)λ and as well as the analogues (SI)I of the complete symmetric functions (hλ)λ.
The relevant basis in the representation theory of Hn(0) is the basis of so called ribbon Schur functions (RI)I

which is an analogue of skew Schur functions of ribbon shape. It is related to (ΛI)I and (SI)I by

(12) SI =
∑

I�J

RJ and ΛI =
∑

I�J

RJc .

Their interpretation in representation theory goes as follows. The complete function Sn is the characteristic
of the trivial module Sn ≈ Pn, the elementary function Λn being the characteristic of the sign module
S1n ≈ P1n . An arbitrary indecomposable projective module PI has RI for characteristic. Once again the
map PI 7→ RI is an isomorphism of Hopf algebras.

Recall that SJ is the semi-simple module associated to PI , giving rise to the duality between G and K :

(13) SI = PJ/rad(PJ ) and 〈PI , SJ〉 = δI,J

This translates into QSym and NCSF by setting that (FI)I and (RI)I are dual bases, or equivalently that
(MI)I and (SI)I are dual bases.

3. The algebra HSn

The algebra of the symmetric group C[Sn] and the 0-Hecke algebra Hn(0) can be realized simultaneously
as operator algebras by identifying the underlying vector spaces of their right regular representations.

Namely, consider the plain vector space CSn (distinguished from the group algebra which is denoted by
C[Sn]). On the first hand, the algebra C[Sn] acts naturally on CSn by multiplication on the right (action
on positions). That is, a transposition σi acts on a permutation µ := (µ1, . . . , µn) by permuting µi and µi+1:
µ · σi = µσi.

On the other hand, the 0-Hecke algebra Hn(0) acts on the right on CSn by decreasing sort. That is, πi

acts on the right on µ by:

(14) µ · πi =

{
µ if µi > µi+1,

µσi otherwise.

Definition 1. For each n, the algebra HSn is the subalgebra of End(CSn) generated by both sets of
operators σ1, . . . , σn−1, π1, . . . , πn−1.

By construction, the algebra HSn contains both C[Sn] and Hn(0). In fact, it contains simultaneously
all the Hecke algebras Hn(q) for all values of q; each one can be realized by taking the subalgebra generated
by the operators:

(15) Ti := (q − 1)(1 − πi) + qσi, for i = 1, . . . , n − 1 .

The natural embedding of CSn ⊗ CSm in CSn+m makes (HSn)n∈N into a tower of algebras, which
contains the similar towers of algebras (C[Sn])n∈N and (Hn(q))n∈N.
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3.1. Basic properties of HSn. Let πi be the increasing sort operator on CSn. Namely: πi acts on
the right on µ by:

(16) µ · πi =

{
µ if µi < µi+1,

µσi otherwise.

Since πi + πi is a symmetrizing operator, we have the identity:

(17) πi + πi = 1 + σi .

It follows that the operator πi also belongs to HSn.
The following identities are also easily checked:

(18)

σiπi = πi , σiπi = πi ,

πiπi = πi , πiπi = πi ,

πiσi = πi , πiσi = πi .

A computer exploration suggests that the dimension of HSn is given by the following sequence (sequence
A000275 of the encyclopedia of integer sequences [14]):

1, 1, 3, 19, 211, 3651, 90921, 3081513, 136407699, 7642177651, 528579161353, 44237263696473, . . .

These are the numbers hn of pairs (σ, τ) of permutations such that Des(σ) ∩ Des(τ) = ∅. Together with
Equation (18), this leads to state the following

Theorem 3.1. A vector space basis of HSn is given by the family of operators

(19) Bn :=
{
σπτ | Des(σ) ∩ Des(τ−1) = ∅

}
.

One approach to prove this theorem would be to find a presentation of the algebra. The following
relations are easily proved to hold in HSn:

(20)

πi+1σi = πi+1πi + σiσi+1πiπi+1 − πiπi+1πi ,

πiσi+1 = πiπi+1 + σi+1σiπi+1πi − πiπi+1πi ,

σ1π2σ1 = σ2π1σ2 ,

and we conjecture that they generate all relations.

Conjecture 1. A presentation of HSn is given by the defining relations of C[Sn] and Hn(0) together
with the relations σiπi = πi and of Equations (20).

Using those relations as rewriting rules yields a straightening algorithm which rewrites any expression
in the σi’s and πi’s into a linear combination of the σπτ . This algorithm seems, in practice and with an
appropriate strategy, to always terminate. However we have no proof of this fact; moreover this algorithm
is not efficient, due to the explosion of the number and length of words in intermediate results.

This is a standard phenomenon with such algebras. Their properties often become clearer when consid-
ering their concrete representations (typically as operator algebras) rather than their abstract presentation.
Here, theorem 3.1 as well as the representation theory of HSn follow from its upcoming structural charac-
terization as the algebra of operators preserving certain anti-symmetries.

3.2. HSn as algebra of antisymmetry-preserving operators. Let σi be the right operator in
End(CSn) describing the action of si by multiplication on the left (action on values), namely σi is defined
by

(21) σ · σi := σiσ .

A vector v in CSn is left i-symmetric (resp. antisymmetric) if v · σi = v (resp. v · σi = −v). The subspace
of left i-symmetric (resp. antisymmetric) vectors can be alternatively described as the image (resp. kernel)
of the idempotent operator 1

2 (1 + σi), or as the kernel (resp. image) of the idempotent operator 1
2 (1 − σi).

Theorem 3.2. HSn is the subspace of End(CSn) defined by the n− 1 idempotent sandwich equations:

(22)
1

2
(1 − σi)f

1

2
(1 + σi) = 0, for i = 1, . . . , n − 1 .

In other words, HSn is the subalgebra of those operators in End(CSn) which preserve left anti-symmetries.
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Note that, σi being self-adjoint, the adjoint algebra of HSn satisfies the equations:

(23)
1

2
(1 + σi)f

1

2
(1 − σi) = 0;

thus, it is the subalgebra of those operators in End(CSn) which preserve left symmetries. The symmetric
group algebra has a similar description as the subalgebra of those operators in End(CSn) which preserve
both left symmetries and antisymmetries.

Proof. The proof of theorem 3.2 proceeds as follow. We first exhibit a triangularity property of the
operators in Bn; this proves that they are linearly independent, so that dimHSn ≥ hn. Let < be any linear
extension of the right permutahedron order. Given an endomorphism f of CSn, we order the rows and
columns of its matrix M := [fµν ] accordingly to <, and denote by init(f) := min{µ, ∃ν, fµν 6= 0} the index
of the first non zero row of M .

Lemma 3.1. (a) Let f := σπτ in Bn. Then, init(f) = τ , and

(24) fτν =

{
1 if ν ∈ SDes(τ−1)σ

−1

0 otherwise

(b) The family Bn is free.

Then, we note that HSn preserves all antisymmetries, because its generators σi and πi do. It follows
that HSn satisfies the sandwich equations. We conclude by giving an explicit description of the sandwich
equations. Given an endomorphism f of CSn, denote by (fµ,ν)µ,ν the coefficients of its matrix in the natural
permutation basis. Given two permutations µ, ν, and an integer i in {1, . . . , n − 1}, let Rµ,ν,i be the linear
form:

(25) Rµ,ν,i :

{
End(CSn) 7→ C

f 7→ fµ,ν + fsiµ,ν − fµ,siν + fsiµ,siν

Given a pair of permutations µ, ν having at least one descent in common, set Rµ,ν = Rµ,ν,i, where i is the
smallest common descent of µ and ν (the choice of the common descent i is, in fact, irrelevant). Finally, let
Rn := {Rµ,ν , Des(µ) ∩ Des(ν) 6= ∅}.

Lemma 3.2. (a) If an operator f in EndCSn preserves i-antisymmetries, then Rµ,ν,i(f) = 0 for any
permutations µ and ν.

(b) The n!2 − hn linear relations in Rn are linearly independent.

Theorems 3.1 and 3.2 follow. �

3.3. The representation theory of HSn.

3.3.1. Projective modules of HSn. Recall that HSn is the algebra of operators preserving left antisym-
metries. Thus, given S ⊂ {1, . . . , n − 1}, it is natural to introduce the HSn-submodule

⋂
i∈S ker(1 + σi) of

the vectors in CSn which are i-antisymmetric for all i ∈ S. For the ease of notations, it turns out to be
better to index this module by the composition associated to the complementary set ; thus we define

(26) PI :=
⋂

i/∈Des(I)

ker(1 + σi) .

The goal of this section is to prove that the family of modules (PI)I�n forms a complete set of representatives
of the indecomposable projective modules of HSn.

The simplest element of PI is:

(27) vI :=
∑

ν∈SI

(−1)l(ν)ν,

One easily shows that

Lemma 3.3. vI generates PI as an HSn-module.

Given a permutation σ, let vσ := vRec(σ)σ (recall that Rec(σ) = Des(σ−1)). Note that σ is the permuta-
tion of minimal length appearing in vσ. By triangularity, it follows that the family (vσ)σ∈Sn

forms a vector
space basis of CSn. The usefulness of this basis comes from the fact that
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Proposition 1. For any composition I := (i1, . . . , ik) of sum n, the families

(28) {vI · σ | σ ∈ Sn, Rec(σ) ∩ Des(I) = ∅} and {vσ | σ ∈ Sn, Rec(σ) ∩ Des(I) = ∅}

are both vector space bases of PI ; in particular, PI is of dimension n!
i1!i2!...ik! .

Since Sn and Hn(0) are both sub-algebras of HSn, the space PI is naturally a module over them. The
following proposition elucidates its structure.

Proposition 2. Let (−1) denote the sign representation of the symmetric group as well as the corre-
sponding representation of the Hecke algebra Hn(0) (sending Ti to −1, or equivalently πi to 0).

(a) As a Sn module, PI ≈ (−1) ↑Sn

SI
; its character is the symmetric function eI := ei1 · · · eik

.

(b) As a Hn(0) module, PI ≈ (−1) ↑
Hn(0)
HI(0) ; it is a projective module whose character is the noncommu-

tative symmetric function ΛI := Λi1 · · ·Λik
.

(c) In particular the PI ’s are non isomorphic as Hn(0)-modules and thus as HSn-modules.

We are now in position to state the main theorem of this section.

Theorem 3.3. For σ ∈ Sn, let pσ ∈ End(CSn) denote the projector on Cvσ parallel to ⊕τ 6=σCvτ . Then,

(a) The ideal pσHSn is isomorphic to PRec(σ) = PDes(σ−1) as an HSn module;
(b) The idempotents pσ all belong to HSn; they give a maximal decomposition of the identity into

orthogonal idempotents in HSn;
(c) The family of modules (PI)I�n forms a complete set of representatives of the indecomposable pro-

jective modules of HSn.

Proof. Item (a) is an easy consequence of Proposition 1. To prove (b) one needs to check that pσ

belongs to HSn. This is done by showing that it preserves left antisymmetries. Then, since the pσ’s give
a maximal decomposition of the identity in End(CSn), they are as well a maximal decomposition of the
identity in HSn. Finally, Item (c) follows from (a) and (b) and Item (c) of Proposition 2. �

3.3.2. Simple modules. The simple modules are obtained as quotients of the projective modules by their
radical:

Theorem 3.4. The modules SI := PI/
∑

J(I PJ form a complete set of representatives of the simple

modules of HSn. Moreover, the projection of the family {vσ, Rec(σ) = I} in SI forms a vector space basis
of SI .

The modules SI are closely related to the projective modules of the 0-Hecke algebra:

Proposition 3. The restriction of the simple module SI to Hn(0) is an indecomposable projective module
whose characteristic is the noncommutative symmetric function RIc .

3.3.3. Cartan’s invariants matrix and the boolean lattice. We now turn to the description of the Cartan
matrix. Let pI := pα where α is the shortest permutation such that Rec(α) = I (this choice is in fact
irrelevant).

Proposition 4. Let I and J be two subsets of {1, . . . , n}. Then,

(29) dimHom(PI , PJ) = dim pIHSnpJ =

{
1 if I ⊂ J ,

0 otherwise.

In other words, the Cartan matrix of HSn is the incidence matrix of the boolean lattice. This suggests
that there is a close relation between HSn and the incidence algebra of the boolean lattice. Recall that the
incidence algebra C[P ] of a partially ordered set (P,≤P ) is the algebra whose basis elements are indexed by
the couples (u, v) ∈ P 2 such that u ≤P v with the multiplication rule

(30) (u, v) · (u′, v′) =

{
(u, v′) if v = u′,

0 otherwise.

An algebra is called elementary (or sometimes reduced) if its simple modules are all one dimensional. Starting
from an algebra A, it is possible to get a canonical elementary algebra by the following process. Start with
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a maximal decomposition of the identity 1 =
∑

i ei into orthogonal idempotents. Two idempotents ei and
ej are conjugate if ei can be written as aejb where a and b belongs to A, or equivalently, if the projective
modules eiA and ejA are isomorphic. Select an idempotent ec in each conjugacy classes c and put e :=

∑
ec.

Then, it is well known [4] that the algebra eAe is elementary and that the functor M 7→ Me which sends a
right A module to a eAe module is an equivalence of category. Recall finally that two algebra A and B such
that the category of A-modules and B-modules are equivalent are said Morita equivalent. Thus A and eAe
are Morita-equivalent.

Applying this to HSn, one gets

Theorem 3.5. Let e be the idempotent defined by e :=
∑

I�n pI . Then the algebra eHSne is isomorphic
to the incidence algebra C[Bn−1] of the boolean lattice Bn−1 of subsets of {1, . . . , n− 1}. Consequently, HSn

and C[Bn−1] are Morita equivalent.

3.3.4. Induction, restriction, and Grothendieck rings. Let G := G ((HSn)n) and K := K ((HSn)n) be
respectively the Grothendieck rings of the characters of the simple and projective modules of the tower of
algebras (HSn)n. Let furthermore C be the cartan map from K to G. It is the algebra and coalgebra
morphism which gives the projection of a module onto the direct sum of its composition factors. It is given
by

(31) C(PI) =
∑

I�J

SJ .

Since the indecomposable projective modules are indexed by compositions, it comes out as no surprise that
the structure of algebras and coalgebras of G and K are each isomorphic to QSym and NCSF. However, we
do not get Hopf algebras, because the structures of algebras and coalgebras are not compatible.

Proposition 5. The following diagram gives a complete description of the structures of algebras and of
coalgebras on G and K.

(32)

(QSym, .) (G, .)_?

χ(SI) 7→MIc
oooo (K, .)_?

Coooo � � χ(PI ) 7→FIc
// // (QSym, .)

(NCSF, ∆) (G, ∆)_?χ(SI) 7→RIc

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→ΛI

// // (NCSF, ∆)

Proof. The bottom line is already known from Proposition 2 and the fact that, for all m and n, the
following diagram commutes

(33)

Hm(0) ⊗ Hn(0)
� _

��

� � // Hm+n(0)
� _

��

HSm ⊗ HSn
� � // HSm+n

Thus the map which sends a module to the characteristic of its restriction to Hn(0) is a coalgebra morphism.
The isomorphism from (K, .) to QSym is then obtained by Frobenius duality between induction of projective
modules and restriction of simple modules. And the last case is obtained by applying the Cartan map C. �

It is important to note that the algebra (G, .) is not the dual of the coalgebra (K, ∆) because the dual
of the restriction of projective modules is the so called co-induction of simple modules which is, in general,
not the same as the induction for non self-injective algebras.

Finally the same process applied to the adjoint algebra which preserve symmetries would have given the
following diagram

(34)

(QSym, .) (G, .)_?

χ(SI ) 7→XIc
oooo (K, .)_?

Coooo � � χ(PI ) 7→FI
// // (QSym, .)

(NCSF, ∆) (G, ∆)_?χ(SI ) 7→RI

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→SI

// // (NCSF, ∆)

where (XI)I is the dual basis of the elementary basis (ΛI)I of NCSF. Thus we have a representation
theoretical interpretation of many bases of NCSF and QSym.
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3.4. Links with the affine Hecke algebra. Recall that, for any complex number q, the extended
affine Hecke algebra Ĥn(q) of type An−1 is the C-algebra generated by (Ti)i=1···n−1 together with an extra
generator Ω verifying the defining relations of the Hecke algebra and the relation:

(35) ΩTi = Ti−1Ω for 1 ≤ i ≤ n.

The center of the affine Hecke algebra is isomorphic to the ring of symmetric polynomials in some variables
ξ1, . . . , ξn and it can thus be specialized. Let us denote Hn(q) the specialization of the center Ĥn(q) to the
alphabet 1, q, . . . qn−1. That is

(36) Hn(q) := Ĥn(q)/〈ei(ξ1, . . . , ξn) − ei(1, q, . . . qn−1) | i = 1 . . . n〉 .

It is well known that the simple modules SI of Hn(q) are indexed by compositions I and that their bases
are indexed by descent classes of permutations. Thus one expects a strong link between HSn and Hn(q). It
comes out as follows. Let q be a generic complex number (i.e.: not 0 nor a root of the unity). Sending Ω to
σ1σ2 · · ·σn−1 and Ti to itself yields a surjective morphism from Hn(q) to HSn. Thus, the simple modules
of Hn(q) are the simple modules of HSn lifted back through this morphism. This also explains the link
between the projective modules of Hn(0) and the simple modules of Hn(q), thanks to Proposition 2.

4. The algebra of non-decreasing functions

Definition 2. Let NDFn be the set of non-decreasing functions from {1, . . . , n} to itself. The com-

position and the neutral element idn make NDFn into a monoid. Its cardinal is
(
2n−1
n−1

)
, and we denote by

C[NDFn] its monoid algebra.

The monoid NDFn ×NDFm can be identified as the submonoid of NDFn+m whose elements stabilize
both {1, . . . , n} and {n + 1, . . . , n + m}. This makes (C[NDFn])n into a tower of algebras.

One can take as generators for NDFn and An the functions πi et πi, such that πi(i + 1) = i, πi(j) = j
for j 6= i + 1, πi(i) = i + 1, and πi(j) = j for j 6= i. The functions πi are idempotents, and satisfy the braid
relations, together with a new relation:

(37) π2
i = πi and πi+1πiπi+1 = πiπi+1πi = πi+1πi .

This readily defines a morphism φ : πHn(0) 7→ πC[NDFn] of Hn(0) into C[NDFn]. Its image is the monoid
algebra of non-decreasing parking functions which will be discussed in Section 5. The same properties hold
for the operators πi’s. Although this is not a priori obvious, it will turn out that the two morphisms
φ : πHn(0) 7→ πC[NDFn] and φ : πHn(0) 7→ πC[NDFn] are compatible, making C[NDFn] into a quotient of HSn.

4.1. Representation on exterior powers. We now want to construct a suitable representation of
C[NDFn] where the existence of the epimorphism from HSn onto C[NDFn], and the representation theory
of C[NDFn] become clear.

The natural representation of C[NDFn] is obtained by taking the vector space Cn with canonical basis
e1, . . . , en, and letting a function f act on it by ei.f = ef(i). For n > 2, this representation is a faithful

representation of the monoid NDFn but not of the algebra, as dim C[NDFn] =
(
2n−1
n−1

)
� n2. However, since

NDFn is a monoid, the diagonal action on exterior powers

(38) (x1 ∧ · · · ∧ xk) · f := (x1 · f) ∧ · · · ∧ (xk · f)

still define an action. Taking the exterior powers
∧k

C
n of the natural representation gives a new represen-

tation, whose basis {eS := es1
∧ · · · ∧ esk

} is indexed by subsets S := {s1, . . . , sk} of {1, . . . , n}. The action
of a function f in NDFn is simply given by (note the absence of sign!):

(39) eS .f :=

{
ef(S) if |f(S)| = |S|,

0 otherwise.

We call representation of C[NDFn] on exterior powers the representation of C[NDFn] on
⊕n

k=1

∧k
Cn, which

is of dimension 2n − 1 (it turns out that we do not need to include the component
∧0

Cn for our purposes).

Lemma 4.1. The representation of C[NDFn] on
⊕n

k=1

∧k
Cn

∧
Cn is faithful.
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We now want to realize the representation of C[NDFn] on the k-th exterior power as a representation of
HSn. To this end, we use a variation on the standard construction of the Specht module Vk,1,...,1 of Sn to
make it a HSn-module. The trick is to use an appropriate quotient of CSn to simulate the symmetries that
we usually get by working with polynomials, while preserving the HSn-module structure. Namely, consider
the following HSn-module:

(40) P k
n := Pk,1,...,1/

⋃
Pk,1,...,1,2,1,...,1.

An element in P k
n is left-antisymmetric on the values 1, . . . , k−1 and symmetric on the values k+1, . . . , n−1,

the effect of the quotient being to identify two permutations which differ by a permutation of the values
{k + 1, . . . , n}. A basis of P k

n indexed by subsets of size k of {1, . . . , n} is obtained by taking for each such
subset S the image in the quotient P k

n of

(41) eS :=
∑

σ,σ(S)={1,...,k},σ(i)<σ(j) for i < j 6∈ S

(−1)signσσ .

It is straightforward to check that the actions of πi and πi of HSn on eS of Pk coincide with the actions

of πi and πi of C[NDFn] on eS of
∧k

Cn (justifying a posteriori the identical notations). In the sequel, we

identify the modules P k
n and

∧k
C

n of HSn and C[NDFn], and we call representation on exterior powers of

HSn its representation on
⊕n

k=1

∧k
Cn. Using Lemma 4.1 we are in position to state the following

Proposition 6. C[NDFn] is the quotient of HSn obtained by considering its representation on exterior
powers. The restriction of this representation of HSn to C[Sn], Hn(0), and Hn(−1) yield respectively the
usual representation of Sn on exterior powers, the algebra of non-decreasing parking functions (see Section 5),
and the Temperley-Lieb algebra.

4.2. Representation theory.

4.2.1. Projective modules, simple modules, and Cartan’s invariant matrix. Let δ be the usual homology
border map:

(42) δ :

{
P k

n → P k−1
n

S := {s1, . . . , sk} 7→
∑

i∈{1,...,k}(−1)k−iS\{si}
.

This map is naturally a morphism of C[NDFn]-module. For each k in 1, . . . , n, let Sk := Pk/ ker δ. It turns
out that together with the identity, δ is essentially the only C[NDFn]-morphism. We are now in position to
describe the projective and simple modules, as well as the Cartan matrix of C[NDFn].

Proposition 7. The modules (P k
n )k=1,...,n form a complete set of representatives of the indecomposable

projective modules of C[NDFn].
The modules (Sk

n)k=1,...,n form a complete set of representatives of the simple modules of C[NDFn].
Let k and l be two integers in {1, . . . , n}. Then,

(43) dimHom(P k
n , P l

n) =

{
1 if l ∈ {k, k − 1},

0 otherwise.

The proof relies essentially on the following lemma:

Lemma 4.2. There exists a minimal decomposition of the identity of C[NDFn] into 2n − 1 orthogonal
idempotents. In particular, the representation on exterior powers is the smallest faithful representation of
C[NDFn].

4.2.2. Induction, restriction, and Grothendieck groups.

Proposition 8. The restriction and induction of indecomposable projective modules and simple modules
are described by:

(44) P k
n1+n2

↓
C[NDFn1+n2

]

C[NDFn1
]⊗C[NDFn2

]≈
⊕

n1+n2=n
k1+k2=k

1≤ki≤ni or ki=ni=0

P k1

n1
⊗ P k2

n2

(45) P k1

n1
⊗ P k2

n2
↑

C[NDFn1+n2
]

C[NDFn1
]⊗C[NDFn2

]≈ P k1+k2

n1+n2
⊕ P k1+k2−1

n1+n2
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(46) Sk
n1+n2

↓
C[NDFn1+n2

]

C[NDFn1
]⊗C[NDFn2

]=
⊕

n1+n2=n
k1+k2∈{k,k+1}

1≤ki≤ni or ki=ni=0

Sk1

n1
⊗ Sk2

n2

(47) Sk1

n1
⊗ Sk2

n2
↑

C[NDFn1+n2
]

C[NDFn1
]⊗C[NDFn2

]≈ Sk1+k2

n1+n2

Those rules yield structures of commutative algebras and cocommutative coalgebras on G and K which
can be realized as quotients or sub(co)algebras of Sym, QSym, and NCSF. However, we do not get
Hopf algebras, because the structures of algebras and coalgebras are not compatible (compute for exam-
ple ∆(χ(P 1

1 )χ(P 1
1 )) in the two ways, and check that the coefficients of χ(P 1

1 ) ⊗ χ(P 1
1 ) differ).

5. The algebra of non-decreasing parking functions

Definition 3. A nondecreasing parking function of size n is a nondecreasing function f from {1, 2, . . . n}
to {1, 2, . . . n} such that f(i) ≤ i, for all i ≤ n.

The composition of maps and the neutral element idn make the set of nondecreasing parking function
of size n into a monoid denoted NDPFn.

It is well known that the nondecreasing parking functions are counted by the Catalan numbers Cn =
1

n+1

(
2n
n

)
. It is also clear that NDPFn is the sub-monoid of NDFn generated by the πi’s.

5.1. Simple modules. The goal of the sequel is to study the representation theory of NDPFn, or
equivalently of its algebra C[NDPFn]. The following remark allows us to deduce the representations of
C[NDPFn] from the representations of Hn(0).

Proposition 9. The kernel of the algebra epi-morphism φ : Hn(0) → C[NDPFn] defined by φ(πi) = πi

is a sub-ideal of the radical of Hn(0).

Proof. It is well known (see [12]) that the quotient of Hn(0) by its radical is a commutative algebra.
Consequently, πiπi+1πi − πiπi+1 = [πiπi+1, πi] belongs to the radical of Hn(0). �

As a consequence, taking the quotient by their respective radical shows that the projection φ is an
isomorphism from C[NDPFn]/rad(C[NDPFn]) to Hn(0)/rad(Hn(0)). Moreover C[NDPFn]/rad(C[NDPFn])
is isomorphic to the commutative algebra generated by the πi such that π2

i = πi. As a consequence, Hn(0)
and HSn share, roughly speaking, the same simple modules:

Corollary 1. There are 2n−1 simple C[NDPFn]-modules SI , and they are all one dimensional. The
structure of the module SI , generated by ηI , is given by

(48)

{
ηI · πi = 0 if i ∈ Des(I),
ηI · πi = ηI otherwise.

5.2. Projective modules. The projective modules of NDPFn can be deduced from the ones of NDFn.

Theorem 5.1. Let I be a composition of n, and S := Des(I) = {s1, . . . , sk} be its associated set. Then,
the principal sub-module

(49) PI := (e1 ∧ es1+1 ∧ · · · ∧ es1+1) · C[NDPFn] ⊂
k+1∧

C
n

is an indecomposable projective module. Moreover, the set (PI)I�n is a complete set of representatives of
indecomposable projective modules of C[NDPFn].

This suggests an alternative description of the algebra C[NDPFn]. Let Gn,k be the lattice of subsets
of {1, . . . , n} of size k for the product order defined as follows. Let S := {s1 < s2 < · · · < sk} and
T := {t1 < t2 < · · · < tk} be two subsets. Then,

(50) S ≤G T if and only if si ≤ ti, for i = 1, . . . , k.

One easily sees that S ≤G T if and only if there exists a nondecreasing parking function f such that eS = eT ·f .
This lattice appears as the Bruhat order associated to the Grassman manifold Gn

k of k-dimensional subspaces
in Cn.
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Theorem 5.2. There is a natural algebra isomorphism

(51) C[NDPFn] ≈
n−1⊕

k=0

C[Gn−1,k] .

In particular the Cartan map C : K → G is given by the lattice ≤G:

(52) C(PI) =
∑

J, Des(J)≤GDes(I)

SJ

On the other hand, due to the commutative diagram

(53)

Hm(0) ⊗ Hn(0)

����

� � // Hm+n(0)

����

NDPFm ⊗NDPFn
� � // NDPFm+n

it is clear that the restriction of simple modules and the induction of indecomposable projective modules
follow the same rule as for Hn(0). The induction of simple modules can be deduced via the Cartan map,
giving rise to a new basis GI of NCSF. It remains finally to compute the restrictions of indecomposable
projective modules. It can be obtained by a not yet completely explicit algorithm. All of this is summarized
by the following diagram:

(54)

(NCSF, .) (G, .)_?

χ(SI) 7→GI
oooo (K, .)_?

Coooo � � χ(PI ) 7→RI
// // (NCSF, .)

(QSym, ∆) (G, ∆)_?χ(SI ) 7→FI

oooo (K, ∆)_?C
oooo � �

χ(PI ) 7→???
// // ???
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